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Mathematical Symbols 

See 	 http://en.wikipedia.org/wiki/Table_of_mathematical_symbols 

A’	 transpose of a matrix or vector A’ or, more rarely, the complement of an event A 
c	 cA	 the complement of Event A P(A)=1-P(A ) 

binomial coefficient 

xexp(x) e , where e is the base of natural logarithms 
iid	 identically independently distributed 
ln(x)	 Natural logarithm of x, to the base e. It may also be represented as log(x), but log(x) 

can be a logarithm to any base. Base 10 and 2 are also common. 
0	 ‘is a member of’, ‘in’ See membership 
1	 intersection 
�	 Logical conjunction; The statement A � B is true if A and B are both true; else it is false. 
�	 Logical disjunction; The statement A � B is true if A or B (or both) are true; if both are 

false, the statement is false. 

� the null set 
c union 
�	 therefore 

DEFINITIONS 

A priori contrast A planned comparison, specified before the experiment was conducted, with 
implications for the interpretation of tests in ANOVA and other statistical tests. 

A posteriori contrast Any unplanned comparison carried out after collecting and examining 
patterns in the data. These statistical tests usually require an adjustment of the alpha level 
for the test decision. See multiple comparison tests, family-wise error rate. 

Absorbing Markov chain Roberts (1976, Theorem 5.3) A chain is absorbing if and only if it 
has at least one absorbing state, and from every nonabsorbing (transient) state it is 
possible to reach some absorbing state. cf., Markov chain, fundamental matrix. 

Accuracy refers to the difference between the measured or computed value and the true 
value; it is also called the systematic error (cf. precision) 

ACE Abundance-based coverage estimators, a species richness method reviewed by Colwell & 
Coddington (1994) and Hughes et al. (2001). 

Adjusted R-squared cf., R-squared 
Akaike Information Criterion (AIC) A measure of goodness of fit of a regression models with 

a strong penalty for the number of parameters in the model. See Ripley on model choice. 
AIC is intended for nested models (with one model a proper subset of another): 
http://www.stats.ox.ac.uk/~ripley/ModelChoice.pdf cf., BIC 

Algorithm A set of well-defined steps designed to produce an outcome. 
Alpha level The probability of Type I error. An alpha level of 0.05 is the pragmatic cutoff 

adopted both by Fisher & Neyman and Pearson to decide whether a result is significant 

http://en.wikipedia.org/wiki/Table_of_mathematical_symbols
http://www.stats.ox.ac.uk/~ripley/ModelChoice.pdf
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or not, but the significant/not significant dichotomy is not recommended in current 
statistical parlance. 

Alternative or alternate hypothesis A hypothesis that is often complementary to the null 
hypothesis. For example, the null hypothesis might be , and the two-tailed (=two

sided) alternate hypothesis might be . There might also be a one-tailed (one-

sided) alternative hypothesis that . The alternate hypothesis usually must be 

specified to calculate Type II error (â) and the power (1-â) of a statistical test. 
Analysis of covariance (ANCOVA) 
ANOVA Analysis of Variance. Invented by Fisher. A partitioning of sums of squared 

deviations from means that allows tests for differences in means and differences in 
variance. ANOVA is a form of the general linear model with explanatory variables 
(formerly called independent variables) or factors that are categorical. Most ANOVA 
problems can also be analyzed as regression problems with categories coded as indicator 
or dummy variables, but regression also allows continuous explanatory variables to be 
included in the design. 
Assumptions A) Equal variances among subgroups (also called homogeneity of variance 

or homoscedasticity) B) Normally, identically independently distributed errors. 
For specific ANOVA models, there are further assumptions. For example, in an 
unreplicated randomized block design, to test the main effects the test is based on 
the assumption that block and treatment effects are additive (i.e., no interaction) 

Which assumptions matter? Unequal variance is a major problem for 
ANOVA, but the results can be robust if sample sizes are equal. Winer et al. 
(1991, Table 3.8, p 102) provide an example of why equal sample size is 
important. The table, adapted from Glass et al. (1972), states that with equal 
sample sizes alpha levels are unaffected, ‘Effect on á: ‘Very slight effect on á, 
which is seldom distorted by more than a few hundreths. Actual á seems always 
to be slightly increased over the nominal á’. [But this has been documented by 
others to not be the case by Wilcox and others] With unequal n’s, the alpha levels 
can be affected, with á increased if the smaller group has the larger variance. 
Sleuth Display 5.13 (top row) indicates that with unequal variance Type I error 
can be much higher than nominal (7.1% vs. the nominal 5%) or much less than 
nominal level (0.4%). Quinn & Keough (2002, p. 193) review a study by Wilcox 
documenting that unequal variances can affect Type I error, and the problem is 
much worse with unequal sample sizes. If the smaller group has the larger 
variance, the probability of Type I error could be one in four or larger. 

