The Equilibrium Constant $\boldsymbol{K}_{\boldsymbol{p}}$

- If all components are gases at constant temperature and volume, it may be more convenient to express the amounts of reactants and products in partial pressures.

T This is a variation on Gay-Lussac's Law of Combining Gas Volumes, based on the relationship $P=g n$, where $g=f(V, T)$.

T For the Haber process at equilibrium:

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \cong 2 \mathrm{NH}_{3}(g)
$$

In terms of partial pressures, we define the equilibrium constant K_{p} as

$$
K_{p}=\frac{\left(p_{\mathrm{NH}_{3}}\right)^{2}}{\left(p_{\mathrm{N}_{2}}\right)\left(p_{\mathrm{H}_{2}}\right)^{3}}
$$

Relationship Between $\boldsymbol{K}_{\boldsymbol{p}}$ and $\boldsymbol{K}_{\boldsymbol{c}}$

- For any gas species X,

$$
p_{\mathrm{X}}=\left(n_{\mathrm{X}} / V\right) R T=[\mathrm{X}] R T
$$

- For $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \cong 2 \mathrm{NH}_{3}(g)$, we can write

$$
\begin{gathered}
K_{p}=\frac{\left(\left[\mathrm{NH}_{3}\right] R T\right)^{2}}{\left(\left[\mathrm{~N}_{2}\right] R T\right)\left(\left[\mathrm{H}_{2}\right] R T\right)^{3}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}(R T)^{-2} \\
K_{p}=K_{c}(R T)^{-2}
\end{gathered}
$$

T Notice that the exponent on the $R T$ term is the difference between the sum of coefficients on gas products minus the sum of coefficients on gas reactants:

$$
n=(2)-(1+3)=-2
$$

$\mathrm{L} \quad$ In general, the relationship between K_{c} and K_{p} is expressed by the equation

$$
K_{p}=K_{c}(R T)^{)^{n}}
$$

Examples of $\boldsymbol{K}_{\boldsymbol{p}}$ and $\boldsymbol{K}_{\boldsymbol{c}}$

$$
\begin{array}{ll}
2 \mathrm{NO}_{2}(g) & \mathrm{o} \mathrm{~N}_{2} \mathrm{O}_{4}(g) \\
& K_{p}=K_{c}(R T)^{-1}
\end{array}
$$

$\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \stackrel{\mathrm{o}}{ } 2 \mathrm{HI}(g)$
) $n=2-2=0$

$$
K_{p}=K_{c} 7 \text { Note! }
$$

$\mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \stackrel{\mathrm{CaCO}}{3}(s)$
) $n=0-1=-1$

$$
K_{p}=K_{c}(R T)^{-1}
$$

The Reaction Quotient, \boldsymbol{Q}

- We can calculate the ratio of concentrations or pressures like K_{c} or K_{p} at any time in course of a reaction.
L When the system is not at equilibrium, the ratio of the product concentrations raised to their stoichiometric coefficients to the reactant concentrations raised to their stoichiometric coefficients is called the reaction quotient and given the symbol Q.

L The value of Q relative to K_{c} or K_{p} indicates the direction in which the reaction must run to achieve equilibrium.

U If $Q<K$, the reaction must run in the forward direction, using up reactants and forming more products.

$$
\text { rR W} \mathrm{W}_{\mathrm{pP}} \quad Q=[\mathrm{P}]^{\mathrm{p}} /[\mathrm{R}]^{\mathrm{r}}<K \quad \text { Y Shift right. }
$$

U If $Q>K$, the reaction must run in the reverse direction, using up products and reforming more reactants.

$$
\text { rR WpP } \quad Q=[\mathrm{P}]^{\mathrm{p}} /[\mathrm{R}]^{\mathrm{r}}>K \quad \text { Y Shift left. }
$$

LeChatelier's Principle Henri LeChatelier - 1884

L If a stress is applied to a system at equilibrium, the system will tend to adjust to a new equilibrium, which minimizes the stress, if possible.

