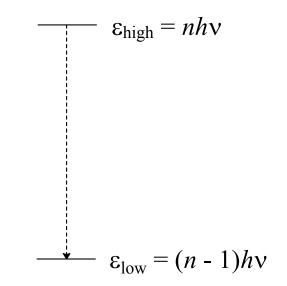

- U Wave theory was the dominant theory for understanding the behavior of light (and other forms of electromagnetic radiation) prior to 1900.
 - (Wave theory correctly predicted the behavior of light in most optical phenomena.
 - Wave theory incorrectly assumed that the energy of electromagnetic radiation was proportional to its intensity: $E \% I \% A^2$
 - Wave theory incorrectly predicted that the intensity of light emitted by a heated body should increase without limit as the frequency increases ("The Ultraviolet Catastrophe").

The Black-Body Radiator Problem

U In 1900 Max Planck, through his interpretation of the frequency-intensity dependence of the black-body radiator, deduced the fundamental equation E = hv.

Assumptions of Planck's Black-Body Radiator Model


- 1. The body contains "oscillators" with various individual frequencies, v.
- 2. Each oscillator has certain energies limited to values given by

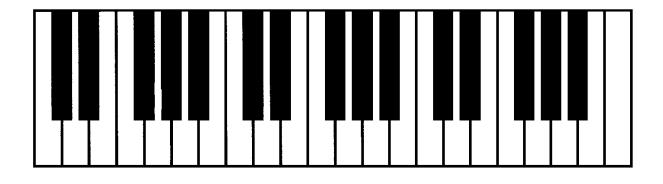
$$g = nhv$$

where g = oscillator's energy
h = a constant (Planck's constant)
v = oscillator's frequency
n = quantum number = 1, 2, 3, ...

3. An oscillator emits energy in the form of light in a transition from a higher energy state to a lower energy state:

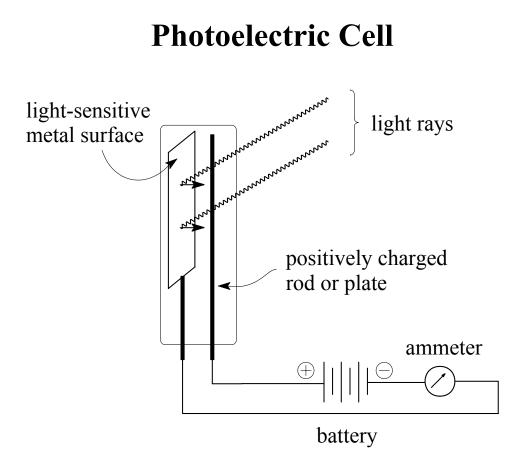
$$E_{\text{light}} = *\mathbf{g}_{\text{ow}} - \mathbf{g}_{\text{high}} *$$

Energy Transition of an Oscillator

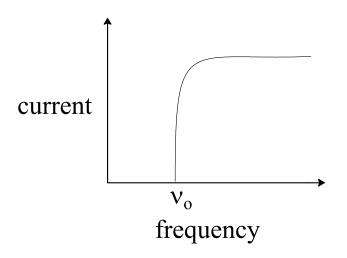

$$E_{\text{light}} = *\mathbf{g}_{\text{ow}} - \mathbf{g}_{\text{high}} * = *(n - 1)h\nu - nh\nu * = h\nu$$

Consequences of Plank's Quantum Theory

- 1. Light energy is proportional to frequency, *not* intensity.
- 2. Energies of individual particles of matter (e.g., atoms, molecules) are not continuous, but rather are *quantized* into certain allowed values.


Continuous vs. Quantized Energy Musical Analogy

Photoelectric Effect Phillip Eduard Anton Lenard - 1900.


v > vo munit e^{-} F clean metal surface

Photoelectrons create the electrical current in the circuit, which is read on the ammeter.

Photoelectric Effect

1. The light must have a frequency greater than a certain minimum value, v_0 , characteristic of the metal.

- 2. Energy of emitted electrons *does not* depend on light intensity.
- 3. Number of emitted electrons (photoelectric current) increases with light intensity.
- 4. Electron energy is proportional to light frequency, if $v > v_0$.

Einstein's Interpretation of the Photoelectric Effect 1905

 $E_{\text{light}} = hv = g_0 + K$

- g_0 = energy of attraction between electron and metal that must be overcome to eject photoelectrons
- K = kinetic energy of ejected electrons

From Plank

 $g_o = hv_o$

so
$$E_{\text{light}} = hv = hv_{o} + K$$

But
$$K = \frac{1}{2}mv^2$$

so
$$E_{\text{light}} = hv = hv_0 + \frac{1}{2}mv^2$$