Schrödinger Wave Equation for One-Electron Atoms

$$
\begin{aligned}
& \text {, } \Psi=E \Psi \\
& E=\text { energy of the system (eigen value) } \\
& \Psi=\text { wave function solution (eigen function) } \\
& =\text { Hamiltonian operator, expressing potential and } \\
& \text { kinetic energy of the system }
\end{aligned}
$$

Explicit wave equation for hydrogen:

$$
\left[\& \frac{h^{2}}{8 \pi^{2} m}\left(\frac{M}{\mathrm{M}^{2}} \% \frac{\mathrm{M}}{\mathrm{M}^{2}} \% \frac{\mathrm{M}}{\mathrm{M}^{2}}\right) \& \frac{e^{2}}{r}\right] \Psi '^{\prime} \quad E \Psi
$$

Each Ψ solution is a mathematical expression that is a function of three quantum numbers: n, l, and m_{l}.

Probability of Finding the Electron Somewhere Around the Nucleus

For light, intensity is proportional to amplitude squared: $I \% A^{2}$

By analogy, the "intensity" of an electron at a point in space (i.e., its probability) is proportional to the amplitude of its wave function squared, Ψ^{2} :

$$
P \% \Psi^{2}
$$

This is the "Copenhagen Interpretation" of the wave function, due to Max Born and co-workers.

Einstein to Born:
"Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the 'old one'. I, at any rate, am convinced that He is not playing at dice."
["The Born-Einstein Letters," translated by Irene Born. New York: Walker and Company, 1971, pp. 90-91.]

Restrictions on Ψ

1. T has a value for every point in space. Otherwise the probability would be undefined somewhere.
2. I can have only one value at any point. Otherwise the probability would be ambiguous at some points.
3. Ψ cannot be infinite at any point in space. Otherwise its position would be fixed, in violation of the Heisenberg Uncertainty Principle.
4. Ψ can be zero at some points in space (node). This means the electron is not there.
5. The sum of Ψ^{2} over all space is unity.

$$
\Psi^{2} d \tau=1
$$

The electron must be somewhere.

Quantum Numbers

Principal quantum number, \boldsymbol{n}

Determines energy by the equation,

$$
E^{\prime} \frac{\delta_{2} \pi^{2} m Z^{2} e^{4}}{n^{2} h^{2}}, \frac{\delta_{2} Z^{2}}{n^{2}}
$$

Values: $n=1,2,3, \ldots$
Related to concept of shells.

Angular momentum (azimuthal) quantum number, l

Determines shape of the probability distribution.
Values: $l=0,1,2, \ldots, n-1$
Related to the concept of subshells.

| Value of l | 0123 | 1 |
| :--- | :--- | :--- | :--- | :--- |

Magnetic quantum number, \boldsymbol{m}_{l}

Determines orientation of the probability distribution.
Values: $m_{l}=-l,(-l+1), \ldots, 0, \ldots,(l-1), l$
Related to concept of orbitals.

Orbitals of the First Four Shells

n		Subshell Notation	Allowed m_{l} values	Orbitals per Subshell
1	0	$1 s$	0	1
2	0	$2 s$	0	1
	1	$2 p$	$-1,0,+1$	
3	0	3 s	0	3
	1	$3 p$	$-1,0,+1$	1
	2	$3 d$	$-2,-1,0,+1,+2$	3
4	0	$4 s$	0	5
	1	$4 p$	$-1,0,+1$	1
	2	$4 d$	$-2,-1,0,+1,+2$	3
	$4 f$	$-3,-2,-1,0,+1,+2,+3$	5	

