Name \qquad
(Please Print)
Chem 104-Section 1
Sample Final Examination

This test consists of eleven (11) pages, including this cover page. Be sure your copy is complete before beginning your work. If this test packet is defective, ask for another one.

The following tables, which may be used for any problem, will be distributed separately: periodic table; conjugate acid-base pairs and K_{a}^{\prime} 's; oxidizing and reducing agents and E° values.

Give all numerical answers to the proper number of significant figures.

You must show work leading to your numeric answers, except in question 1.

$$
\begin{aligned}
& R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol}=8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \\
& 1 \text { Faraday }=9.65 \times 10^{4} \mathrm{Coulombs} \\
& E_{\text {cell }}=E_{\text {cell }}^{o}-(0.0592 / n) \log Q \text { at } 25^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\mathrm{K}={ }^{\circ} \mathrm{C}+273
$$

$$
K_{w}=1.00 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C}
$$

$$
1.00 \mathrm{~mol} \text { ideal gas }=22.4 \mathrm{~L} \text { at STP }
$$

DO NOT WRITE BELOW THIS LINE

This is a copy of a typical final exam given in Chem 104. Your test will be different. This test is being posted to give you a sense of the format, style, scope, and level of a typical final exam in this course. This test may have questions on topics that will not be covered on the test you take. Moreover, your test may have questions on topics that are not covered on this test. Posting this test in no way limits the format, style, scope, or level of the test that you will take. Do not limit your preparation to the material on this sample test.

Name \qquad

1. (100 points; 4 points each) Circle the correct answers.
a. Has dipole-dipole intermolecular forces
NaCl
$\mathrm{C}_{6} \mathrm{H}_{6}$
NH_{3}
I_{2}
SiO_{2}
b. Would make an acidic solution in water

$$
\mathrm{NaHCO}_{3} \quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N} \quad \mathrm{KNO}_{3} \quad \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \quad \mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}
$$

c. Does not have hydrogen bonding
$\mathrm{H}_{2} \mathrm{O} \quad \mathrm{NH}_{3}$
CH_{4}
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
HF
d. "At constant pressure, the volume of a gas sample is proportional to its absolute temperature" is a statement of

Boyle's Law Gay-Lussac's Law Amonton's Law Dalton's Law Charles' Law

e. A 0.100 m solution of sugar in water has a freezing point of $-0.186^{\circ} \mathrm{C}$. Ideally, a 0.100 m solution of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ should have a freezing point of

$$
\begin{array}{lllll}
-0.186^{\circ} \mathrm{C} & -0.372{ }^{\circ} \mathrm{C} & -0.558^{\circ} \mathrm{C} & -0.744^{\circ} \mathrm{C} & -0.062^{\circ} \mathrm{C}
\end{array}
$$

f. A 4.00-L sample of an ideal gas in a piston chamber at 200 K and 1.00 atm is heated to 300 K and the pressure is raised to 1.50 atm . The new volume will be

$$
\begin{array}{lllll}
4.00 \mathrm{~L} & 6.00 \mathrm{~L} & 9.00 \mathrm{~L} & 0.750 \mathrm{~L} & 1.50 \mathrm{~L}
\end{array}
$$

g. Consider the equilibrium $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(g) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}(g)$ in a container of fixed volume. Increasing the total pressure by introducing some inert $\mathrm{He}(g)$ will cause

$$
\begin{array}{cc}
K_{p} \text { to increase } K_{p} \text { to decrease } & \text { more } \mathrm{C}_{2} \mathrm{H}_{6}(g) \text { to form } \\
\text { more } \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(g) \text { to form } & \text { no change }
\end{array}
$$

