Chem 116 Test 3 Practice Problems Solutions

1. Complete the following table by calculating the missing entries and indicating whether the solution is acidic or basic.

				acidic or
$[H_3O^+]$	[OH ⁻]	рН	рОН	basic?
5.0 x 10 ⁻⁸ M	2.0 x 10 ⁻⁷ M	7.30	6.70	basic

2. Using the Table of Conjugate Acid-Base Pairs, decide whether each of the following equilibria lies to the left or right.

$$\begin{split} &H_2C_2O_4(aq) + SO_4^{2-}(aq) \rightleftharpoons HC_2O_4^{-}(aq) + HSO_4^{-}(aq) & \text{right} \\ &HC_2O_4^{-}(aq) + SO_4^{2-}(aq) \rightleftharpoons C_2O_4^{2-}(aq) + HSO_4^{-}(aq) & \text{left} \\ &HC_2O_4^{-}(aq) + OCI^{-}(aq) \rightleftharpoons C_2O_4^{2-}(aq) + HOCI(aq) & \text{right} \\ &HOBr(aq) + OCI^{-}(aq) \rightleftharpoons OBr^{-}(aq) + HOCI(aq) & \text{left} \end{split}$$

3. Using the Table of Conjugate Acid-Base Pairs, decide whether a solution of $NaHC_2O_4(aq)$ is acidic or basic.

 $HC_2O_4^- + H_2O \rightleftharpoons C_2O_4^{2-} + H_3O^+$ $K_a = 6.40 \times 10^{-5}$ (from table) $HC_2O_4^- + H_2O \rightleftharpoons H_2C_2O_4 + OH^ K_b = ?$

Calculate K_b for HC₂O₄⁻ from the K_a of its conjugate acid, H₂C₂O₄.

$$K_b = \frac{K_w}{K_a} = \frac{1.00 \times 10^{-14}}{5.90 \times 10^{-2}} = 1.69 \times 10^{-13}$$

 $K_a >> K_b$, therefore the solution is acidic.

- 4. The K_a of HPO₄²⁻ is 3.6 x 10⁻¹³.
 - (a) What is the value of K_b for the phosphate ion, PO₄³⁻?

$$K_b = \frac{K_w}{K_a} = \frac{1.0 \times 10^{-14}}{3.6 \times 10^{-13}} = 2.7_{77} \times 10^{-2} = 2.8 \times 10^{-2}$$

(b) Calculate the concentration of hydroxide ion, $[OH^-]$, in a 0.10 M solution of Na₃PO₄.

The analytical concentration of the base, PO_4^{3-} , is too close to the value of K_b to ignore hydrolysis. The more exact mass balance expression must be substituted into the denominator of the K_b expression.

$$K_b = \frac{[OH^-]^2}{0.10 - [OH^-]} = 2.8 \times 10^{-2}$$

$$[OH^{-}]^{2} + 2.8 \times 10^{-2} [OH^{-}] - 2.8 \times 10^{-3} = 0$$

Solving the quadratic equation and taking the positive root:

$$[OH^{-}] = 0.040_7 M = 0.041 M$$

(c) What is the percent hydrolysis of phosphate ion in a 0.10 M solution of Na₃PO₄?

% hydrolysis =
$$\frac{0.040_7}{0.10} \times 100\% = 41\%$$

5. Consider the titration of 25.0 mL of 0.120 M acetic acid (CH₃CO₂H, $K_a = 1.76 \times 10^{-5}$) with 0.100 M NaOH(*aq*).

(a) How much 0.100 M NaOH(aq) must be added to reach the equivalence point?

$$V_b = \frac{M_a V_a}{M_b} = \frac{(0.120 \text{ M})(25.00 \text{ mL})}{0.100 \text{ M}} = 30.0 \text{ mL}$$

(b) How many millimoles of CH_3CO_2H are present in the initial sample?

mmol $CH_3CO_2H = (0.120 \text{ M})(25.0 \text{ mL}) = 3.00 \text{ mmol}$

(c) What is the initial pH of the sample solution?

Use Assumptions I and II.

$$[H_3O^+] = \sqrt{(0.120)(1.76 \times 10^{-5})} = 1.45 \times 10^{-3}$$

pH = 2.838

(d) What is the pH of the solution after adding 5.0 mL of 0.100 M NaOH(*aq*)?

 $mmol OH^{-} added = 5.0 mL \ge 0.100 M = 0.50 mmol$

	CH ₃ CO ₂ H	+	OH⁻	⇒	H_2O	+	CH ₃ CO ₂ ⁻
Add	3.00		0.50				
Get	2.50		~0				0.50

Use K_a to calculate the concentration of hydronium ion in equilibrium with these amounts of acid and conjugate base.

$$K_a = 1.76 \times 10^{-5} = \frac{[\text{H}_3\text{O}^+](0.50)}{2.50}$$

 $[\text{H}_3\text{O}^+] = 8.8 \text{ x } 10^{-5} \text{ M}$
 $\text{pH} = 4.05_{56} = 4.06$

(e) What is the pH of the solution after adding 15.0 mL of 0.100 M NaOH(*aq*)?

mmol OH^- added = 15.0 mL x 0.10 M = 1.50 mmol

	CH_3CO_2H	+	OH⁻	\rightleftharpoons	H_2O	+	CH ₃ CO ₂
Add	3.00		1.50				
Get	1.50		~0				1.50

This is the half-titration point, where equal amounts of acid and conjugate base exit in the solution.

$$K_a = 1.76 \times 10^{-5} = \frac{[\text{H}_3\text{O}^+](1.50)}{1.50}$$

Therefore, $[H_3O^+] = K_a$ and $pH = pK_a$

$$pH = -\log(1.76 \times 10^{-5}) = 4.754$$

(f) What is the pH at the equivalence point?

All the acid has been converted to conjugate base. Therefore, calculate the K_b for acetate ion, calculate the analytical concentration of the acetate ion in the resulting solution, and use K_b to calculate the concentration of hydroxide ion. Then, calculate pOH, and by subtraction from 14.00 calculate pH.

 $CH_3CO_2H + OH^- \rightleftharpoons H_2O + CH_3CO_2^-$ Add 3.00 3.00
Get ~0 ~0 3.00

$$K_b = \frac{1.00 \times 10^{-14}}{1.76 \times 10^{-5}} = 5.68 \times 10^{-10}$$

volume =
$$(25.0 + 35.0)$$
 mL = 55.0 mL

 $C = \frac{3.00 \text{ mmol}}{55.0 \text{ mL}} = 0.0545_{45} \text{ M}$

 $[OH^{-}] = \sqrt{(0.0545)(5.68 \times 10^{-10})} = 5.57 \times 10^{-6} M$

$$pOH = 5.254 \rightarrow pH = 8.746$$

(g) What is the pH when 5.0 mL of 0.100 M NaOH(*aq*) has been added beyond the equivalence point?

This is after adding 35.0 mL of 0.100 M NaOH, which supplies 3.50 mmol OH⁻.

	CH_3CO_2H	+	OH⁻	\rightleftharpoons	H_2O	+	$CH_3CO_2^-$
Add	3.00		3.50				
Get	~0		0.50				3.00

Only the excess sodium hydroxide is an important source of hydroxide ion.

volume =
$$(25.0 + 35.0) \text{ mL} = 60.0 \text{ mL}$$

[OH⁻] = $\frac{0.50 \text{ mmol}}{60.0 \text{ mL}}$ = $8.3 \times 10^{-3} \text{ M}$
pOH = $2.08 \Rightarrow \text{pH} = 11.92$