Delocalized Pi Bonding

L Whenever a molecule or ion is a resonance hybrid of two or more canonical forms showing double or triple bonds, the electron pairs moved about from form to form are actually delocalized over the affected bonds in a π system.

electron pair delocalized in π system

L The two Kekulé resonance forms suggest that the six electrons used to form the three double bonds in the canonical forms are π -delocalized.

VB Model of Benzene Sigma Bonding

- Carbon atoms are sp^2 hybridized.
- C–C σ bonds are formed by overlap of sp^2 hybrids on adjacent carbon atoms, sharing 6 pairs of electrons (2 electrons from each carbon).
- C–H σ bonds are formed by overlap of remaining sp^2 hybrids on carbon atoms with 1s orbitals on hydrogen atoms, sharing 6 pairs of electrons (1 electron from each C and 1 electron from each H).

VB Model of Benzene Pi Delocalized System

- Each $2p_z$ orbital on each carbon atom contributes one electron to the π system (6 electrons total).
- The two Kekulé canonical forms, showing localized π bonds:

Pi Delocalized System in Benzene

Nitrate Ion Pi Delocalization