Name \qquad
h. The equilibrium $\mathrm{A}_{2}(g) \rightleftharpoons 2 \mathrm{~A}(g)$ is a single-step reaction in both directions. For the forward reaction $\mathrm{A}_{2}(g) \rightarrow 2 \mathrm{~A}(g)$ the activation energy E_{a}^{f} is 289 kJ and ΔH is +125 kJ . Therefore, $E_{a}{ }^{r}$, the activation energy for the reverse reaction $2 \mathrm{~A}(g) \rightarrow \mathrm{A}_{2}(g)$ is

$$
\begin{array}{lllll}
-125 \mathrm{~kJ} & -289 \mathrm{~kJ} & +164 \mathrm{~kJ} & +414 \mathrm{~kJ} & +125 \mathrm{~kJ}
\end{array}
$$

i. For the equilibrium $\mathrm{A}_{2}(g) \rightleftharpoons 2 \mathrm{~A}(g)$, described in part h , if the temperature were increased
[A] would increase, $\left[\mathrm{A}_{2}\right]$ would decrease, and K_{c} would remain unchanged.
[A_{2}] would increase, [A] would decrease, and K_{c} would remain unchanged.
[A] would increase, $\left[\mathrm{A}_{2}\right]$ would decrease, and K_{c} would increase.
[A_{2}] would increase, [A] would decrease, and K_{c} would decrease.
[A_{2}], [A], and K_{c} would remain unchanged.
j. Consider the equilibrium $\mathrm{A}_{2}(g) \rightleftharpoons 2 \mathrm{~A}(g)$, described in part h , for which $K_{c}=44.2 \mathrm{~mol} / \mathrm{L}$ at $200^{\circ} \mathrm{C}$. If an equilibrium mixture at $200^{\circ} \mathrm{C}$ is found to contain $0.100 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{A}(\mathrm{g})$, what is the concentration of $\mathrm{A}_{2}(\mathrm{~g})$ in $\mathrm{mol} / \mathrm{L}$?

$$
\begin{array}{lllll}
0.442 & 5.00 \times 10^{-2} & 1.00 \times 10^{-2} & 9.05 \times 10^{-4} & 2.26 \times 10^{-4}
\end{array}
$$

k. As the mechanism in part h indicates, the forward reaction $\mathrm{A}_{2}(g) \rightarrow 2 \mathrm{~A}(g)$ should obey the differential rate law rate $=k_{f}\left[\mathrm{~A}_{2}\right]$. Therefore, a plot of $\ln \left[\mathrm{A}_{2}\right]$ versus time should give a straight line whose slope is

$$
\begin{array}{ccccc}
-E_{a} / R & \ln [\mathrm{~A}] & t_{1 / 2} & -k_{f} & \ln \left[\mathrm{~A}_{2}\right]_{0}
\end{array}
$$

1. The half-life of the forward reaction $\mathrm{A}_{2}(g) \rightarrow 2 \mathrm{~A}(g)$ described in part h is $t_{1 / 2}=2.5 \mathrm{~s}$. If 1.6 mol $\mathrm{A}_{2}(g)$ is introduced into an empty one-liter vessel at $200^{\circ} \mathrm{C}$, what will be the concentration of $\mathrm{A}_{2}(g)$ in $\mathrm{mol} / \mathrm{L}$ after the reaction has run for 10.0 s ? [Assume the reverse reaction $2 \mathrm{~A}(g) \rightarrow \mathrm{A}_{2}(g)$ has been suppressed by removing product as it is formed.]
1.6
0.80
0.40
0.20
0.10
[Continue to the next page.]

Name \qquad
m . What is the molality (m) of a solution prepared by dissolving 36.04 g of glucose (m.w. $=$ 180.2 u) in 275 g of water?
0.727
0.655
0.200
7.25×10^{-4}
312
n . What is the expected osmotic pressure in atmospheres (atm) at 298 K of a 0.250 M solution of $\mathrm{CaCl}_{2}(a q)$?
6.12
12.2
18.3
6.05×10^{2}
1.82×10^{3}
o. Consider a 0.10 M solution of the weak base B , for which $K_{b}=1.0 \times 10^{-2}$. Which of the following expressions could be used to obtain a reasonably accurate value of the hydroxide concentration, $\left[\mathrm{OH}^{-}\right]$, for this solution without carrying out unnecessary calculations?

