MO Description of Pi-Delocalized Systems L MO theory has no difficulty explaining the π delocalized electron density implied by resonance forms, which VB theory cannot easily represent. π electron density of O_3 #### Pi MOs of Ozone, O₃ - U The three 2p orbitals perpendicular to the molecular plane combine to form three π MOs: - 1. π bonding MO - 2. π^n nonbonding MO - 3. π^* antibonding MO - U A non-bonding MO neither builds nor destroys bonding between the oxygen atoms. # Pi MOs of Ozone, O₃ π (bonding) π^n (nonbonding) π^* (antibonding) ## Pi MO Energy Level Scheme for O₃ U The π system has two pairs of electrons, one pair in the π MO, and the other in the π ⁿ non-bonding MO. - U The configuration $(\pi)^2$ adds a bond order of 1 across the two O–O bonds (i.e., 0.5 to each bond). - U When this is added to the sigma bond between each oxygen pair, the O–O bond order becomes 1.5. - U The configuration $(\pi^n)^2$ neither adds nor subtracts from the overall strength of the bonds. #### Pi MOs of Benzene, C₆H₆ U C_6H_6 , has three pairs of electrons delocalized in a π system extending around the hexagonal ring. π electron density of benzene U The six 2p orbitals perpendicular to the ring on the six carbon atoms combine to form three bonding (π_1, π_2, π_3) and three antibonding $(\pi_4^*, \pi_5^*, \pi_6^*)$ MOs. ## Pi MO Energy Level Scheme for Benzene, C₆H₆ - U Three pairs in bonding MOs add a total of three bond orders over six C–C linkages, or 0.5 for each. - U When this is added to the sigma bond between each carbon pair, the C–C bond order becomes 1.5. # Occupied Bonding π MOs of Benzene, C_6H_6 # Unoccupied Antibonding π^* MOs of Benzene, C_6H_6