Schrödinger Wave Equation for One-Electron Atoms

$$\Psi = E\Psi$$

- *E* = energy of the system (*eigen value*)
- Ψ = wave function solution (*eigen function*)

ı

Hamiltonian operator, expressing potential and kinetic energy of the system

Explicit wave equation for hydrogen:

$$\left[&\frac{h^2}{8\pi^2 m} \left(\frac{N^2}{N^{4}} & \% \frac{N^2}{N^{4}} & \% \frac{N^2}{N^{4}} \right) & &\frac{e^2}{r} \right] \Psi & E \Psi$$

Each Ψ solution is a mathematical expression that is a function of three *quantum numbers*: *n*, *l*, and *m_l*.

Probability of Finding the Electron Somewhere Around the Nucleus

For light, intensity is proportional to amplitude squared: $I \% A^2$

By analogy, the "intensity" of an electron at a point in space (i.e., its *probability*) is proportional to the amplitude of its wave function squared, Ψ^2 :

 $P \% \Psi^2$

This is the "Copenhagen Interpretation" of the wave function, due to Max Born and co-workers.

Einstein to Born:

"Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the 'old one'. I, at any rate, am convinced that He is not playing at dice."

["The Born-Einstein Letters," translated by Irene Born. New York: Walker and Company, 1971, pp. 90-91.]

Restrictions on Ψ

- 1. Ψ has a value for every point in space. Otherwise the probability would be undefined somewhere.
- 2. Ψ can have only one value at any point. Otherwise the probability would be ambiguous at some points.
- 3. Ψ cannot be infinite at any point in space. Otherwise its position would be fixed, in violation of the Heisenberg Uncertainty Principle.
- 4. Ψ can be zero at some points in space (node). This means the electron is not there.
- 5. The sum of Ψ^2 over all space is unity. $| \Psi^2 d\tau = 1$

The electron must be somewhere.

Quantum Numbers

Principal quantum number, n

Determines *energy* by the equation,

E '	$82\pi^2 m Z^2 e^4$	I	$\&BZ^2$
	$n^{2}h^{2}$		n^2

Values: n = 1, 2, 3, ...Related to concept of *shells*.

Angular momentum (azimuthal) quantum number, *l* Determines *shape* of the probability distribution. Values: l = 0, 1, 2, ..., n - 1Related to the concept of *subshells*.

Value of l0 1 2 3 4 ...Subshell Labels p d f g ...

Magnetic quantum number, m_l

Determines *orientation* of the probability distribution. Values: $m_l = -l$, (-l + 1), ..., 0, ..., (l - 1), lRelated to concept of *orbitals*.

Orbitals of the First Four Shells

n	l	Subshell Notation	Allowed m_l values	Orbitals per Subshell
1	0	1 <i>s</i>	0	1
2	0	2 <i>s</i>	0	1
	1	2 <i>p</i>	-1, 0, +1	3
3	0	3s	0	1
	1	3 <i>p</i>	-1, 0, +1	3
	2	3 <i>d</i>	-2, -1, 0, +1, +2	5
4	0	4 <i>s</i>	0	1
	1	4 <i>p</i>	-1, 0, +1	3
	2	4 <i>d</i>	-2, -1, 0, +1, +2	5
	3	4 <i>f</i>	-3, -2, -1, 0, +1, +2, +3	7