$$
\begin{array}{r}
{\left[\mathrm{OH}^{-}\right]=\sqrt{C_{\mathrm{B}} K_{b}} \quad\left[\mathrm{OH}^{-}\right]=C_{B} \quad K_{b}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{C_{\mathrm{B}}-\left[\mathrm{OH}^{-}\right]}} \\
K_{b}=K_{w} / K_{a} \quad \mathrm{pOH}=\mathrm{p} K_{b}+\log \left(\frac{C_{\mathrm{BH}^{+}}}{C_{\mathrm{B}}}\right)
\end{array}
$$

p. Which among the following is the strongest base in water?
$\mathrm{F}_{3} \mathrm{CCO}_{2}^{-}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
ClO_{4}^{-}
$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$
HSO_{4}^{-}
q. Nitrogen gas comprises 78% of air by volume and has a Henry's Law constant of 6.8×10^{-4} $\mathrm{mol} / \mathrm{L} \cdot \mathrm{atm}$ for dissolving in water at $25^{\circ} \mathrm{C}$. What is the solubility at $25^{\circ} \mathrm{C}$ in $\mathrm{mol} / \mathrm{L}$ of nitrogen when the air pressure is 690 torr?

$$
\begin{array}{lllll}
7.5 \times 10^{-4} & 6.8 \times 10^{-4} & 6.2 \times 10^{-4} & 5.3 \times 10^{-4} & 4.8 \times 10^{-4}
\end{array}
$$

r. In KHSO_{3}, the oxidation number for the S atom is

$$
\begin{array}{lllll}
+6 & +5 & +4 & -1 & -2
\end{array}
$$

[Continue to the next page.]

Name \qquad
[Consult the Table of Oxidizing and Reducing Agents for the following three questions.]
s. Consider the reaction,

$$
\mathrm{Al}(s)+\mathrm{NO}_{3}^{-}(a q)+4 \mathrm{H}^{+}(a q) \rightleftharpoons \mathrm{Al}^{3+}(a q)+\mathrm{NO}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

Under standard conditions this reaction is
spontaneous nonspontaneous at equilibrium
t. Among the following, the strongest oxidizing agent is

$$
\mathrm{MnO}_{4}^{-}(a q) \quad \mathrm{Sn}^{2+}(a q) \quad \mathrm{Hg}(l) \quad \mathrm{Fe}^{3+}(a q) \quad \mathrm{Cd}^{2+}(a q)
$$

u. Among the following, which one could be used to reduce Pb^{2+} to $\mathrm{Pb}^{\circ}\left(E^{\circ}=-0.126 \mathrm{v}\right)$ under standard conditions?

$$
\begin{gathered}
\mathrm{Sn}^{2+}(a q) \rightarrow \mathrm{Sn}^{4+}(a q)+2 e^{-} \quad \mathrm{Co}(s) \rightarrow \mathrm{Co}^{2+}(a q)+2 e^{-} \quad \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{H}^{+}(a q)+2 e^{-} \\
\mathrm{Cu}(s) \rightarrow \mathrm{Cu}^{2+}+2 e^{-} \quad 2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{S}_{4} \mathrm{O}_{4}{ }^{2-}+2 e^{-}
\end{gathered}
$$

v. The reaction $\mathrm{X}_{2}(g)+\mathrm{Y}_{2}(g) \rightarrow 2 \mathrm{XY}(g)$ has the experimental rate law Rate $=k\left[\mathrm{X}_{2}\right]$. Which one of the following four proposed mechanisms is consistent with this observed rate law?