Blocked ANOVA (randomized block ANOVA) 
Model I (Model 1) Fixed effects model. Each level of each explanatory factor is 

assumed to add a fixed amount to the mean. 
Model II (Model 2) Random-effects model. ANOVA is used to assess whether 

different levels of a factor contribute to the variance. For example, in assessing 
plant height, there could be among plant variance in height within a local patch, 
an additional variance component due to patch-to-patch variability within an area, 
and finally an additional variance component due different areas. In factorial 
models, the appropriate statistical tests depend on whether the factors are fixed or 
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random. Ramsey & Schafer 1997 p. 130 “(1) Is inference desired to a larger set 
from which these groups are a sample, in which case one must also be concerned 
about (2) are the groups (operators) truly a random sample from the larger set? A 
yes to (1) would indicate that a random effects model should be used, but could 
only be justified if the answer to (2) was yes. See also random effects 

Mixed model (Model III) A model including both fixed and random effects. A nested 
or hierarchical ANOVA can be an example of a mixed model, with treatment 
effects being fixed and the variability among experimental or survey units being a 
random factor. Mixed models can be treated as a general linear models, 
assuming normally and independently distributed errors, with model parameters 
estimated through minimization of sums of squares. Mixed models can also be 
analyzed using generalized linear models, which usually estimate parameters 
through maximum likelihood. See 
http://www.statsoft.com/textbook/stvarcom.html for a brief discussion of 
generalized linear modeling approaches to mixed models. SPSS’s GLM 
(UNIANOVA) can be used for a general linear mixed model, and SPSS’s 
program ‘mixed’ can be used for a generalized linear model. The generalized 
linear model allows a number of different ways of handling the variance-
covariance estimates. 

Nested (Hierarchical) Involves more than one observation per experimental unit. 
The degrees of freedom must be partitioned into error and ‘experimental unit 
within treatment’ sources of variation. Note that some nested ANOVA models 
treat both experimental or survey units and treatment levels as fixed factors. A 
mixed model nested ANOVA treats units as random factors and treatment levels 
as fixed factors. The main effect of the fixed factor is tested over the 
experimental unit within treatment mean square. 

One-way	 One explanatory factor or category 
Two-way	 Two explanatory factor or categories 
Factorial	 Two or more explanatory categories. A full factorial model is sometimes 

called a crossed ANOVA. 
Randomized block	 Each level of treatment is included randomly allocated within each 

block. To test the full randomized block model, including block x 
treatment interaction, requires that there be replicates of each 
treatment within each block. 

Repeated measures The same experimental units (e.g., patients, quadrats) are sampled 
more than once (e.g., clinical trials in which a patient is given a placebo and a test 
drug). Student’s paired t test would be appropriate if there were just two variables 
measured on each subject. 

http://www.statsoft.com/textbook/stvarcom.html


Handout 2 
Intro Prob & Statistics 
Terms P. 5 of 68 

Split plot Multiple treatment levels are nested within a larger treatment level. For 
example, an entire field could receive a given level of fertilizer, and different 
watering levels could be used on different portions of the field. Or, different 
greenhouses could be used to control temperature for a large number of trays of 
plants, and then different watering levels and fertilizer levels could be used 
within different areas or blocks of each greenhouse. The ANOVA table is often 
split, with tests of the main plot being based on a partition of the degrees of 
freedom of the main plots (e.g., fields or greenhouses), whereas the factors being 
assessed in the subplots (e.g., water or fertilizer level) can be assessed with error 
terms incorporating a much larger number of degrees of freedom. Cochran & 
Cox (1957, p. 296-297) compare split plot and randomized blocks design with A 
being the main factor and B being the split-plot factor: 

1)	 B and AB effects estimated more precisely than A effects 
in the split-plot design 

2)	 Overall experimental error is the same between designs: 
increased precision on B and AB effects are at the expense 
of precision for tests of A effects, 

3)	 The chief advantage of the split plot over the factorial is 
combining factors that are expensive to create (the A or 
main plot factors) with relatively inexpensive subplot 
factors. 

Consider the use of a split plot design when B and AB effects of more interest 
than A, or if the A effects can not be fully replicated with small amounts of 
resources. 

Analytical error In measurement, there is usually sampling error, and there is also 
analytical error. Even if a sample had a known value for a variable (sampling error is 
zero), some analytical methods introduce error. The expected value of this analytical 
error, if the instrument is properly calibrated, should be zero so that precision is affected 
but not accuracy (c.f., systematic error). [Note added 5/15/09: I just did a web search 
on analytical error and found that in chemical analysis, Total analytical error (TAE) is 
defined as the sum of both the random and systematic error, so that TAE affects both 
accuracy and precision]. 

Arcsine square root transformation For some frequency data, /arcsin(x) when x ranges 
between 0 and 1 will sometimes expand truncated tails in a distribution. The residual vs. 
predicted value plot indicating the need for a transform looks football-shaped: thick in 
the middle thin at the tails. The logit transform often works better and is easier to 
interpret. 

ARIMA autoregressive integrated moving-average cf., CAR, SAR, SARIMA 
Asymptotic relative efficiency [Pitman efficiency] “Suppose that, ..., the sample size m=n has 
been determined for which the Wilcoxon test will achieve a specified power ... One would then 
wish to know what sample size m’=n’ is required by the t-test to achieve the same power against 
the same alternative. The ratio n’/n is called the efficiency of the Wilcoxon test relative to the t-
test ... the limiting efficiency, which turns out to be independent not only of Ð [power] but also 
of á is called the Pitman efficiency (or asymptotic relative efficiency) of the Wilcoxon test to the 
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t-test.” Lehmann (2006, p. 78-80). The asymptotic relative efficiency of the sign test is 62% 
relative to the t test and 66% relative to the Wilcoxon signed rank test. The Wilcoxon signed 
rank test has a 94% asymptotic relative efficiency relative to the t test. Lehmann (2006, p. 172). 
Axiomatic probability see probability 
Bartlett’s test A test for homoscedasticity or equality of variances, not used much now 

since it is sensitive to normality. Levene’s test and graphical methods are preferred. 
Bayes, Thomas (1702(?)-1761). Protestant minister who described Bayes theorem. 
Bayes theorem. A theorem named after the English minister Thomas Bayes, published 

posthumously in 1763. The first explicit statement of the theorem is due to Laplace. 

