Cutaway Model of 3s Orbital
 $$
n=3, l=0, m_{l}=0
$$

The $3 s$ orbital has two spherical nodes.

$$
\begin{gathered}
\text { 3p Orbitals } \\
n=3, l=1, m_{l}=+1,0,-1
\end{gathered}
$$

Three degenerate $3 p$ orbitals, oriented along the axes of the coordinate system ($3 p_{x}, 3 p_{y}, 3 p_{z}$).

More extensive (bigger) than $2 p$ with additional lobes.
In addition to the nodal plane, inner lobes are separated from outer lobes by a spherical node.

Cutaway model showing nodes

$$
\begin{gathered}
\text { 3d Orbitals } \\
n=3, l=2, m_{l}=+2,+1,0,-1,-2 \\
z
\end{gathered}
$$

$3 d_{x y}$

L The $3 d_{x y}, 3 d_{x z}$, and $3 d_{y z}$ orbitals' lobes are between the axes in their names.
$\mathrm{L} \quad$ The $3 d_{x^{2}-y^{2}}$ orbital's lobes are on the x and y axes.

Nodes of 3d Orbitals

L "Cloverleaf" shaped $3 d$ orbitals have two nodal planes intersecting at the nucleus, which separate the four lobes.

$L \quad$ The $3 d_{z^{2}}$ orbital has two nodal cones whose tips meet at the nucleus, which separate the "dumbbell" lobes from the "doughnut" ring.

Quantum Numbers and Orbitals

n	l	m_{l}	Orbitals
1	0	0	$1 s$
2	0	0	$2 s$
2	1	$-1,0,+1$	$2 p_{x}, 2 p_{y}, 2 p_{z}$
3	0	0	$3 s$
3	1	$-1,0,+1$	$3 p_{x}, 3 p_{y}, 3 p_{z}$
3	2	$-2,-1,0,+1,+2$	$3 d_{x z}, 3 d_{y z}, 3 d_{x y}, 3 d_{x^{2}-y^{2}}, 3 d_{z^{2}}$
4	0	0	$4 s$
4	1	$-1,0,+1$	$4 p_{x}, 4 p_{y}, 4 p_{z}$
4	2	$-2,-1,0,+1,+2$	$4 d_{x z}, 4 d_{y z}, 4 d_{x y}, 4 d_{x^{2}-y^{2}}, 4 d_{z^{2}}$
4	3	$-3,-2,-1,0,+1,+2,+3$	$4 f(7$ orbitals $)$

"Balloon" Models of Atomic Orbitals for Routine Sketching

S

p

"cloverleaf" d

$d_{z^{2}}$

Summary

Orbitals in One-electron Atoms ($\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{\mathbf{2 +}}, \ldots$)

1. All orbitals with the same value of the principal quantum number n have the same energy; e.g., $4 s=$ $4 p=4 d=4 f$. (This is not true for multielectron atoms.)
2. The number of equivalent (degenerate) orbitals in each subshell is equal to $2 l+1$.
3. For orbitals with the same l value, size and energy increase with n; e.g., $1 s<2 s<3 s$.
4. For orbitals of the same l value, the number of nodes increases with n.

Orbital	$1 s$	$2 s$	$3 s$	$4 s$
Nodes	0	1	2	3
Orbital		$2 p$	$3 p$	$4 p$
Nodes		1	2	3

