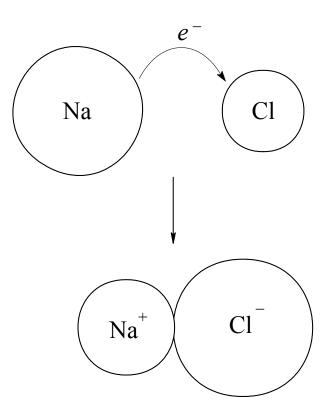
The Concept of the Chemical Bond

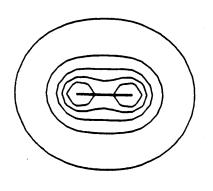

- L A **chemical bond** exists between any two atoms that are strongly attracted to one another in a compound or element.
- L There are three extreme models commonly used to classify bonds:

ionic covalent metallic

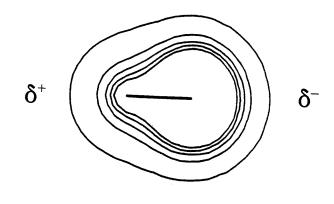
U We will concentrate on ionic and covalent bonds in this course.

Idealized Formation of an Ionic Bond

L An **ionic bond** is formed by electrostatic forces of attraction between ions.

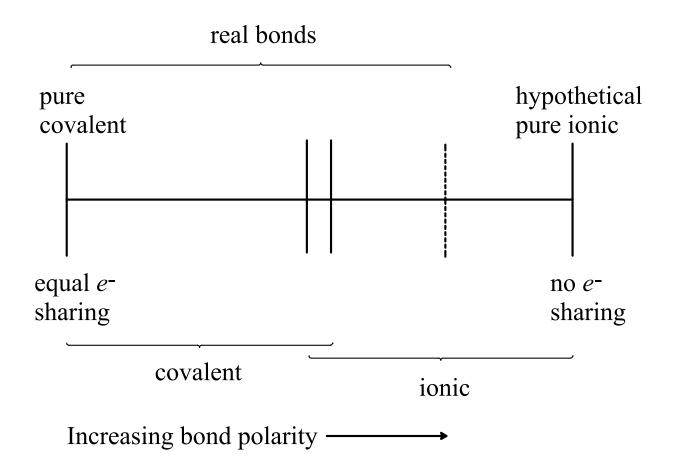

Electron Dot (Lewis Dot) Representation of Idealized Formation of an Ionic Bond

$$Na \bullet + \bullet Cl: \longrightarrow Na^+ + \begin{bmatrix} :Cl: \\ :Cl: \end{bmatrix}^-$$


The Covalent Bond

- L A **covalent bond** is formed by sharing electrons between atoms.
- L A **pure covalent bond** exists when the electron sharing is perfectly equal.
 - U A pure covalent bond only exists if the two bonded atoms are identical (homonuclear bond).
- L A **polar covalent bond** exists when the electron sharing is unequal.
 - U When two different atoms are bonded together, their different abilities to attract electrons result in unequal sharing.
 - U The atom that attracts electrons more strongly becomes partially negative (δ -) and the other atom becomes partially positive (δ +), giving the bond an electrical polarity.
 - U All bonds between atoms of different elements (heteronuclear bonds) are polar to some extent.

Electron Density Distributions Pure Covalent Bond (H₂) VS. Polar Covalent Bond (HF)



H—F

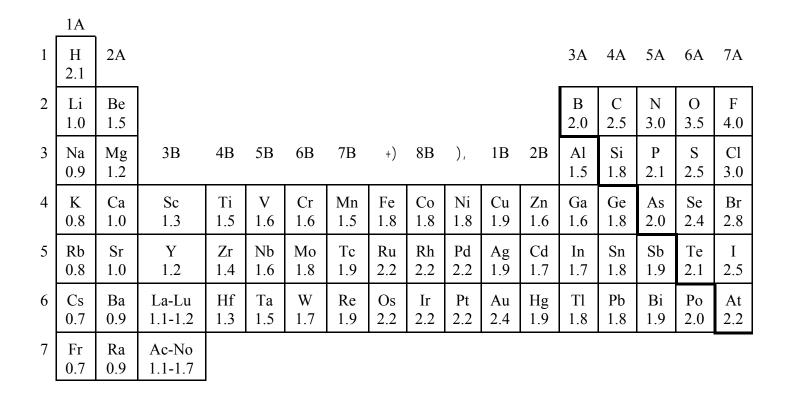
Bond Types

Electronegativity

L The attraction an atom has for electrons *in a chemical bond* is called its **electronegativity**.