Or from Robert & Casella (1999): 

Bayesian inference A school of statistics based on Bayes theorem. Every analyst has a prior 
belief about the probability of a given hypothesis & its alternatives. After evaluating 
data, these prior probabilities can be combined with the data to produce posterior 
probabilities. Bayesian probability estimates usually converge with p values from 
statistical tests used in the frequentist school of statistics. Bayesians argue that their 
methods are more general, and that Bayesian methods are more suitable for evaluating 
one-shot events, where long run probabilities have little meaning. cf., probability 

Bayesian information criterion (BIC) BIC statistic used to choose a parsimonious 
multiple regression equation cf., Mallow’s Cp, Aikake information criterion 
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Behrens-Fisher problem Testing the difference between means or central tendency of 
populations with unequal variances. Cf., Welch’s t test, Satterthwaite approximation, 
Fligner-Policello test 

Bernoulli trial Hogg & Tanis (1977, p. 66) A Bernoulli experiment is a random 
experiment, the outcome of which can be classified in but one of two mutually exclusive 
and exhaustive ways, say success or failure … A sequence of Bernoulli trials occurs 
when a Bernoulli experiment is performed several independent times so that the 
probability of success remains the same from trial to trial. 

Beta distribution http://mathworld.wolfram.com/BetaDistribution.html 
Bias The difference between the expected value and the true value of a parameter cf., unbiased 

estimator 
BIC Bayesian information criterion 
Binomial coefficient Used in the binomial expansion and in calculating the number of 

combinations 

Binomial distribution (Larsen & Marx 2001 Theorem 3.3.2, p. 136) Consider a series of n 
independent trials, each resulting in one of two possible outcomes, “success” or 
“failure.” Let p=P (success occurs at any given trial) and assume that p remains constant 
from trial to trial. Let the variable X denote the total number of successes in the n trials. 
Then X is said to have a binomial distribution and the binomial mass function is 

See also the Poisson approximation to the binomial 
Binomial expansion 

Binomial test 
One-sample binomial test: 

http://www.math.bcit.ca/faculty/david_sabo/apples/math2441/section9/singpoppropsht/sing 
poppropht.htm 
Binomial theorem Invented by Newton 
Binomial variable 
Biometry 
Birthday problem http://www.math.uah.edu/stat/urn/urn7.html 
Bivariate normal distribution 
Blocking Experimental design involves assigning treatments to experimental units. When groups 

of experimental units may be more similar than others, the experimenter often creates 

http://mathworld.wolfram.com/BetaDistribution.html
http://www.math.bcit.ca/faculty/david_sabo/apples/math2441/section9/singpoppropsht/singpoppropht.htm
http://www.math.bcit.ca/faculty/david_sabo/apples/math2441/section9/singpoppropsht/singpoppropht.htm
http://www.math.uah.edu/stat/urn/urn7.html
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blocks of similar experimental units with replicates of treatments applied within each 
block. A common example might be the agricultural experiment in which the 
experimental units are agricultural plots, arrayed in space. Blocks can be created based 
on spatial location, and treatments allocated to plots within spatial blocks. 

Bonferroni A conservative multiple comparisons test: test p value=Experimentwise 
alpha/number of tests. 

Bootstrap A Monte Carlo simulation in which n samples are drawn from a finite set of samples 
a large number of times cf., jackknife 

Box-Cox family of transformations. Box & Cox (1964) developed a maximum likelihood 
method to estimate which transformation of the response variable, Y, provided the best 
fit to the linear model W=Xâ + å, given that å ~ N(0,Ió2). The major transformations 
(square root, log, inverse) can be specified by one parameter, ë , in the following 
transformation equation: 

To perform the Box-Cox transformation, values of ë are chosen in the range -1 to 1 and 
the value of the likelihood function is plotted vs. lambda. The maximum likelihood 
estimate of lambda is found. Following Draper & Smith (1998), an approximate 
100 (1 - á)% confidence interval for ë which satisfy the inequality: 

where is the percentage point of the chi-squared distribution with 1 df (3.84 

for the 95% CI). 