Mechanism I: $\quad \mathrm{X}_{2}+\mathrm{Y}_{2} \rightarrow 2 \mathrm{XY}$
$\begin{array}{lll}\text { Mechanism II: } & \mathrm{X}_{2} \rightarrow 2 \mathrm{X} & \text { slow } \\ & 2 \mathrm{X}+\mathrm{Y}_{2} \rightarrow 2 \mathrm{XY} & \text { fast }\end{array}$

Mechanism III: $\quad \mathrm{X}_{2} \rightleftharpoons 2 \mathrm{X} \quad$ fast equilibrium
$\mathrm{X}+\mathrm{Y}_{2} \rightarrow \mathrm{XY}+\mathrm{Y} \quad$ slow
$X+Y \rightarrow X Y \quad$ fast

Mechanism IV: $\mathrm{Y}_{2} \rightarrow 2 \mathrm{Y}$ slow
$\mathrm{Y}+\mathrm{X}_{2} \rightarrow \mathrm{XY}+\mathrm{X}$ fast
$\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{XY} \quad$ fast
[Continue to the next page.]

Name

The next three questions pertain to following rate data for the reaction $\mathbf{A}_{\mathbf{2}}+\mathrm{B}_{\mathbf{2}} \rightarrow \mathbf{2 A B}$. (All concentrations are in mol/liter.)

	$\left[\mathrm{A}_{2}\right]$	$\left[\mathrm{B}_{2}\right]$	Initial rate $(\mathrm{mol} / \mathrm{L}) \cdot \mathrm{s}^{-1}$
Experiment 1	0.15	0.15	2.0×10^{-4}
Experiment 2	0.15	0.60	8.0×10^{-4}
Experiment 3	0.60	0.15	4.0×10^{-4}

w. In the differential rate law for this reaction, the dependence of rate on $\left[\mathrm{A}_{2}\right]$ would be expressed as Rate \propto
$\left[\mathrm{A}_{2}\right]^{0}$
$\left[\mathrm{A}_{2}\right]$
$\left[\mathrm{A}_{2}\right]^{2}$
$\left[\mathrm{A}_{2}\right]^{1 / 2}$
$\left[\mathrm{A}_{2}\right]^{3 / 2}$
x. In the differential rate law for this reaction, the dependence of rate on $\left[\mathrm{B}_{2}\right]$ would be expressed as Rate \propto
$\left[\mathrm{B}_{2}\right]^{0}$
$\left[B_{2}\right]$
$\left[\mathrm{B}_{2}\right]^{2}$
$\left[\mathrm{B}_{2}\right]^{1 / 2}$
$\left[\mathrm{B}_{2}\right]^{3 / 2}$
y. The units on the rate constant, k, are

$$
\mathrm{s}^{-1} \quad(\mathrm{~mol} / \mathrm{L}) \cdot \mathrm{s}^{-1} \quad(\mathrm{~mol} / \mathrm{L})^{-1} \cdot \mathrm{~s}^{-1} \quad(\mathrm{~mol} / \mathrm{L})^{-2} \cdot \mathrm{~s}^{-1} \quad(\mathrm{~mol} / \mathrm{L})^{-1 / 2} \cdot \mathrm{~s}^{-1}
$$

[End of multiple choice questions.]

Name \qquad
2. (28 points) Given the following two couples and their corresponding standard reduction potentials:

$$
\begin{array}{ll}
\mathrm{Cu}^{2+}(a q)+2 e^{-} \rightleftharpoons \mathrm{Cu}(s) & E^{\mathrm{o}}=+0.337 \mathrm{v} \\
\mathrm{~Pb}^{2+}(a q)+2 e^{-} \rightleftharpoons \mathrm{Pb}(s) & E^{\mathrm{o}}=-0.126 \mathrm{v}
\end{array}
$$

Part I (20 points; 2 points each) Fill in the blanks below regarding the following galvanic cell under standard conditions.

$$
\mathrm{Cu}\left|\mathrm{Cu}^{2+} \| \mathrm{Pb}^{2+}\right| \mathrm{Pb}
$$

Do not assume that the cell is shown in the proper order (i.e., anode and cathode placed on the correct sides). You must determine whether or not it is properly shown.
a. The oxidation half-reaction is
\qquad
b. The reduction half-reaction is
c. The overall net ionic reaction for the cell is
\qquad
d. $\quad E_{\text {cell }}^{0}=$ \qquad volts
e. The oxidizing agent is \qquad
f. The reducing agent is \qquad
g. In the cell diagram as shown above, the anode is shown on the \qquad (right/left).
h. Is the cell diagram as shown above in conventional order? \qquad (yes/no)
i. In the cell diagram as shown above, the direction of electron flow in the circuit wire is
\qquad (left to right/right to left).
j. As the cell runs, $E_{\text {cell }}$ will \qquad (increase/decrease/stay the same).
[Part II on the following page]

