Molecules of Elements and Compounds

L Molecules are combinations of atoms tightly bound together to form discreet, chemically identifiable units.

- Many elements are composed of molecules, but not all.
$\mathrm{Cl}_{2}, \mathrm{~S}_{8}$ - molecules
C(graphite) - no molecules (network solid)
Cu - no molecules (metallic structure)
L Molecules of elements are homonuclear, because they are composed of only one kind of atom.
- Many compounds are composed of molecules, but not all.
$\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}$ - molecules
NaCl - no molecules (ionic solid)
$\mathrm{SiO}_{2}(\mathrm{~s})$ - no molecules (network solid)
L Molecules of compounds are heteronuclear, because they are composed of two or more different kinds of atoms.

Molecular Formulas

L For a molecular substance (elements or compounds), the composition of the molecules is indicated by a molecular formula, which shows the kinds and numbers of each atom in the molecule.
$P_{4} \quad$ phosphorus molecule made up of 4 P atoms

$\mathrm{CH}_{4} \quad$ methane molecule made up of 1 C atom and 4 H atoms

Common Elements Composed of Molecules

Formula	Room Temperature Form
H_{2}	colorless gas
O_{2}	colorless gas
N_{2}	colorless gas
P_{4}	white solid
S_{8}	yellow solid
F_{2}	pale yellow gas
Cl_{2}	pale green gas
Br_{2}	dark red liquid
I_{2}	violet solid

Network Solids
Graphite and Diamond (carbon allotropes)

Graphite

Diamond

Molecular Formulas vs. Empirical Formulas

L An empirical formula indicates the lowest, wholenumber ratio of the atoms in a compound, regardless of whether or not it contains molecules.

Molecular Formula	Empirical Formula
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}_{2}$	HO
CH_{4}	CH_{4}
$\mathrm{C}_{2} \mathrm{H}_{4}$	CH_{2}
$\mathrm{C}_{4} \mathrm{H}_{8}$	CH_{2}
$\mathrm{C}_{6} \mathrm{H}_{12}$	CH_{2}
NO_{2}	NO_{2}
$\mathrm{~N}_{2} \mathrm{O}_{4}$	NO_{2}

L For molecular compounds, all the subscripts in the molecular formula are a whole-number multiple (1, 2,3 , etc.) of those in the empirical formula.

Structural Formulas of Some Molecular Compounds With the Empirical Formula CH_{2}

$\mathrm{C}_{2} \mathrm{H}_{4}$

$\mathrm{C}_{4} \mathrm{H}_{8}$

$\mathrm{C}_{6} \mathrm{H}_{12}$

Ways of Depicting Molecules

Methanol, $\mathrm{CH}_{4} \mathrm{O}=\mathrm{CH}_{3} \mathrm{OH}$

Structural Formula

Perspective Drawing

Ball-and-stick Model

Space Filling Model