One half this value can be used graphically in a plot of to find the upper and 

lower 95% confidence intervals for lambda, as shown in Figure 1. 
Box’s M A test of homogeneity of variance-covariance matrices. 
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Boxplot Invented by Tukey and displaying 
an approximate interquartile range, 
median, range and extreme data points. A 
box marks the the interquartile range 
(IQR) with lower and upper limits 
approximately equal to the 1st and 3rd 

quartiles. Tukey didn’t define the boxes in 
terms of quartiles, but used the term hinges, 
to eliminate ambiguity. There are a number 
of different ways of defining the 1st and 3rd 

quartiles, which mark the 25th and 75th % of 
the cumulative frequency distribution. 
Hinges are simply the medians of the lower 
and upper half of the data points. Whiskers 
extend to the adjacent values, which are 
actual data outside the IQR but within 1.5 
IQR’s from the median. Points more than 
1.5 IQR’s from the IQR are outliers. Points 
more than 3 IQR’s from the box are 
extreme outliers. See also 
http://mathworld.wolfram.com/Box-and-
WhiskerPlot.html 

Brown-Forsythe test A test for equal variance 
uses test using an ANOVA on the absolute 
deviation from group medians (Available in 
SPSS Oneway). Cf., Levene’s test. 

Buffon’s needle A problem in geometric 

Figure 1.A graphical display showing how 
to identify the the Box-Cox transformation 
parameter, ë , with data from Draper & 

Smith.  is plotted vs ë. A horizontal 

line is drawn 1.92 units below the maximum 
likelihood value to find the lower and upper 
confidence limits for ë (0.01 and 1.05 here). 
ë =0.5 indicates that a /Y transform is 
appropriate, but the 95% CI includes ë = 1, 
indicating no transformation of Y. The 95% 
CI does not include ë = 0, indicating the ln 
transform is not appropriate. This analysis 
was performed with an SPSS macro on 
benthic infauna data from MA Bay fit to an 
equal means general linear model. 

probability (http://www.mste.uiuc.edu/reese/buffon/buffon.html) 

Figure 2. SPSS boxplots from Application guide Figure 2.7 

http://mathworld.wolfram.com/Box-and-WhiskerPlot.html
http://mathworld.wolfram.com/Box-and-WhiskerPlot.html
http://mathworld.wolfram.com/Box-and-WhiskerPlot.html
http://www.mste.uiuc.edu/reese/buffon/buffon.html
IT
Stamp
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Canonical correlation analysis 
Canonical correspondence analysis cf., redundancy analysis 
Capture-recapture experiment 
CAR Conditional autoregression model cf., SAR 
Cauchy distribution 
Causation 
Census cf., quota sampling, survey design 
Central Limit Theorem Discovered by Laplace (1811) [see Stigler 1986, p. 146] See this brief 

synopsis: http://mathworld.wolfram.com/CentralLimitTheorem.html 
Chain Suppose G = (V, E) is a graph: A chain  in G is a sequence u ,e ,u ,e ,...,u ,e ,ut+1, where1 1 2 2 t t

t>0, so that each u  is a member of V and each e  is a member of E and e  is always the i i i

edge {u ,u }. The chain is usually written u ,u ,...,u ,u .i i+1 1 2 t t+1 

Change score analysis As Campbell & Kenny (1999) discuss, there are several ways to 
measure the effect of an intervention, say a change in test scores as the result of a change 
in teaching method: 1) The outcomes can be compared directly, 2) Change score analysis 
in which the pretest is subtracted from the post test, 3) Regressing the post test score on 
the pre test score (this can create an artifact). 

Chao1 A diversity index to estimate species richness. Reviewed by Hughes et al. (2001) and 
Colwell & Coddington (1994) Cf., ACE 

Chebyshev’s inequality (Hogg & Tanis 1997) If the random variable X has a finite mean ì and 
finite variance ó2, then for every k $1, 

Chi square distribution 
Chi-squared statistic, invented by Pearson in 1900 (Stigler 1986, p. 348) 
Climate field reconstuction CFR Approach to reconstructing a target large-scale climate field 

from predictors employing multivariate regression methods. CFR methods have been 
applied both to filling spatial gaps in early instrumental climate data sets, and to the 
problem of reconstructing past climate patterns from ‘climate proxy’ data. 
http://www.realclimate.org/index.php?p=29 

Cluster effect Replicate samples are not independent due to samples being collected in 
subgroups such as pigs in a litter (Ramsey & Schafer 2002 p. 62) 

Cluster sampling 
Multistage cluster sampling 

http://mathworld.wolfram.com/CentralLimitTheorem.html
http://www.realclimate.org/index.php?p=29
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2Coefficient of determination R  See R squared 
Coefficient of multiple determination the amount of variation in a response variable explained 

by a regression with more than one explanatory variable 
Coefficient of variation The standard deviation, s, divided by the mean. 
Collinearity see multicollinearity 
Combinations The number of combinations of n objects taken r at a time is 

Combinatorics 
Complement Let A be any event defined on a sample space S. The complement of A, written Ac 

or A’, is the event consisting of all the outcomes of S other than those contained in A. 
(Larsen & Marx 2001, Definition 2.2.10) Concordant 

Conditional independence 
Conditional probability The symbol P(A|B) — read “the probability of A given B”--- is 

used to denote a conditional probability. Specifically (P|A) refers to the probability that 
A will occur given that B has already occurred. 

Confidence interval Kendall & Stuart (1979, p. 199) state that the ideas of confidence interval 
estimation are due to Neyman, especially Neyman (1937). 

Confidence limits 
for a proportion 

(19)


Confounding variables A variable related both to group membership and to the outcome. Its 
presence makes it hard to establish the outcome as being a direct consequence of group 
membership.” Ramsey & Schafer 1997. A confounding variable has no relation to the 
response, but an effect modifier does. 