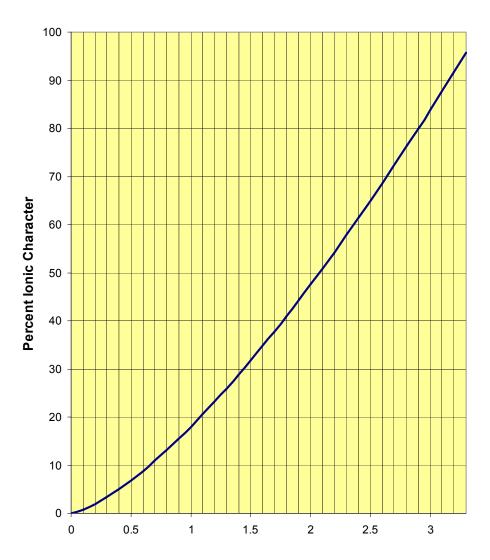
Robert S. Mulliken (1934): Electronegativity calculated as the average of ionization energy and electron affinity.

$$\chi \stackrel{!}{=} \frac{I \& A}{2}$$

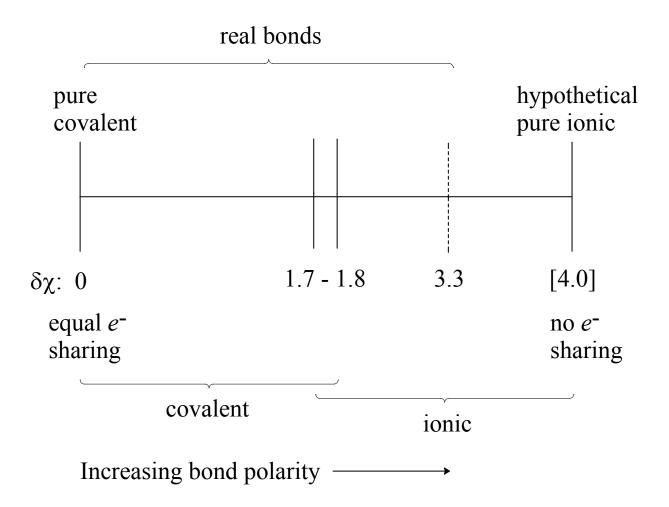

Problems:

- ; Electron affinity data are not reliably known for many elements.
- ; Both *A* and *I* refer to gaseous atoms, not atoms in a chemical bond.

Pauling Electronegativities Linus Pauling - 1930's


- L Pauling's scale is based on the increase in *bond* energy, D, for a heteronuclear bond compared to the average of the homonuclear bond energies of two bonded atoms. H₂(g) 6 2H(g) $\Delta H^{\circ} = +435 \text{ kJ/mol} / D(\text{H}_2)$ F₂(g) 6 2F(g) $\Delta H^{\circ} = +155 \text{ kJ/mol} / D(\text{F}_2)$ HF(g) 6 H(g) + F(g) $\Delta H^{\circ} = +565 \text{ kJ/mol} / D(\text{HF})$ $\frac{D(\text{H}_2) \% D(\text{F}_2)}{2} + \frac{435 \text{ kJ} \% 155 \text{ kJ}}{2} + 295 \text{ kJ}$
- L Pauling attributed the extra bond strength to coulombic attraction between the partial ionic charges on the atoms created by unequal sharing; i.e., *partial ionic character*.
- L The Pauling scale sets $\chi = 4.0$ as the maximum electronegativity, given to fluorine.

Electronegativities (Pauling Scale)



Periodic Trends in Electronegativity

- 1. Electronegativity increases across a period.
- 2. Electronegativity decreases down a group.
- 3. Metals have low electronegativities.
- 4. Nonmetals have high electronegativities.

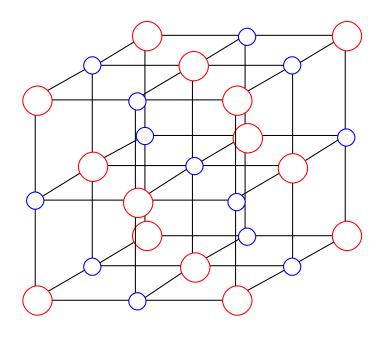
Pauling's Estimatation of Ionic Character

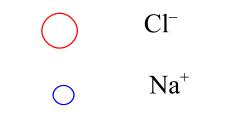
Bond Type and Electronegativity Difference ($\delta \chi$)

Energetics of Ionic Bond Formation^{*}

O Force of attraction between an ion pair:

$$F = \frac{\&q \, \%q \, \&}{r^2}$$


O Energy of attraction between an ion pair:


$$E' \frac{\&kq \,\%q \,\&}{r}$$

where *k* is a proportionality constant.

