Oxidation-Reduction (Redox) Reactions

A reaction in which one species transfers electrons to another is an oxidation-reduction reaction, also called a redox reaction.

$$
2 \mathrm{Fe}(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{FeCl}_{3}(s) \equiv 2\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{Cl}^{-}\right]_{3}
$$

\checkmark Oxidation is the loss of electrons by a substance.
\checkmark Reduction is the gain of electrons by a substance.

$$
\begin{array}{ll}
2\left(\mathrm{Fe}^{0} \rightarrow \mathrm{Fe}^{3+}+3 e^{-}\right) & \mathrm{Fe}^{0} \text { "pushes" } e^{\prime} \mathrm{s} \\
\text { oxidation } \\
3\left(\mathrm{Cl}_{2}+2 e^{-} \rightarrow 2 \mathrm{Cl}^{-}\right) & \mathrm{Cl}_{2} \text { "pulls" } e^{\prime} \mathrm{s}
\end{array}
$$

reduction
$2 \mathrm{Fe}(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{FeCl}_{3}(s)$ redox

- There is never an oxidation without a reduction, and vice versa!

Oxidizing Agents and Reducing Agents

\checkmark An oxidizing agent (or oxidant) is a substance that causes another substance to be oxidized and is itself reduced.
\checkmark A reducing agent (or reductant) is a substance that causes another substance to be reduced and is itself oxidized.

ITE In these terms, all redox reactions take on the general form

$$
\mathrm{Ox}_{1}+\operatorname{Red}_{2} \rightleftharpoons \operatorname{Red}_{1}+\mathrm{Ox}_{2}
$$

Oxidation Numbers and Redox

Δ When a species is oxidized, one of its atoms goes to a higher (more positive or less negative) oxidation number.

When a species is reduced, one of its atoms goes to a lower (less positive or more negative) oxidation number.

$$
\begin{array}{ll}
2\left(\mathrm{Fe}^{0} \rightarrow \mathrm{Fe}^{3+}+3 e^{-}\right) & \begin{array}{l}
\text { Fe oxidation number } \\
\text { increases } \Rightarrow \text { oxidation }
\end{array} \\
3\left(\mathrm{Cl}_{2}^{0}+2 e^{-} \rightarrow 2 \mathrm{Cl}^{-}\right) & \begin{array}{l}
\text { Cl oxidation number } \\
\text { decreases } \Rightarrow \text { reduction }
\end{array}
\end{array}
$$

$2 \mathrm{Fe}(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{FeCl}_{3}(s)$ redox

Balancing Redox Equations by the Ion-Electron Method

1. Separate the skeletal equation into two half reactions. Each half reaction refers to the conversion of a species in either its oxidized or reduced form into a related species in either its reduced or oxidized form. One half reaction will be a reduction and the other will be an oxidation.
2. Balance each half reaction separately. Balance atoms on each side of a half reaction by inspection, using $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}$(if in acid), or OH^{-}(if in base) to make the balance in hydrogen and/or oxygen, if needed. Do not add any other new species (e.g., $\mathrm{O}_{2}, \mathrm{H}_{2}$) unless already a part of the skeletal half reaction.
3. Balance the net charge across each half reaction by adding electrons to the side with the more positive net ionic charge. If by this process electrons are added on the left side of a half reaction, the half reaction is a reduction. If electrons are added to the right side, the half reaction is an oxidation. (If you add electrons to the same side in both half reactions, something is wrong!)
4. Multiply both half-reactions by appropriate factors (usually whole numbers), so that the number of electrons is the same in both half reactions and will cancel when the two are added together.
5. Add the two multiplied half reactions together to obtain the overall redox equation.
6. Check the balance. No electrons should appear in the overall redox equation. Not only should there be a balance in atoms across the equation, but also the net charge on both sides of the equation should be equal.

Work-Around Technique for Difficult Basic Cases

(:) Balancing H and O in basic redox reactions sometimes can be difficult, because both OH^{-}and $\mathrm{H}_{2} \mathrm{O}$ contain both elements.
() A trick to balance troublesome basic cases:
\checkmark Balance any troublesome half-reaction or the entire redox reaction as if it were in acid first.
\checkmark Then add equal numbers of OH^{-}to both sides of the acidbalanced equation to "neutralize" any H^{+}to become $\mathrm{H}_{2} \mathrm{O}$; i.e., $\mathrm{H}^{+}+\mathrm{OH}^{-}=\mathrm{H}_{2} \mathrm{O}$.

Example:

$$
\begin{array}{ll}
\text { In acid } & 6 e^{-}+6 \mathrm{H}^{+}+\mathrm{IO}_{3}^{-} \rightarrow \mathrm{I}^{-}+3 \mathrm{H}_{2} \mathrm{O} \\
\text { Add } \mathrm{OH}^{-} & 6 \mathrm{OH}^{-} \\
\hline \text { Add } & 6 e^{-}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{IO}_{3}^{-} \rightarrow \mathrm{I}^{-}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{OH}^{-} \\
\text {Net } & 6 e^{-}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{IO}_{3}^{-} \rightarrow \mathrm{I}^{-}+6 \mathrm{OH}^{-}
\end{array}
$$