Name \qquad
2. Part II (8 points) Calculate $E_{\text {cell }}$ for the galvanic cell described in Part I (previous page) when $\left[\mathrm{Cu}^{2+}\right]=0.360 \mathrm{M}$ and $\left[\mathrm{Pb}^{2+}\right]=1.00 \times 10^{-3} \mathrm{M}$.
3. (16 points) Balance the following skeletal redox equation in acidic solution using the ionelectron (half-reaction) method:

$$
\mathrm{HClO}_{2}(a q)+\mathrm{As}(s) \rightarrow \mathrm{Cl}^{-}(a q)+\mathrm{HAsO}_{2}(a q)
$$

In answering this question, you must show the following:
(1) A balanced half-reaction for $\mathrm{HClO}_{2}(a q) \rightarrow \mathrm{Cl}^{-}(a q)$ in acidic solution (6 points);
(2) A balanced half-reaction for $\mathrm{As}(s) \rightarrow \mathrm{HAsO}_{2}(a q)$ in acidic solution (6 points);
(3) The balanced overall redox reaction, with lowest whole-number coefficients (4 points).

Don't bother writing the state designations $(a q)$ and (s), but be sure that charges on all species are properly shown.

Name

4. (10 points) How many grams of nickel metal (at. wt. 58.71 u) will be produced at the electrode in the electrolysis of a $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ solution for 8.00 amp for a period of 96.0 minutes? The half-reaction at the electrode is $\mathrm{Ni}^{2+}(a q)+2 e^{-} \rightarrow \mathrm{Ni}(s)$.
5. (10 points) Consider the following equilibrium for which $K_{c}=7.00$ at 400 K .

$$
\mathrm{Br}_{2}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{BrCl}(g)
$$

Calculate the equilibrium concentrations of all three species that should result when 2.50 mol of $\operatorname{BrCl}(g)$ are introduced into an empty one-liter vessel at 400 K .

Name

6. (18 points) Formic acid, $\mathrm{HCO}_{2} \mathrm{H}$, has $K_{a}=1.9 \times 10^{-4}$ for its hydrolysis

$$
\mathrm{HCO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{2}^{-}
$$

a. (6 points) What is the pH of 0.10 M solution of formic acid?
b. (3 points) What is the pH of a solution in which the concentration of formic acid is 0.10 M and concentration of sodium formate is 0.10 M ?
c. (9 points) What is the pH of a 0.10 M sodium formate solution?

Name \qquad
7. (18 points) Consider the reaction

$$
\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)
$$

Given the following thermodynamic data:

Substance	$\Delta H_{f}^{\mathrm{o}}(\mathrm{kJ} / \mathrm{mol})$	$\Delta G_{f}^{\mathrm{o}}(\mathrm{kJ} / \mathrm{mol})$	$S^{\mathrm{o}}(\mathrm{J} / \mathrm{K} \cdot \mathrm{mol})$
$\mathrm{PCl}_{5}(g)$	-398.9	-324.6	352.7
$\mathrm{PCl}_{3}(g)$	-306.4	-286.3	311.7
$\mathrm{Cl}_{2}(g)$	0	0	223.0

a. (3 points) What is the value of ΔG° for the reaction at $25^{\circ} \mathrm{C}$? Is the reaction spontaneous at this temperature?
b. (6 points) What is the value of K_{p} for the reaction at $25^{\circ} \mathrm{C}$?
c. (9 points) Assuming ΔH and ΔS are constant with changes in temperature, calculate the value of ΔG for the reaction at $300^{\circ} \mathrm{C}$. Is the reaction spontaneous at this temperature?