^{*} The forms of these equations depend upon the units chosen. We are only interested in the relationships they express.

The NaCl Lattice

Energetics of Ionic Crystals

O The formation of a binary ionic compound from its elements is generally an exothermic process.

 $Na(s) + \frac{1}{2}Cl_2(g) 6 NaCl(s)$ $\Delta H_f^{o} = -410.9 \text{ kJ}$

O Formation of the ions is often endothermic or weakly exothermic.

$Na(s) 6 Na(g)$ $Na(g) 6 Na^{+}(g) + e^{-}$	$\Delta H^{\circ} = +107.7 \text{ kJ}$ $\Delta H^{\circ} = I_1(\text{Na}) = +496 \text{ kJ}$
$Na(s) 6 Na^{+}(g) + e^{-}$	$\Delta H_f^{o} = +603.7 \text{ kJ} = +604 \text{ kJ}$
$\frac{1}{2}Cl_2(g) \ 6 \ Cl(g)$ $Cl(g) + e^- \ 6 \ Cl^-(g)$	$\Delta H^{\circ} = \frac{1}{2}D(Cl_2) = +121.7 \text{ kJ}$ $\Delta H^{\circ} = A(Cl) = -349 \text{ kJ}$
$\frac{1}{2}Cl_2(g) + e^- 6 Cl^-(g)$	$\Delta H_f^{o} = -227.3 \text{ kJ} = -227 \text{ kJ}$

O The most favorable contribution to ΔH_f° is the energy released in bringing the ions together in the crystal lattice, the negative of the **lattice energy**, U, the enthalpy to dissociate one mole of ionic solid into its component gaseous ions.

$\operatorname{NaCl}(s) \operatorname{6} \operatorname{Na}^{+}(g) + \operatorname{Cl}^{-}(g)$	ΔH° / U = +788 kJ
$Na^{+}(g) + Cl^{-}(g) $ 6 $NaCl(s)$	ΔH° / $-U = -788 \text{ kJ}$

Born-Haber Cycle for NaCl(s)

$$Na^{+}(g) + Cl^{-}(g)$$

$$I = +496 \text{ kJ} \land A = -349 \text{ kJ}$$

$$Na(g) + Cl(g)$$

$$\Delta H_{\text{sub}}^{0} = +107.7 \text{ kJ} \land 1/_{2}D = +121.7 \text{ kJ}$$

$$Na(s) + \frac{1}{_{2}Cl_{2}(g)} \xrightarrow{} NaCl(s)$$

Na(s) 6 Na(g)	$\Delta H^{\circ}_{sub} = 107.7 \text{ kJ}$
$Na(g) 6 Na^{+}(g) + e^{-}$	I = 496 kJ
$\frac{1}{2}Cl_2(g) \ 6 \ Cl(g)$	$\frac{1}{2}D = 121.7 \text{ kJ}$
$\operatorname{Cl}(g) + e^- \operatorname{6} \operatorname{Cl}(g)$	A = -349 kJ
$Na^{+}(g) + Cl^{-}(g)$ 6 $NaCl(s)$	-U = ?
$Na(s) + \frac{1}{2}Cl_2(g) 6 NaCl(s)$	$\Delta H_{f}^{o} = -410.9 \text{ kJ}$

$$Y \qquad \Delta H^{o}_{f} = \Delta H^{o}_{sub} + I + \frac{1}{2}D + A - U$$

$$U = \Delta H^{\circ}_{sub} + I + \frac{1}{2}D + A - \Delta H^{\circ}_{f}$$

= 107.7 kJ + 496 kJ + 121.7 kJ + (-349 kJ) - (-410.9 kJ)
= 787 kJ

Factors Favoring a More Stable Crystal Lattice

Large values of lattice energy, U, are favored by

- 1. Higher ionic charges
- 2. Smaller ions
- 3. Shorter distances between ions

Selected Lattice Energies, U^o (kJ/mol) (Born-Haber Cycle Data)

	F^-	Cl ⁻	Br [–]	I_	O ^{2–}
Li ⁺	1049.0	862.0	818.6	762.7	2830
Na^+	927.7	786.8	751.8	703	2650
K^+	825.9	716.8	688.6	646.9	2250
Rb^+	788.9	687.9	612	625	2170
Cs^+	758.5	668.2	635	602	2090
Mg^{2+}		2326			3795
Ca ²⁺					3414
Sr^{2+}		2127			3217