Chem 104
 Test 3 Practice Problems

1. Complete the following table by calculating the missing entries and indicating whether the solution is acidic or basic.
\(\left.$$
\begin{array}{|c|c|c|c|c|}\hline\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] & {\left[\mathrm{OH}^{-}\right]} & \mathrm{pH} & & \begin{array}{c}\text { acidic } \\
\text { or }\end{array}
$$

basic?\end{array}\right]\)| pOH |
| :--- |

2. Using the Table of Conjugate Acid-Base Pairs, decide whether each of the following equilibria lies to the left or right.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)+\mathrm{SO}_{4}^{2-}(a q) \rightleftharpoons \mathrm{HC}_{2} \mathrm{O}_{4}^{-}(a q)+\mathrm{HSO}_{4}^{-}(a q) \\
& \mathrm{HC}_{2} \mathrm{O}_{4}^{-}(a q)+\mathrm{SO}_{4}^{2-}(a q) \rightleftharpoons \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q)+\mathrm{HSO}_{4}^{-}(a q) \\
& \mathrm{HC}_{2} \mathrm{O}_{4}^{-}(a q)+\mathrm{OCl}^{-}(a q) \rightleftharpoons \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q)+\mathrm{HOCl}(a q) \\
& \mathrm{HOBr}(a q)+\mathrm{OCl}^{-}(a q) \rightleftharpoons \mathrm{OBr}^{-}(a q)+\mathrm{HOCl}(a q)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
3. Using the Table of Conjugate Acid-Base Pairs, decide whether a solution of $\mathrm{NaHC}_{2} \mathrm{O}_{4}(a q)$ is acidic or basic.
4. Vitamin C is ascorbic acid, a diprotic acid for which $K_{1}=8.0 \times 10^{-5}$ and $K_{2}=1.6 \times 10^{-12}$.
(a) Using the abbreviation H_{2} Asc for ascorbic acid, write the hydrolysis equilibria that correspond to K_{1} and K_{2}.
(b) Consider a 0.10 M solution of ascorbic acid. Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH}$, and the percent dissociation of the acid in this solution.
(c) What is the concentration of ascorbate ion, $\left[\mathrm{Asc}^{2-}\right]$, in a 0.10 M ascorbic acid solution?
5. Consider the titration of 25.0 mL of 0.120 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, K_{a}=1.76 \times 10^{-5}\right)$ with $0.100 \mathrm{M} \mathrm{NaOH}(a q)$.
(a) How much $0.100 \mathrm{M} \mathrm{NaOH}(a q)$ must be added to reach the equivalence point?
(b) How many millimoles of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ are present in the initial sample?
(c) What is the initial pH of the sample solution?
(d) What is the pH of the solution after adding 5.00 mL of $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$?
(e) What is the pH of the solution after adding 15.0 mL of $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$?
(f) What is the pH at the equivalence point?
(g) What is the pH when 5.00 mL of $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ has been added beyond the equivalence point?

