Name \qquad
(Please Print)

Chem 104-Section 1
Hour Examination II
Sample Test

This test consists of six (6) pages, including this cover page. Be sure your copy is complete before beginning your work. If this test packet is defective, ask for another one.

$$
\begin{array}{llll}
R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol}=8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} & \mathrm{~K}={ }^{\circ} \mathrm{C}+273 & \\
k=A e^{-E_{a} / R T} & {[\mathrm{~A}]=[\mathrm{A}]_{0}(1 / 2)^{h}} & t_{1 / 2}=0.693 / k & K_{p}=K_{c}(R T)^{\Delta n}
\end{array}
$$

DO NOT WRITE BELOW THIS LINE

This is a copy of a typical second test in Chem 104. Your test will be different. This test is being posted to give you a sense of the format, style, scope, and level of a typical test on this material. This test may have questions on topics that will not be covered on the test you take. Moreover, your test may have questions on topics that are not covered on this test. Posting this test in no way limits the format, style, scope, or level of the test that you will take. Do not limit your preparation to the material on this sample test.

Name \qquad

1. (44 points; 4 points each) Circle the best answer to each of the following.
a. As temperature is increased, the rate of a chemical reaction
increases decreases remains the same may either increase or decrease
b. Consider the reaction $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$. If the rate of disappearance of $\mathrm{H}_{2}(g)$, $-\Delta\left[\mathrm{H}_{2}\right] / \Delta t$, is $2.4 \mathrm{~mol} / \mathrm{s}$, what is the rate of appearance of $\mathrm{NH}_{3}(g),+\Delta\left[\mathrm{NH}_{3}\right] / \Delta t$?
$0.80 \mathrm{~mol} / \mathrm{s}$
$1.2 \mathrm{~mol} / \mathrm{s}$
$1.6 \mathrm{~mol} / \mathrm{s}$
$2.4 \mathrm{~mol} / \mathrm{s}$
$3.6 \mathrm{~mol} / \mathrm{s}$
c. The reaction $\mathrm{A}_{2} \rightarrow 2 \mathrm{~A}$ has the observed rate law Rate $=k\left[\mathrm{~A}_{2}\right]$. A plot of $\ln \left[\mathrm{A}_{2}\right]$ vs. time gives a straight line whose slope is

$$
\begin{array}{ccccc}
-k & -E_{a} / R & \ln A & \ln \left[\mathrm{~A}_{2}\right]_{0} & k
\end{array}
$$

d. The reaction $\mathrm{A}_{2} \rightarrow 2 \mathrm{~A}$ has the observed rate law Rate $=k\left[\mathrm{~A}_{2}\right]$ and a half-life $t_{1 / 2}=20.0 \mathrm{~s}$. If the starting concentration of A_{2} is $0.96 \mathrm{~mol} / \mathrm{L}$, what concentration of A_{2} will remain when the reaction is allowed to run for exactly one minute?

$$
\begin{array}{ccccc}
0.060 \mathrm{~mol} / \mathrm{L} & 0.12 \mathrm{~mol} / \mathrm{L} & 0.24 \mathrm{~mol} / \mathrm{L} & 0.32 \mathrm{~mol} / \mathrm{L} & 0.48 \mathrm{~mol} / \mathrm{L}
\end{array}
$$

e. Which one of the following is not true about a catalyst?

It changes the value of E_{a}. It changes the value of $k . \quad$ It changes the value of ΔH.
It changes the mechanism of the reaction. It is not consumed in the overall reaction.
f. Consider the following mechanism for the hypothetical reaction $\mathrm{A}_{2}+2 \mathrm{~B} \rightarrow 2 \mathrm{AB}$:

$$
\begin{gathered}
\mathrm{A}_{2} \rightarrow 2 \mathrm{~A} \\
\mathrm{~A}+\mathrm{B} \rightarrow \mathrm{AB}
\end{gathered}
$$

In this mechanism, the species A is $\mathrm{a}(\mathrm{n})$
catalyst intermediate product inhibitor reactant

Name \qquad
g. For the reaction $4 \mathrm{HBr}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)+2 \mathrm{Br}_{2}(g)$ the observed rate law is first order with respect to both HBr and O_{2}. Which one of the following proposed mechanisms is plausible? [All three mechanisms do add to the overall reaction stoichiometry when appropriate multiplications are made for certain steps; you don't have to worry about that.] (Circle just the Roman numeral for your answer.)
I. $\quad \mathrm{O}_{2} \rightarrow 2 \mathrm{O}$
slow
II. $\mathrm{HBr}+\mathrm{O}_{2} \rightarrow \mathrm{HOOBr}$
slow
$\mathrm{HBr}+\mathrm{O} \rightarrow \mathrm{HOBr}$ fast
$\mathrm{HBr}+\mathrm{HOBr} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2} \quad$ fast
$\mathrm{HOOBr}+\mathrm{HBr} \rightarrow 2 \mathrm{HOBr}$ fast
$\mathrm{HBr}+\mathrm{HOBr} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2} \quad$ fast

$$
\text { III. } \begin{array}{ll}
2 \mathrm{HBr}+\mathrm{O}_{2} \rightarrow 2 \mathrm{HOBr} \quad \text { slow } \\
& \mathrm{HBr}+\mathrm{HOBr} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2} \text { fast }
\end{array}
$$

