More Complex Splitting Patterns

- If H_c is a set of two equivalent H, then the observed splitting is a doublet of triplets.
More Complex Splitting Patterns

- A tree diagram for the complex coupling of the three vinylic hydrogens in ethyl propenoate

\[\text{H}_a \quad \text{H}_b \quad \text{H}_c \]

- \(J_{ab} \) (trans)
- \(J_{ac} \) (geminal)
- \(J_{bc} \) (cis)

\[\text{H}_a \quad \text{H}_b \quad \text{H}_c \]

- \(J_{ab} \) (trans)
- \(J_{bc} \) (cis)
- \(J_{ac} \) (geminal)
Stereochemistry & Topicity

- **Enantiotopic groups**

 ![Chemical structure]

 Chlorofluoromethane (achiral)

 Substitution produces a stereocenter; therefore, hydrogens are enantiotopic. Both hydrogens are prochiral; one is pro-R-chiral, the other is pro-S-chiral.

- enantiotopic atoms or groups have identical chemical shifts in achiral environments

- they have different chemical shifts in chiral environments

Marietta Schwartz, Ph.D © 2008

13-54
Stereochemistry & Topicity

- Diastereotopic groups
 - H atoms on C-3 of 2-butanol are diastereotopic
 - substitution by deuterium creates a chiral center
 - because there is already a chiral center in the molecule, diastereomers are now possible

![Chemical structure of 2-Butanol](image)

2-Butanol (chiral)

Substitute one H on CH₂ by D

Chiral

- diastereotopic hydrogens have different chemical shifts under all conditions
Stereochemistry and Topicity

- 1H-NMR spectrum of 3-methyl-2-butanol
 - the methyl groups on carbon 3 are diastereotopic and appear as two doublets

![NMR spectrum of 3-Methyl-2-butanol](image_url)
Ch. 10 - Free Radicals

- a reactive intermediate with an unpaired e'
- formed by homolytic bond cleavage - (not het eroslytic)

\(\Delta H^0 \) - amount of energy required to break a bond homolytically - Table 10.1 p. 436

numbers are all \(\Theta \) - require energy (endothermic)

if you are going to make a bond - it's the same number, just change the sign.

Generally \(\Theta \) - energy is produced (exothermic)

Can use these \(\Delta H^0 \) values to calculate \(\Delta H^0 \) for the rxn.
Example: \[\text{H}_2 + \text{Cl}_2 \rightarrow 2 \text{HCl} \]

bonds broken: \[\begin{align*}
\text{H-H} & \quad 436 \text{ kJ/mol} \\
\text{Cl-Cl} & \quad 243 \text{ kJ/mol}
\end{align*} \]

bonds formed: \[\begin{align*}
2 \text{H-Cl} & \quad 2(-432 \text{ kJ/mol}) = -864
\end{align*} \]

\[\Delta H^\circ = -185 \text{ kJ/mol} \]

These #s can help us predict relative stabilities of carbon-based free radicals.

\[\text{H} - \text{CH}_3 \rightarrow \text{H}^+ + \cdot \text{CH}_3 \quad \text{DH}^\circ = 440 \text{ kJ/mol} \]

- \[\text{H} - \text{CH}_2\text{CH}_3 \rightarrow 1^\circ \text{ radical} \quad 421 \]
- \[\text{H} \cdot \text{CH}_3\text{CH}_2\text{CH}_3 \rightarrow 2^\circ \text{ radical} \quad 413 \]
- \[\cdot \text{(CH}_3)\text{C-H} \rightarrow 3^\circ \text{ radical} \quad 400 \quad \text{most stable} \]
The lower the amount of energy required to break the bond, the more stable the radical (relatively speaking).

The order of stability for radicals is the same as for cations—rationale is the same.

- Stabilized by alkyl substitution
- Hyperconjugation!

Radicals are planar sp^2 (get racemic products)

\[
\Delta H^0 = 421 \\
\Delta H^0 = 413
\]
Radical Halogenation of Alkanes

\[\text{CH}_4 + \text{Cl}_2 \xrightarrow{hv} \text{CH}_3\text{Cl} + \text{CH}_2\text{Cl}_2 + \text{CHCl}_3 + \text{CCl}_4 \]

1. Initiation - radicals are formed as products from non-radical reactants.

\[\text{Cl}_2 \text{Cl} \rightarrow 2 \text{Cl}^\cdot \quad + 243 \text{ kJ/mol} \]

2. Propagation - radicals on both sides.

\[\text{Cl}^\cdot + \text{CH}_3 \rightarrow \text{H} + \text{Cl}^\cdot + \text{CH}_3 \quad (440 - 432) = +8 \]

\[\text{Cl}_2 + \text{CH}_3 \rightarrow \text{Cl}^\cdot + \text{Cl}^\cdot + \text{CH}_3 \quad (243 - 352) = -109 \]

\[\text{Cl}_2 + \text{CH}_4 \rightarrow \text{HCl} + \text{ClCH}_3 \quad \text{add up the propagation steps} \]

\[+8 - 109 = -101 \text{ kJ/mol} \]
3. Termination - radicals as reactants but not products - lots of possibilities

\[\text{Cl} \cdot \text{CH}_3 \rightarrow \text{ClCH}_3 \quad -352 \text{ kJ/mol} \]