Internal Energy of a System

O The internal energy of a chemical system is its total energy, which is the sum of the potential and kinetic energies of the substances in it:

$$
E=K_{s}+U_{s}
$$

P $\quad U_{s}$ comes from the attractions and repulsions among all the particles (atoms, molecules, subatomic particles) of which the substances are composed.
$\mathrm{P} \quad K_{s}$ comes from the motions of all those particles.
O Absolute values of E, K_{s}, and U_{s} cannot be determined in general.

O In general, only changes in energy, ΔE, can be measured:

$$
\Delta E=E_{\text {final }}-E_{\text {initial }}=E_{\mathrm{f}}-E_{\mathrm{i}}
$$

K By the First Law of Thermodynamics, the only way the energy of the system can change is through interaction with the surroundings.

Transferring Heat and Doing Work

O A system undergoing chemical or physical change can change its internal energy by transferring heat (q), doing work (w), or both:

$$
\Delta E=q+w
$$

O The system can do work on the surroundings or vice versa, indicated by the sign on w :
$w<0$ system does work on surroundings $w>0$ surroundings do work on system

O One specific way in which a chemical system can do work is through the expansion or contraction of a gas against a constant external pressure. This results in a change of volume, ΔV, from which the work can be calculated as

$$
w=-P @ V
$$

Heat Change and Enthalpy

O As a chemical or physical change occurs, potential energy changes by gaining or losing heat, resulting in a temperature change.
P This change in heat content is sometimes called the heat of reaction.

O We will often be interested in the heat content under constant pressure conditions, called the enthalpy, H, of the system.
P H cannot be measured directly, but we can measure the change in H, defined as

$$
\Delta H / H_{f}-H_{i}=q_{P}
$$

Enthalpy and Internal Energy

O Under constant pressure conditions, we can rewrite the defining equation for internal energy as

$$
\Delta E=\Delta H+w
$$

from which it follows

$$
\Delta H=\Delta E-w
$$

P In other words, the enthalpy change is that portion of the change in internal energy due to heat change under constant pressure.

P If no work is done ($w=0$), then

$$
\Delta H=\Delta E
$$

Factors Determining the Value of ΔH

O The amount of heat transferred in a chemical or physical process depends upon

P physical conditions
P amount of substances
P direction of change
O The physical conditions on which enthalpy depends are

P temperature (T)
P pressure (P)
P physical state (i.e., solid, liquid, gas).
K Therefore, we must be careful when quoting values of q or ΔH to be sure to specify these conditions.

Standard Conditions

O Standard conditions are defined as
P $\quad T=25^{\circ} \mathrm{C}=298.15 \mathrm{~K}$
P $\quad P=1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=29.9213 \mathrm{in} . \mathrm{Hg}$ P all substances in their usual states for these conditions (the standard state).
K The enthalpy change of a process under standard conditions, called the standard enthalpy, is designated $\Delta \boldsymbol{H}^{\mathbf{0}}$.

Thermochemical Equations

O A thermochemical equation is an ordinary chemical equation written in conjunction with a thermochemical value (e.g., $q, \Delta H$), where the reactant and product coefficients are taken as numbers of moles.

$$
\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) 6 \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H^{0}=-286 \mathrm{~kJ} / \mathrm{mol}
$$

U Under standard conditions, 286 kJ is liberated when one mole of liquid water is formed from one mole of hydrogen gas and one-half mole of oxygen gas.

U When the value of the enthalpy is quoted for the reaction occurring under standard conditions, it is called the standard enthalpy, symbolized ΔH°

ΔH and State

Standard conditions ($T=25^{\circ} \mathrm{C}, P=1 \mathrm{~atm}$)

$$
\begin{array}{r}
\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) 6 \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H^{\circ}=-286 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{~L} \text { All conditions of standard state met. }
\end{array}
$$

Non-standard conditions ($T=25^{\circ} \mathrm{C}, P=1 \mathrm{~atm}$)

$$
\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) 6 \mathrm{H}_{2} \mathrm{O}(g) \Delta H=-242 \mathrm{~kJ} / \mathrm{mol}
$$

L Gaseous water is not the standard state.
Non-standard conditions ($T=50^{\circ} \mathrm{C}, P=1 \mathrm{~atm}$)

$$
\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) 6 \mathrm{H}_{2} \mathrm{O}(g) \Delta H=-241 \mathrm{~kJ} / \mathrm{mol}
$$

$\mathrm{L} T=50^{\circ} \mathrm{C}$ is not the standard state.

ΔH and Amount

$$
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(g) 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H^{0}=-286 \mathrm{~kJ}
$$

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) 62 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta H^{0}=-572 \mathrm{~kJ}
$$

ΔH and Direction

$$
\begin{array}{ll}
\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) 6 \mathrm{H}_{2} \mathrm{O}(l) & \Delta H^{0}=-286 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{H}_{2} \mathrm{O}(l) 6 \mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) & \Delta H^{0}=+286 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