Consistent estimator see estimators 
Contingency table 
Cook’s D A diagnostic statistic for outliers that matter in regression. Essentially, the change in 

regression parameters resulting from the deletion of individual cases. 
Corner test 
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Correlation Introduced by Galton (1888) (Stigler, 1986, p. 297) The correlation is a 
standardized form of covariance obtained by dividing the covariance of two variables by 
the product of the standard deviations of x and y. [cf., Pearson’s r, Spearman’s ñ, 
Kendall’s ô] 
biserial correlation coefficient the correlation between an artificial dichotomy (made by 

imposing a cut-point on a “continuous” variable) and a “continuous” variable 
[Burrill on sci.stat.edu] 

part correlation From SPSS regression user’s guide. The correlation between the 
dependent variable and an independent variable when the linear effects of the 
other independent variables in the model have been removed from the 
independent variable. It is related to the change in R-squared when a variable is 
added to an equation. Sometimes called the semipartial correlation. 

partial correlation From SPSS regression user’s guide. The correlation that remains 
between two variables after removing the correlation that is due to their mutual 
association with the other variables. The correlation between the dependent 
variable and an independent variable when the linear effects of the other 
independent variables in the model have been removed from both. 

point biserial correlation the correlation between a dichotomy and a 
quasi-continuous variable [Burrill], or “The 
product-moment correlation between a dichotomous 
correlation and a continuous (scale) variable.” Cohen et al. 
(2003) 

polychoric correlation “This measure of association is based on the assumption that the 
ordered, categorical variables of the frequency table have an underlying bivariate 
normal distribution. For 2 ×2 tables, the polychoric correlation is also known as 
the tetrachoric correlation. ...the polychoric correlation coefficient is the 
maximum likelihood estimate of the product-moment correlation between the 
normal variables, estimating thresholds from the observed table frequencies. The 
range of the polychoric correlation is from -1 to 1.” 
http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap28/sect20. 
htm The tetrachoric correlation is a special case of the polychoric. 
http://ourworld.compuserve.com/homepages/jsuebersax/tetra.htm 

Phi coefficient: correlation between two dichotomies 
tetrachoric correlation coefficient Used when both variables are dichotomies which are 

assumed to represent underlying bivariate normal distributions 
http://www2.chass.ncsu.edu/garson/pa765/correl.htm#tetrachoric and 
http://ourworld.compuserve.com/homepages/jsuebersax/tetra.htm 

Correspondence analysis, also known are reciprocal averaging. A form of principal 
components analysis designed to partition and display the variation of a chi-square 
metric. There are at least 5 different ways of scaling the displays (see Greenacre 1984, 
Legendre & Gallagher 2001[especially notes to Gallagher’s Matlab programs that 
accompany the paper]) 

Countably infinite (Larsen & Marx 2001, p 37 footnote). A set of outcomes is countably 
infinite if it can be put in one-to-one correspondence with the positive integers. 

http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap28/sect20.htm
http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap28/sect20.htm
http://ourworld.compuserve.com/homepages/jsuebersax/tetra.htm
http://www2.chass.ncsu.edu/garson/pa765/correl.htm#tetrachoric
http://ourworld.compuserve.com/homepages/jsuebersax/tetra.htm
http://www.es.umb.edu/faculty/edg/files/edgwebp.htm#LegGallMat6
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Covariance a measure of association between two variables; covariance is the mean of the cross 
products of the centered data. It can also be defined as the expected value of the sum of 
cross products between two variables expressed as deviations from their respective mean. 
The covariance between z-transformed variables is also known as the correlation. 

Cox proportional hazard model See Cox regression 
Cox regression “Cox regression offers the possibility of a multivariate comparison of hazard 

rates (Hazard ratios). However, this procedure does not estimate a “baseline rate”; it 
only provides information whether this ‘unknown’ rate is influenced in a positive or a 
negative way by the independent variable(s) (or covariates).” 
http://www.lrz-muenchen.de/~wlm/wlmscox.htm 
From the SPSS help file: “Like Life Tables and Kaplan-Meier survival analysis, Cox 
Regression is a method for modeling time-to-event data in the presence of censored 
cases. However, Cox Regression allows you to include predictor variables (covariates) in 
your models. For example, you could construct a model of length of employment based 
on educational level and job category. Cox Regression will handle the censored cases 
correctly, and it will provide estimated coefficients for each of the covariates, allowing 
you to assess the impact of multiple covariates in the same model. You can also use Cox 
Regression to examine the effect of continuous covariates.” See also: 
http://www.statsoft.com/textbook/stsurvan.html 

Craps The most popular game played only with dice. The shooter makes a bet, called the center 
bet, and other players ‘fade’ the bet or bet against the shooter. The shooter rolls a pair of 
dice. If the sum of the dice is 7 or 11, called a natural, the shooter wins immediately, if 
2, 3, or 12 is rolled, called craps, the shooter immediately loses. If the shooter rolls a 4, 
5, 6, 8, 9, or 10, that number becomes his point. He rolls the dice again until he shoots 
the same number again, called making one’s point or he rolls a seven or craps out or 
sevens out. There are dozens of side bets that can be made on the eventual outcome or 
the outcome of a single roll. In a casino, all bets are against the house with bets being 
placed on a craps table (See Fig. 3) c.f. odds 

