Chem 116

Test 3 Practice Problems

Solutions

1. Complete the following table by calculating the missing entries and indicating whether the solution is acidic or basic.

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pH	pOH	acidic or basic?
$5.0 \times 10^{-8} \mathrm{M}$	$2.0 \times 10^{-7} \mathrm{M}$	7.30	6.70	basic

2. Using the Table of Conjugate Acid-Base Pairs, decide whether each of the following equilibria lies to the left or right.

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)+\mathrm{SO}_{4}^{2-}(a q) \rightleftharpoons \mathrm{HC}_{2} \mathrm{O}_{4}^{-}(a q)+\mathrm{HSO}_{4}^{-}(a q) & \text { right } \\
\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(a q)+\mathrm{SO}_{4}^{2-}(a q) \rightleftharpoons \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q)+\mathrm{HSO}_{4}^{-}(a q) & \text { left } \\
\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(a q)+\mathrm{OCl}^{-}(a q) \rightleftharpoons \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q)+\mathrm{HOCl}(a q) & \text { right } \\
\mathrm{HOBr}^{2}(a q)+\mathrm{OCl}^{-}(a q) \rightleftharpoons \mathrm{OBr}^{-}(a q)+\mathrm{HOCl}(a q) & \text { left }
\end{array}
$$

3. Using the Table of Conjugate Acid-Base Pairs, decide whether a solution of $\mathrm{NaHC}_{2} \mathrm{O}_{4}(a q)$ is acidic or basic.

$$
\begin{array}{ll}
\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} & K_{a}=6.40 \times 10^{-5}(\text { from table }) \\
\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{OH}^{-} & K_{b}=?
\end{array}
$$

Calculate K_{b} for $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$from the K_{a} of its conjugate acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$.

$$
K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.00 \times 10^{-14}}{5.90 \times 10^{-2}}=1.69 \times 10^{-13}
$$

$K_{a} \gg K_{b}$, therefore the solution is acidic.
4. The K_{a} of $\mathrm{HPO}_{4}{ }^{2-}$ is 3.6×10^{-13}.
(a) What is the value of K_{b} for the phosphate ion, PO_{4}^{3-} ?

$$
K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.0 \times 10^{-14}}{3.6 \times 10^{-13}}=2.7_{77} \times 10^{-2}=2.8 \times 10^{-2}
$$

(b) Calculate the concentration of hydroxide ion, $\left[\mathrm{OH}^{-}\right]$, in a 0.10 M solution of $\mathrm{Na}_{3} \mathrm{PO}_{4}$.

The analytical concentration of the base, $\mathrm{PO}_{4}{ }^{3-}$, is too close to the value of K_{b} to ignore hydrolysis. The more exact mass balance expression must be substituted into the denominator of the K_{b} expression.

$$
\begin{gathered}
K_{b}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{0.10-\left[\mathrm{OH}^{-}\right]}=2.8 \times 10^{-2} \\
{\left[\mathrm{OH}^{-}\right]^{2}+2.8 \times 10^{-2}\left[\mathrm{OH}^{-}\right]-2.8 \times 10^{-3}=0}
\end{gathered}
$$

Solving the quadratic equation and taking the positive root:

$$
\left[\mathrm{OH}^{-}\right]=0.040_{7} \mathrm{M}=0.041 \mathrm{M}
$$

(c) What is the percent hydrolysis of phosphate ion in a 0.10 M solution of $\mathrm{Na}_{3} \mathrm{PO}_{4}$?

$$
\% \text { hydrolysis }=\frac{0.040_{7}}{0.10} \times 100 \%=41 \%
$$

5. Consider the titration of 25.0 mL of 0.120 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, K_{a}=1.76 \times 10^{-5}\right)$ with $0.100 \mathrm{M} \mathrm{NaOH}(a q)$.
(a) How much $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ must be added to reach the equivalence point?

$$
V_{b}=\frac{\mathrm{M}_{a} V_{a}}{\mathrm{M}_{b}}=\frac{(0.120 \mathrm{M})(25.00 \mathrm{~mL})}{0.100 \mathrm{M}}=30.0 \mathrm{~mL}
$$

(b) How many millimoles of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ are present in the initial sample?

$$
\mathrm{mmol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=(0.120 \mathrm{M})(25.0 \mathrm{~mL})=3.00 \mathrm{mmol}
$$

(c) What is the initial pH of the sample solution?

Use Assumptions I and II.

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{(0.120)\left(1.76 \times 10^{-5}\right)}=1.45 \times 10^{-3}} \\
\mathrm{pH}=2.838
\end{gathered}
$$

(d) What is the pH of the solution after adding 5.0 mL of $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$?
mmol OH - added $=5.0 \mathrm{~mL} \times 0.100 \mathrm{M}=0.50 \mathrm{mmol}$

$$
\begin{array}{lcccc}
& \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-} \\
\text {Add } & 3.00 & 0.50 & & \\
\text { Get } & 2.50 & \sim 0 & & 0.50
\end{array}
$$

Get

Use K_{a} to calculate the concentration of hydronium ion in equilibrium with these amounts of acid and conjugate base.

$$
\begin{gathered}
K_{a}=1.76 \times 10^{-5}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right](0.50)}{2.50} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.8 \times 10^{-5} \mathrm{M}} \\
\mathrm{pH}=4.05_{56}=4.06
\end{gathered}
$$

(e) What is the pH of the solution after adding 15.0 mL of $0.100 \mathrm{M} \mathrm{NaOH}(a q)$?
$\mathrm{mmol} \mathrm{OH}{ }^{-}$added $=15.0 \mathrm{~mL} \times 0.10 \mathrm{M}=1.50 \mathrm{mmol}$

$$
\begin{array}{lcccc}
& \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-} \\
\text {Add } & 3.00 & 1.50 & & \\
\text { Get } & 1.50 & \sim 0 & & 1.50
\end{array}
$$

Get

This is the half-titration point, where equal amounts of acid and conjugate base exit in the solution.

$$
K_{a}=1.76 \times 10^{-5}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right](1.50)}{1.50}
$$

Therefore, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{a}$ and $\mathrm{pH}=\mathrm{p} K_{a}$

$$
\mathrm{pH}=-\log \left(1.76 \times 10^{-5}\right)=4.754
$$

(f) What is the pH at the equivalence point?

All the acid has been converted to conjugate base. Therefore, calculate the K_{b} for acetate ion, calculate the analytical concentration of the acetate ion in the resulting solution, and use K_{b} to calculate the concentration of hydroxide ion. Then, calculate pOH , and by subtraction from 14.00 calculate pH .

	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
Add	3.00
Get	~ 0

(g) What is the pH when 5.0 mL of $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ has been added beyond the equivalence point?

This is after adding 35.0 mL of 0.100 M NaOH , which supplies $3.50 \mathrm{mmol} \mathrm{OH}^{-}$.

	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$		
Add	3.00	3.50		
Get	~ 0	0.50		3.00

Only the excess sodium hydroxide is an important source of hydroxide ion.

$$
\begin{gathered}
\text { volume }=(25.0+35.0) \mathrm{mL}=60.0 \mathrm{~mL} \\
{\left[\mathrm{OH}^{-}\right]=\frac{0.50 \mathrm{mmol}}{60.0 \mathrm{~mL}}=8.3 \times 10^{-3} \mathrm{M}} \\
\mathrm{pOH}=2.08 \Rightarrow \mathrm{pH}=11.92
\end{gathered}
$$

