
Heteronuclear Bond Polarity

- L All heteronuclear bonds have some polarity.
- When two different atoms have the same value of electronegativity the bond is very nearly pure covalent and the polarity is very small, *but there is still some polarity*.

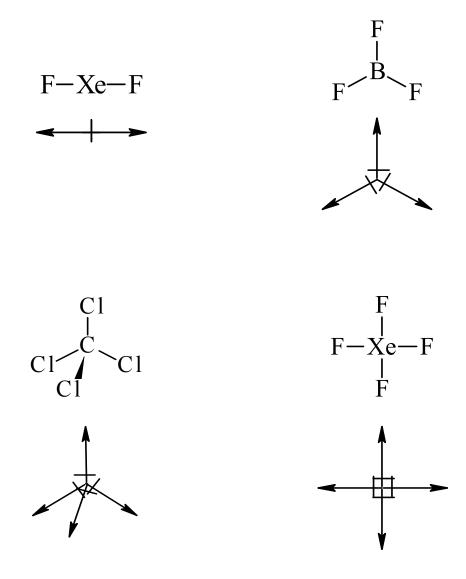
Comparison of N and Cl Electronegativity on Different Electronegativity Scales

Scale	Basis	$\chi_{ m N}$	χ _{C1}	$\Delta \chi_{ m N-Cl}$
Original Pauling	D	3.0	3.0	0
Recalculated Pauling	D	3.04	3.16	-0.12
Allred-Rochow	Z*	3.07	2.83	+0.24

Dipole Moment of a Diatomic Molecule

dipole moment = $\mu = \delta d$

Units: debye (D) = $3.34 \times 10^{-3} \text{ C}$


Molecule	μ	Molecule	μ
Н-Н	0 D	H-F	1.82 D
F-F	0 D	H-C1	1.08 D
Cl-Cl	0 D	H-I	0.44 D

Dipole Moments of Polyatomic Molecules

- L For polyatomic molecules, molecular polarity depends on both *shape* and *composition*.
- U A molecule is nonpolar when all individual bond polarities are counterbalanced by other *identical* bond polarities.
- U A molecule is polar when any one of its individual bond polarities is not counterbalanced by identical bond polarities.
 - T Lack of counter balancing polarities may result from a less symmetrical shape. (*Shape*)
 - T Lack of counterbalancing polarities may result from a unique bond in the molecule with different bond strength or to a different element. (*Composition*)

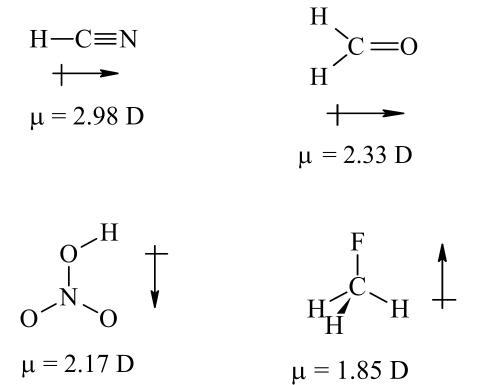
Nonpolar Polyatomic Molecules

• In highly symmetric binary molecules, individual bond polarities may cancel, leaving the molecule with no net dipole moment.

Polar Polyatomic Molecules

• If a binary molecule has a geometry that gives it a sense of up and down or right and left it is polar.

$$H$$
 \rightarrow $\mu = 1.85 D$


$$H_H$$
 $\mu = 1.47 D$

$$F - S - F$$
 \downarrow $\mu = 0.632 D$

$$F \downarrow F \downarrow F \downarrow \mu = 2.18 D$$

More Complex Molecules

• If a ternary molecule has its bonds asymmetrically arranged, it may be polar even though its shape would be nonpolar for a binary molecule.