Figure 3. Craps table with odds, from Wikipedia. Note that odds for 
rolling seven on the next roll, 5 for 1, equals 4-to-1 odds. 

http://www.lrz-muenchen.de/~wlm/wlmscox.htm
http://www.statsoft.com/textbook/stsurvan.html
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Critical region Hogg & Tanis (1977, p. 255). The critical region C is the set of points in the 
sample space which leads to the rejection of the null hypothesis  H . The rejection region o

for a null hypothesis is called the critical region and the cutoff is called the critical 
value. These concepts are associated with the Neyman-Pearson school of statistical 
inference cf., test statistic 

Crossover design Each subject receives more than one treatment level, and the order of the 
treatment is usually randomly assigned. Crossover designs can be analyzed with either 
univariate or multivariate repeated measures analyses with treatment order as a between 
subject factor. Cochran & Cox (1957, p. 127-142) describe modifications of Latin 
Square analysis appropriate for several different types of crossover design (using cow 
milk production as the response and diet as the treatment factor). Neter et al. (1996, p. 
1225) refer to crossover designs as latin square changeover designs, ‘often useful when a 
latin square is to be used in a repeated measures study to balance the order positions of 
treatments, yet more subjects are required than called for by a single lain square.’ Neter 
et al. (1996) provide the model and expected mean square ANOVA table. 

... a relatively simple model can be developed ... ñi  denotes the 
effect of the ith treatment order pattern, êj  denotes the effect of the 
jth order position, ôk  denotes the effect of the kth treatment, and 
çm(I) denotes the effect of subject m which is nested within the ith 
treatment order pattern: 

Neter et. al (1996, p. 1226) show how 
to test a crossover design with an 
ANOVA model to distinguish 
treatment, order and pattern effects (see 
Figure 4). 

Dallal 
(http://www.tufts.edu/~gdallal/crosso 
vr.htm) reviews the strengths and 
limitations of crossover designs. The 
increased precision of crossover design, 
due to each subject serving as its own 
control, is vitiated by the need to have 
subjects participate a longer period of time and the need to account for carryover effects. 
Mead (1988, p 197), like Neter et al. (1996) describes crossover experiments as a form 

Figure 4. Table 30.09 showing the ANOVA 
mean squares corresponding to the model 
shown in the previous equation. 

http://www.tufts.edu/~gdallal/crossovr.htm
http://www.tufts.edu/~gdallal/crossovr.htm
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of Latin square with time as a blocking factor. Crossover designs allow a tremendous 
gain in precision by reducing the effects of among patient variability while also requiring 
fewer subjects than completely randomized designs to attain similar relative power 
efficiency. Mead (1988, p 198) discusses the difficulty in relevance, 

The difficulty with the cross-over design is that the conclusions are 
appropirate to unis similar to those in the experiment; that is , to subjects 
for a short time period in the context of a sequence of different treatments. 
We have to ask if the observed difference between two treatments would 
be expected to be the same if a treatment is applied consistently to each 
subject to which it is allocated. This is a problem of interpretation of 
results from experiment to subsequent use, and it is a problem which must 
be considered in all experiments. It is particularly acute in cross-over 
designs, because the experiment is so different from subsequent use. After 
all, no farmer is going to continually swap the diets for his cattle! 

Data mining Looking for pattern in gigantic datasets 
Degrees of freedom The number of true replicates minus the number of model parameters that 

must be estimated from the data. Stigler (1986, p. 348) states that the term degrees of 
freedom was. not formally introduced until 1922 when Fisher introduced the term. Here 
is a pdf of Walker (1940), describing the history and geometric interpretation: 
http://courses.ncssm.edu/math/Stat_Inst/PDFS/DFWalker.pdf 

DeMorgan’s Laws (Larsen & Marx 2001, p. 29) Let A and B be any two events. The 
complement of their intersection is the union of their complements: 

the complement of their union is the intersection of their complements: 

Deviance Calculated from the log likelihood statistic in genarlized linear models. Change in 
deviance can be used to test the goodness of fit of a generalized linear model (with the 
chi-square distribution) and the change in deviance permits a test between full & reduced 
hierarchical generalized linear models. Agresti (1996, p 96): Let LM denate the 
maximized log-likelihood value for the model of interest. Let L  denote the maximized S

log-likelihood value for the moxt complex midel, which has a separate parameter at each 
explanatory setting: that model is said to be saturated. The deviance of a model is defined 
to be: Deviance = -2(L  - L ). M S 

DFFITS 
Discriminant analysis 
Disjoint 
Distributions 

beta

binomial

bivariate normal

Cauchy

chi-square


http://courses.ncssm.edu/math/Stat_Inst/PDFS/DFWalker.pdf
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empirical

exponential

F

gamma

geometric

Gompertz

hypergeometric

lognormal

multinomial

negative binomial

normal

Poisson

posterior

Student’s t

Weibull


Doubly multivariate designs A form of profile analysis in which several different response 
variables are measured at several different times (Tabachnick & Fidell 2001, p 423) 

Duncan’s test A multiple comparisons test 
Dummy variables Also called indicator variables. Variables made up of zeros and ones. 

Dummy variables play a key role in ANOVA analysis using regression. A discrete (or 
categorical) variable with 8 levels can be coded for with 8 dummy variables. In least 
squares regression, one of these dummy variables is left out of the regression equation 
and becomes the reference level. There are two common ways to code dummy variables 
for regression, the first using 0's and 1's and the second using 0's, 1's and -1's. The former 
approach is the most common. 

