Chem 104 - Test 1 Practice Problems

- 1. Circle the best answer to each of the following.
- a. If c is a constant, the equation that is the basis for Avogadro's hypothesis is

V = c/P V = cn P = cT KE = cT V = cT

b. A gas sample initially at 1.00 atm is expanded at constant temperature from 50.0 L to 75.0 L. the final pressure is

3.33 atm 1.50 atm 1.00 atm 0.667 atm 0.200 atm

c. At STP a 14.3-g sample of gas occupies 5.00 L. What is its molecular weight?

2.86 14.3 22.4 64.1 112

- d. In a gas mixture of He, Ne, and Ar with a total pressure of 8.40 atm, the partial pressures of He and Ne are 1.50 atm and 2.00 atm, respectively. What is the mole fraction of Ar in the mixture?
 - 0.179 0.714 0.238 0.417 0.583
- e. A 0.100-mole sample of oxygen gas (m.w. = 32.0) effused through a pin hole in 5.00 seconds. Under the same conditions, how long would it take the same amount of CO₂ (m.w. = 44.0) to effuse?
 - 1.17 s 3.64 s 4.26 s 5.86 s 6.88 s
- f. Of the following gases, which would deviate most from ideal behavior?

 CH_4 CF_4 CCl_4 CBr_4 CI_4

g. Which of the following is *least* soluble in methanol, CH₃OH?

SiO₂ H₂O I₂ NaF HF

h. Which of the following solutions would have the highest osmotic pressure?

0.200 M HF 0.300 M C₆H₁₂O₆ 0.100 M NaCl 0.100 M H₂SO₄ 0.100 M Na₃PO₄

i. Which of the following has the highest boiling point?

CH₃CH₂CH₃ CH₃OCH₃ CH₃CHO HOCH₂CH₂CH₂OH CH₃CH₂CH₂OH

- 2. Ferrocene, $Fe(C_5H_5)_2$ (m.w. = 186.0 u), is a molecular compound that is highly soluble in carbon tetrachloride (m.w. = 153.8 u). Consider a solution of 0.625 g of ferrocene dissolved in 12.0 g of CCl₄.
- a. What is the molality, *m*, of the solution?

b. Carbon tetrachloride freezes at -22.3 °C, and has a freezing point constant, K_{f} , of 28.8 °C/*m*. What is the freezing point of the solution?

c. What is the mole fraction of carbon tetrachloride in the solution?

d. The normal boiling point of pure CCl_4 is 76.8 °C. What is the vapor pressure in torr of the solution at 76.8 °C?

- 3. A 3.567-L sample of $CO_2(g)$ (m.w. = 44.01 u) is collected over water 35.40 °C. The pressure inside the vessel is 772.2 torr. At 35.40 °C the vapor pressure of water is 43.12 torr.
- a. How many moles of $CO_2(g)$ does the sample contain?

b. What are the mole fractions of $CO_2(g)$ and $H_2O(g)$ in the sample?

4. A solution prepared by dissolving 0.525 g of an unknown non-electrolyte in enough water to make 125 mL of solution has an osmotic pressure of 1.10 atm at 27 °C. What is the molar mass of the solute?