## **MO Description of Pi-Delocalized Systems**

L MO theory has no difficulty explaining the  $\pi$ delocalized electron density implied by resonance
forms, which VB theory cannot easily represent.



 $\pi$  electron density of  $O_3$ 

#### Pi MOs of Ozone, O<sub>3</sub>

- U The three 2p orbitals perpendicular to the molecular plane combine to form three  $\pi$  MOs:
  - 1.  $\pi$  bonding MO
  - 2.  $\pi^n$  nonbonding MO
  - 3.  $\pi^*$  antibonding MO
- U A non-bonding MO neither builds nor destroys bonding between the oxygen atoms.

# Pi MOs of Ozone, O<sub>3</sub>



 $\pi$  (bonding)



 $\pi^n$  (nonbonding)



 $\pi^*$  (antibonding)

## Pi MO Energy Level Scheme for O<sub>3</sub>

U The  $\pi$  system has two pairs of electrons, one pair in the  $\pi$  MO, and the other in the  $\pi$ <sup>n</sup> non-bonding MO.



- U The configuration  $(\pi)^2$  adds a bond order of 1 across the two O–O bonds (i.e., 0.5 to each bond).
- U When this is added to the sigma bond between each oxygen pair, the O–O bond order becomes 1.5.
- U The configuration  $(\pi^n)^2$  neither adds nor subtracts from the overall strength of the bonds.

#### Pi MOs of Benzene, C<sub>6</sub>H<sub>6</sub>

U  $C_6H_6$ , has three pairs of electrons delocalized in a  $\pi$  system extending around the hexagonal ring.



 $\pi$  electron density of benzene

U The six 2p orbitals perpendicular to the ring on the six carbon atoms combine to form three bonding  $(\pi_1, \pi_2, \pi_3)$  and three antibonding  $(\pi_4^*, \pi_5^*, \pi_6^*)$  MOs.

## Pi MO Energy Level Scheme for Benzene, C<sub>6</sub>H<sub>6</sub>



- U Three pairs in bonding MOs add a total of three bond orders over six C–C linkages, or 0.5 for each.
- U When this is added to the sigma bond between each carbon pair, the C–C bond order becomes 1.5.

# Occupied Bonding $\pi$ MOs of Benzene, $C_6H_6$



# Unoccupied Antibonding $\pi^*$ MOs of Benzene, $C_6H_6$