Dunn’s test A multiple comparison procedure [MCP] “The Dunn multiple comparison 
procedure is based on the use of the t distribution with C comparisons that are planned. 
Not only do you know the number of comparisons before the research is done, you also 
know which comparisons will be computed.” Toothaker (1993, p. 31) 

Dunnet’s t test A posteriori comparison of control vs. treatments.

Durbin-Watson test A test for serial correlation

e (mathematical constant) http://www.answers.com/topic/e-mathematical-constant, cf.,


natural logarithms 
Ecological fallacy [Ecological inference problem] Error in predicting individual behavior 

from aggregate data. Introduced by Robinson (1950) and perhaps solved by King (1997). 
King describes the problem as often involving trying to estimate the cell frequencies of 
an r x c contingency table, knowing only the marginal totals. The problem cf., Simpson’s 
paradox 

Edge	 In a graph, the line connecting two vertices. It can be represented as an unordered pair 
of vertices {u,v}. If G is the matrix representation of the graph, there is an edge 
connecting two vertices u and v if the Guv and Gvu  elements are 1. 

http://www.answers.com/topic/e-mathematical-constant
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E(S ) (Sanders 1968, Hurlbert 1971 ) Hurlbert-Sanders expected number of species E(S ). n n

Hurlbert, using formulae for the hypergeometric probability distribution, corrected the 
algorithm described by Sanders for estimating the number of species found in a random 
subsample of size n from a sample. 

Effect modication A factor, Z, is said to be an effect modifier of a relationship between a risk 
factor, X, and an outcome measure, Y, if the strength of the relationship between the risk 
factor, X, and the outcome, Y, varies among the levels of Z. A factor, Z, is said to 
confound a relationship between a risk factor, X, and an outcome, Y, if it is not an effect 
modifier and the unadjusted strength of the relationship between X and Y differs from 
the common strength of the relationship between X and Y for each level of Z. More 
complicated definitions allow for a factor to be both an effect modifier and a 
counfounder. If Z is an effect modifier, then it is important to report the strength of the 
X-Y relationship for specific values of Z. If the strength of the X-Y relationship does not 
vary greatly among the levels of Z, it may not be important to account for the effect 
modification. If Z is a confounder, then it is common to report both the strength of the 
unadjusted X-Y relationship and the strength of the adjusted X-Y relationship. If the 
adjusted and unadjusted strengths do not differ greatly, then it may not be important to 
report both.... “Effect modification: ... The effect of High dose cyclosporin (cs) on 
transplant failure is modified by type of transplant.” “Confounding: The effect of 
treatment on patient survival is confounded by age.” 
http://www-personal.umich.edu/~bobwolfe/560/review/kkm13confoundeffectmodify. 
txt 
Cf., mediation 

Efficient estimator see Estimators 
EM algorithm expectation-maximization (EM) algorithm, cf., maximum likelihood 

http://www.mathdaily.com/lessons/Expectation-maximization_algorithm 
EMAP EPA’s Environmental monitoring and assessment program 

http://www-personal.umich.edu/~bobwolfe/560/review/kkm13confoundeffectmodify.txt
http://www-personal.umich.edu/~bobwolfe/560/review/kkm13confoundeffectmodify.txt
http://www.mathdaily.com/lessons/Expectation-maximization_algorithm
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Empirical distribution function Hogg & Tanis (1977, p86)  Let x , x , … , x  denote the 1 2 n

observed values of the random sample X , X , … , X  from a distribution. 1 2 n

Let N({x :  i xi # x}) equal the number of these observed values that are less than or equal 
to x. Then the function 

defined for each real number x, is called the empirical distribution function. 

Empirical orthogonal function analysis (EOF) A modification of principal components 
analysis that is widely used in physical oceanography & meteorology. Ramsey & 
Schafer (2002 p. 519-520) provide a too-brief description. Spatial pattern tied to a 
particular mode of time/space variance in a spatiotemporal data set (see also Principal 
Components Analysis).http://www.realclimate.org/index.php?p=25 

Empirical rule Larsen & Marx 
Ergodic Markov chain A Markov chain is called ergodic if its transition digraph is strongly 

connected (i.e., every state can reach every other state). The chain is a regular ergodic 
Markov chain if there is a number k such that every state can reach every other state in 
exactly k steps (Roberts 1976, 289-290). A Markov chain is regular if and only if it is 
possible to be in any state after some number N of steps, no matter what the starting 
state, That is, if and only if PN has no zero entries for some N (Kemeny & Snell, 1976). 
Gondran & Minoux (1984, p. 20) provide a graph-theoretic definition. Each Markov 
chain can be associated with a transition graph which consists of N vertices 
corresponding to the states, two vertices i and j being linked by an arc (i,j) if and only if 
P >0. If the transition graph is connected and not periodic (i.e., the largest common ij

factor of the lengths of all the circuits passing through a vertex equals 1). If G  is the R

reduced graph and a strong component has outdegree greater than zero, then that 
component is a transient subset of the graph. If the outdegree of a strong component is 0, 
then that strong component is a recurrent (ergodic) subset. If the graph is not periodic 
and contains only 1 recurrent (ergodic) class (i.e., the reduced graph is strongly 
connected), then the system is completely ergodic. 