- Possible stresses are changes in TConcentration
T Pressure
T Temperature.

Shifts in the Position of Equilibrium

- Shift to the right:

ㅇ
More reactants consumed, resulting in greater product concentrations and lesser reactant concentrations.

- Shift to the left:

Reactants ${ }^{\mathbf{o}}$ Products

>
More products consumed, resulting in greater reactant concentrations and lesser product concentrations.

- Sometimes the stress cannot be alleviated by either kind of shift, in which case the original equilibrium position is maintained.

Reactants ㅇ Products
ㅇ >

Effects of Various Stresses

- Concentration Change:

T Position of equilibrium changes
T K_{c} remains the same

- Pressure Change:

T Position of equilibrium may change
T K_{c} remains the same

- Temperature Change:

T Equilibrium changes
T K_{c} changes

Effects of Concentration Changes
 Reactants ${ }^{\circ}$ Products

- Increase Reactant Concentrations

○ Shift Right (more products)

- Increase Product Concentrations
» Shift Left (more reactants)
- Remove Products as Formed

○ Shift Right (more products)

Effects of Pressure Changes

) $n \ldots 0$
L If the sums of the coefficients of gas species in the balanced reaction equation are different between reactants and products () $n \ldots 0$), an increase in pressure will cause a shift toward the side with the lower sum of coefficients.

- This creates fewer gas molecules in the mixture, which reduces the total pressure $\left(P_{t}=n_{t} R \mathrm{~T} / V\right)$.

$$
\begin{array}{cc}
2 \mathrm{NO}_{2}(g) \stackrel{\varrho}{ } & \mathrm{N}_{2} \mathrm{O}_{4}(g) \\
\text { Increase } P \cong & \text { shift right }
\end{array}
$$

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \cong 2 \mathrm{NH}_{3}(g)
$$

Increase P o shift right

$$
\begin{gathered}
2 \mathrm{C}(s)+\mathrm{O}_{2}(g) \cong 2 \mathrm{CO}(g) \\
\text { Increase } P \text { » shift left }
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{C}(s) \varrho \mathrm{H}_{2}(g)+\mathrm{CO}(g) \\
\text { Increase } P » \text { shift left }
\end{gathered}
$$

Effects of Pressure Changes
) $n=0$

L If the sums of gas species coefficients are the same on both sides of the equation ()$n=0)$, pressure will have no effect on the position of the equilibrium; e.g.,

$$
\begin{gathered}
\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \subseteq 2 \mathrm{NO}(g) \\
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \subseteq 2 \mathrm{HI}(g) \\
\mathrm{C}(s)+\mathrm{O}_{2}(g) \subseteq \mathrm{CO}_{2}(g)
\end{gathered}
$$

Effects of Temperature Changes

L Changing temperature changes the value of K_{c}.

- If we know whether the reaction is exothermic or endothermic we can predict the qualitative effect of a temperature change.

T Raising the temperature will cause a shift that uses some of the added heat; i.e., added heat drives the endothermic process.

$$
2 \mathrm{NO}_{2}(g) \varrho \mathrm{N}_{2} \mathrm{O}_{4}(g)+\text { heat }
$$

$$
\begin{aligned}
& \text { Increase T } \bullet \mathrm{Y} \text { more } \mathrm{NO}_{2} \text {, decrease } K_{c}- \\
& \text { Decrease T }-\mathrm{Y} \text { more } \mathrm{N}_{2} \mathrm{O}_{4} \text {, increase } K_{c} \\
& \text { heat }+\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) \varrho \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g)
\end{aligned}
$$

Increase $\mathrm{T} \bullet \mathrm{Y}$ more products, increase $K_{c} \bullet$
Decrease T - Y more reactants, decrease $K_{c}-$

Effect of a Catalyst

L A catalyst has no effect on equilibrium.
L The catalyst offers an alternative path to products, but it does not affect the ratio of products to reactants at equilibrium.

L The catalyst merely influences the rate at which equilibrium will be established.

