SODAR (Sum Of Double bonds And Rings)

\[
SODAR = \frac{(2x \#C's) + 2 - (\#monovalents) + (\#trivalents)}{2}
\]

What do we do with a SODAR calculation? Look at an example.

\[
C_7H_6O
\]

\[
SODAR = \frac{(2 \times 7) + 2 - 6 + 0}{2} = \frac{10}{2} = 5
\]

This means that any structure that we draw must have a total of five pi bonds and/or rings.

Any time you see a SODAR of four or greater, start thinking about benzene rings.

One ring plus three pi bonds gives a SODAR of four immediately!

Marietta Schwartz, Ph.D © 2008
Compound Name: UNKNOWN #1B

Analytical Data:
- 70.58 %C
- 5.92 %H

Molecular Formula:
- C8H8O2

Notes:
- assuming benzene
- aldehyde
- ether?

Molecular Mass:
- 136.15

\[
\begin{align*}
70.58 \text{ C} & \quad 5.92 \text{ H} & \quad 23.5 \text{ O} \\
\div 12 & \quad \div 1 & \quad \div 16 \\
5.88 & \quad 5.92 & \quad 1.47 \\
4 & \quad 4 & \quad 1 \\
\text{C8H8O2} & \quad \times 2 \\
\end{align*}
\]
Disubst. benzene - possibilities:

IR Spectrum
NMR Spectrum
Show Integration

Compound Name:
UNKNOWN #18

Analytical Data:
70.58 %C
5.92 %H

Molecular Formula:
C_{8}H_{8}O_{2}

Molecular Mass:
136.15

5.88 : 5.92 : 1.47
4 : 4 : 1
C_{4}H_{4}O \times 2
C_{8}H_{8}O_{2}

SODAR = 5

Marietta Schwartz, Ph.D © 2008
ocw.umb.edu
Useful Numbers to Remember

~ 1 ppm $CH_3's$ CH_2, CH

~ 5 ppm alkenes

~ 7 ppm benzenes/ aromatics

~ 9 ppm aldehyde $\overset{O}{C}=O$

~ 12 ppm carboxylic acid $\overset{O}{C}-OHH$

attached to electronegative atom (O, N, X) \rightarrow downfield

attached to π bond (C=C, C=O) \rightarrow downfield but not as much.