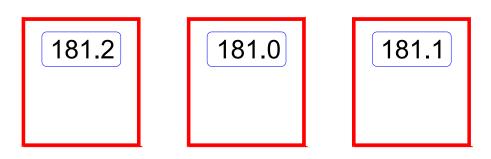
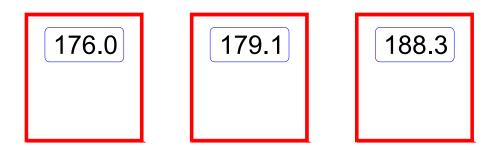
Uncertainty in Measurement

- L *Measured* quantities are always inexact.
- Accuracy Agreement between the measured value and the true value.
- **Precision** Repeatability of a measured value.

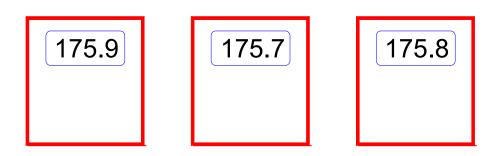
Examples of Precision and Accuracy "True Weight" = 181 lbs.



Good Precision - Good Accuracy



Poor Precision - Good Accuracy



Good Precision - Poor Accuracy

Rules for Determining Significant Figures

1. For decimal numbers with absolute value >1, all digits are significant.

<mark>2.620</mark>	4 sig. figs.
<mark>50.003</mark>	5 sig. figs.

2. If there is no decimal point, zeroes that set magnitude only are not significant.

	<mark>103</mark> ,000	3 sig. figs.
But,	<mark>103,000</mark> .	6 sig. figs.

3. For decimal numbers with absolute value <1, start counting significant figures at the first non-zero digit to the right of the decimal point.

	0.00 <mark>12</mark>	2 sig. figs.
	0.00 <mark>70</mark>	2 sig. figs.
But,	<mark>2.0070</mark>	5 sig. figs.

4. In multiplication and division, the answer may have no more significant figures than the number in the chain with the fewest significant figures.

$$\frac{(9.97)(6.5)}{4.321}$$
 ' 15 2 sig. figs.

5. When adding or subtracting, the answer has the same number of *decimal places* as the number with the fewest *decimal places*. The number of significant figures for the result, then, is determined by the usual rules *after establishing the appropriate number of decimal places*.

<mark>3.0031</mark>	4 decimal places; <mark>5 sig. figs.</mark>
<mark>+7.41</mark>	2 decimal places; 3 sig. figs.
<mark>10.41</mark> 31 =	10.41
	2 decimal places: 4 sig. figs.

6. *Exact numbers,* which are inherently integers or are set by definition, are not limited in their significant digits.

Some exact numbers:

(a) All integer fractions: $\frac{1}{2}$, $\frac{1}{3}$, $\frac{7}{8}$

- (b) Counted numbers: "15 people"
- (c) Conversions *within* a unit system: 12 inches / 1 foot

Relationships between units in *different* unit systems are *usually* not exact:

2.2 lb. = 1.0 kg 2 sig. figs. 2.2046223 lb. = 1.0000000 kg 8 sig. figs.

But, the following inter-system conversion factors are now set by definition and are **exact**:

2.54 cm / 1 inch (exactly) 1 calorie / 4.184 Joules (exactly)

Standard Scientific Exponential Notation

Standard scientific exponential notation consists of a coefficient whose magnitude is greater than 1 and less than 10 multiplied by the appropriate power of ten. All digits in the coefficient are significant.

<mark>1.03</mark> x 10 ⁵	3 sig. figs.
<mark>1.030</mark> x 10⁵	4 sig. figs.
<mark>1.0300</mark> x 10⁵	5 sig. figs.
<mark>1.03000</mark> x 10⁵	6 sig. figs.

L Note that the difference between ordinary exponential notation and *standard scientific* exponential notation is the size restriction on the coefficient, which never has more than one digit to the left of the decimal.

Std. Sci. Exp. Not.:	1.03 x 10⁵
Not Std. Sci. Exp. Not.:	10.3×10^4

When to Use Standard Scientific Exponential Notation

• Use with very large or very small numbers, which would require many digits to express otherwise.

1.23×10^{5}	not	123,000
1.23 x 10 ⁻⁵	not	0.0000123

 Do not use exponential notation for numbers that fall between 10⁻² and 10², unless otherwise impossible to indicate the proper number of significant figures unambiguously.

j·		
123.4	not	1.234×10^2
0.1234	not	1.234 x 10 ⁻¹

But,

1.20 x 10² not 120 if 3 sig. figs. required

Dimensional Analysis

(given quantity & given units) X — given units

= (wanted quantity in wanted units)

- Dimensional analysis uses the units to help solve the problem.
- The ratio wanted units/given units is one of two possible conversion factors that can be written from a statement of equality between different units.

Given: 12 inches = 1 foot

Conversion factors:

•

$$\frac{12 \text{ inches}}{1 \text{ foot}} \qquad \left(\frac{1}{12}\right)$$

 $\left(\frac{1 \text{ foot}}{12 \text{ inches}}\right)$

The conversion factor to use is the one that gives the needed unit cancellation, leaving the wanted units.