Cutaway Model of 3s Orbital $n = 3, l = 0, m_l = 0$

The 3s orbital has two spherical nodes.

3*p***Orbitals** $n = 3, l = 1, m_l = +1, 0, -1$

Three degenerate 3p orbitals, oriented along the axes of the coordinate system $(3p_x, 3p_y, 3p_z)$.

More extensive (bigger) than 2p with additional lobes.

In addition to the nodal plane, inner lobes are separated from outer lobes by a spherical node.

Cutaway model showing nodes

- L The $3d_{xy}$, $3d_{xz}$, and $3d_{yz}$ orbitals' lobes are *between* the axes in their names.
- L The $3d_{x^2-y^2}$ orbital's lobes are *on* the *x* and *y* axes.

Nodes of 3d Orbitals

L "Cloverleaf" shaped 3*d* orbitals have two nodal planes intersecting at the nucleus, which separate the four lobes.

L The $3d_{z^2}$ orbital has two nodal cones whose tips meet at the nucleus, which separate the "dumbbell" lobes from the "doughnut" ring.

n	l	m_l	Orbitals
1	0	0	1s
2	0	0	2 <i>s</i>
2	1	-1, 0, +1	$2p_x, 2p_y, 2p_z$
3	0	0	3s
3	1	-1, 0, +1	$3p_x, 3p_y, 3p_z$
3	2	-2, -1, 0, +1,+2	$3d_{xz}, 3d_{yz}, 3d_{xy}, 3d_{x^2-y^2}, 3d_{z^2}$
4	0	0	4 <i>s</i>
4	1	-1, 0, +1	$4p_x, 4p_y, 4p_z$
4	2	-2, -1, 0, +1, +2	$4d_{xz}, 4d_{yz}, 4d_{xy}, 4d_{x^2-y^2}, 4d_{z^2}$
4	3	-3, -2, -1, 0, +1, +2, +3	4 <i>f</i> (7 orbitals)

Quantum Numbers and Orbitals

"Balloon" Models of Atomic Orbitals for Routine Sketching

Summary Orbitals in One-electron Atoms (H, He⁺, Li²⁺, ...)

- 1. All orbitals with the same value of the principal quantum number *n* have the same energy; e.g., 4s = 4p = 4d = 4f. (This is *not* true for multielectron atoms.)
- 2. The number of equivalent (degenerate) orbitals in each subshell is equal to 2l + 1.
- 3. For orbitals with the same *l* value, size and energy increase with *n*; e.g., 1s < 2s < 3s.
- 4. For orbitals of the same *l* value, the number of nodes increases with *n*.

Orbital	1 <i>s</i>	2 <i>s</i>	3 <i>s</i>	4 <i>s</i>
Nodes	0	1	2	3
Orbital		2 <i>p</i>	3 <i>p</i>	4 <i>p</i>
Nodes		1	2	3