h. For the reaction $3 \mathrm{Fe}(s)+4 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+4 \mathrm{H}_{2}(g)$, the expression for the equilibrium constant K_{c} would be

$$
\begin{equation*}
\frac{\left[\mathrm{Fe}_{3} \mathrm{O}_{4}\right]\left[\mathrm{H}_{2}\right]^{4}}{[\mathrm{Fe}]^{3}\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}} \quad \frac{[\mathrm{Fe}]^{3}\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}}{\left[\mathrm{Fe}_{3} \mathrm{O}_{4}\right]\left[\mathrm{H}_{2}\right]^{4}} \quad \frac{\left[\mathrm{H}_{2}\right]^{4}}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}} \quad \frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}}{\left[\mathrm{H}_{2}\right]^{4}} \tag{2}
\end{equation*}
$$

i. Of the following equilibria, which one will shift to the left in response to an increase in pressure?

$$
\begin{aligned}
\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{HCl}(g) \quad \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) \quad 4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s) \\
2 \mathrm{SO}_{3}(g) \rightleftharpoons 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \quad \mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \rightleftharpoons \mathrm{CaCO}_{3}(s)
\end{aligned}
$$

j. Consider the following reaction at equilibrium

$$
2 \mathrm{CO}_{2}(g) \rightleftharpoons 2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \quad \Delta H^{\mathrm{o}}=-514 \mathrm{~kJ}
$$

Increasing the temperature of this reaction will make the equilibrium constant

$$
\begin{array}{llll}
\text { stay the same } & \text { increase } & \text { decrease } & \text { change unpredictably }
\end{array}
$$

k. For the equilibrium $2 \mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(g), K_{c}=217 \mathrm{~L} \cdot \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$. What is the value of K_{p} ?

$$
0.0876 \mathrm{~atm}^{-1} \quad 8.87 \mathrm{~atm}^{-1} \quad 106 \mathrm{~atm}^{-1} \quad 445 \mathrm{~atm}^{-1} \quad 5310 \mathrm{~atm}^{-1}
$$

Name \qquad
2. (16 points) The reaction

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(g) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{HCl}(g)
$$

proceeds by a one-step mechanism. The activation energy for the forward reaction $\left(E_{a}^{f}\right)$ is 247 kJ and the enthalpy of the reaction $\left(\Delta H^{\circ}\right)$ is +72 kJ . In the space below, sketch roughly to scale the reaction energy profile (Arrhenius plot) for this reaction. On your sketch, clearly indicate (a) the relative energies of the reactants and products, (b) the activation energy of the forward and reverse reactions, and (c) the enthalpy of the reaction.

The numerical value of the activation energy of the reverse reaction $\left(E_{a}{ }^{\prime}\right)$ is
\qquad
kJ.

Name

3. (20 points) For the equilibrium

$$
\mathrm{Br}_{2}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{BrCl}(g)
$$

at $400 \mathrm{~K}, K_{c}$ is 7.0 If $0.076 \mathrm{~mol} \mathrm{Br}_{2}(g)$ and $0.076 \mathrm{~mol} \mathrm{Cl}_{2}(g)$ are introduced into a one-liter vessel at 400 K , what will be the concentrations of all species when equilibrium is established? Summarize your answers on the lines provided below, but be sure to show work that leads to your answers.
$\left[\mathrm{Br}_{2}\right]=\left[\mathrm{Cl}_{2}\right]=$ \qquad $\mathrm{mol} / \mathrm{L}$ $[\mathrm{BrCl}]=$ \qquad $\mathrm{mol} / \mathrm{L}$

Name \qquad
4. (20 points) Consider the hypothetical reaction

$$
\mathrm{A}_{2}+\mathrm{B}+\mathrm{C} \rightarrow \mathrm{AB}+\mathrm{AC}
$$

a. (15 points) Determine the differential rate law expression for the reaction from the following experimental data.

Exp.	$\left[\mathrm{A}_{2}\right], \mathrm{M}$	$[\mathrm{B}], \mathrm{M}$	$[\mathrm{C}], \mathrm{M}$	Rate, $\mathrm{M} \cdot \mathrm{s}^{-1}$
$\# 1$	0.125	0.111	0.702	1.07×10^{-3}
$\# 2$	0.500	0.111	0.702	2.14×10^{-3}
$\# 3$	0.125	0.444	0.702	4.28×10^{-3}
$\# 4$	0.125	0.444	0.351	4.28×10^{-3}
Rate $=k$				

b. (5 points) Using data from Exp. \#1, calculate the value of the rate constant, k, giving your answer with the proper units.

BONUS (5 points) The following mechanism has been proposed for this reaction.

$$
\begin{array}{ll}
\mathrm{A}_{2} \rightleftharpoons 2 \mathrm{~A} & \text { fast equilibrium } \\
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB} & \text { slow } \\
\mathrm{A}+\mathrm{C} \rightarrow \mathrm{AC} & \text { fast }
\end{array}
$$

By deriving the rate law expression for this mechanism in terms of starting materials (not reaction intermediates), show that it is consistent with the experimentally determined rate law, found in part a. (Use the back of this page if you need more room.)