Error 
Estimate A statistic used as a guess for the value of a parameter. Estimates can be 

calculated, but parameters remain unknown (Ramsey & Schafer 1997, p. 20) 

http://www.realclimate.org/index.php?p=25
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Estimators This section is from Harman (1976). 

consistent estimator An estimator  is said to be consistent if it converges (in a 

probabilistic sense) to the true parameter as the sample increases without limit, 

i.e., . 

Hogg & Tanis (1977 Definition 7.5-2)  The statistic Y =u (X , X , …, X ) is a consistent 1 2 n

estimator of è if, for each positive number å, 

efficient estimator An estimator is said to be efficient if it has the smallest limiting 
variance. When an estimator is efficient it is also consistent. 

minimum variance unbiased estimator Given a choice between two unbiased 
estimators, the one with minimum variance is preferred. For example, Draper & 
Smith (1998) note that while OLS and WLS regression provide unbiased 
estimators of the regression parameters, the variance of the WLS estimators will 
be lower if the variance of the regression areas are heteroscedastic. 

sufficient estimator An estimator is said to be sufficient if it utilizes all the information 
in the sample concerning the parameter. 

unbiased estimator If the expected value of the estimator is the true parameter, i.e., 

, then the estimator is unbiased. 

“While it is of some advantage to devise an unbiased estimate, it 
is not a very critical requirement. The method of maximum 
likelihood is a well established and popular statistical method for 
estimating the unknown population parameters because such 
estimators satisfy the first three of the above standards. Not all 
parameters have sufficient estimators, but if one exists the 
maximum likelihood estimator is such a sufficient estimator 
(Mood and Graybill 1963, p. 185). However, a maximum-
likelihood estimator will generally not be unbiased. (By getting 
the expected value of such an estimator, an unbiased statistic can 
be derived). This method yields values of the estimators which 
maximize the likelihood function of a sample.” Harman (1967, p. 
212-213) 

Expected value Hogg & Tanis (1977, p 53) If f(x) is the probability density function of 
the random variable X of the discrete type with space R and if the summation 

exists, then the sum is called the mathematical expectation or the expected value of the 
function u(x), and it is denoted by E[u(X)]. That is, 
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Theorem When it exists, mathematical expectation E satisfies the following properties:

i) If c is a constant E(c)=c, ii) If c is a constant and u is a function, E[cu(X)]=cE[u(X)],

iii) If c1  and c2  are constants and u1  and u2  are functions, then

E[c u (X)+c u (X) = c E[u (X)] + c E[u (X)], and
1 1 2 2  1 1  2 2

Experiment The fundamental difference between a survey (observational study, census) and 
an experiment is that the sampling units in an experiment can be regarded as being drawn 
from an infinite population: 
“The distinction between the design of experiments and the design of sample surveys is 
fairly clear-cut, and may be expressed by saying that in surveys we make observations on 
a sample taken from a finite population of individuals, whereas in experiments we make 
observations which are in principle generated by a hypothetical infinite population, in 
exactly the same way that the tosses of a coin are. Of course, we may sometimes 
experiment on the members of a sample resulting from a survey, or even make a sample 
survey of the results of an (extensive) experiment, but the essential distinction between 
the two fields should be clear.” Kendall & Stuart 1979 
“By experiment we will mean any procedure that (1) can be repeated, theoretically, an 
infinite number of times; and (2) has a well-defined set of possible outcomes” 
(Larsen & Marx 2001 p. 21) 
“A cornerstone of the scientific process is the experiment. Ecologists in particular use a 
wide variety of types of experiments. We use the term “experiment” here in its broadest 
sense: a test of an idea. Ecological experiments can be classified into three broad types: 
manipulative, natural, and observational. Manipulative, or controlled, experiments are 
what most of us think of as experiments: A person manipulates the world in some way 
and looks for a pattern in the response..... Natural experiments are “manipulations” 
caused by some natural occurrence..... Observational experiments consist of the 
systematic study of natural variation.” Gurevitch, J., S. M. Scheiner and G. A. Fox. 2002. 
The Ecology of Plants. Sinauer Associates, Sunderland, Massachusetts. 

Experimental design cf., orthogonal arrays 
Experimentwise error (or experiment-wise or family-wise error) The error associated with 

rejecting one or more true null hypotheses in an experiment. If alpha [á] is the 
probability of Type I error for a single test and n tests are performed on the results of 

the experiment, then . For example, the 

experimentwise error level if each of 10 independent tests is performed at alpha = 0.05 is 
40.1%. Various multiple comparisons tests have been designed, some of which control 
for experimentwise alpha level. Family-wise error rate. 

Explanatory variable A variable used to predict the value of a response variable, usually in a 
regression model. Sometimes called an independent variable, but this is a poor term, 
since these variables are rarely independent of the response variable or other explanatory 
variables. cf., response variable 

Exponential distribution Waiting times for a process that has Poisson distributed rates 
http://mathworld.wolfram.com/ExponentialDistribution.html 

http://mathworld.wolfram.com/ExponentialDistribution.html
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Extra sum of squares principle http://www.tufts.edu/~gdallal/extra.htm 
False positive See sensitivity 
F distribution named by George Snedecor in honor of R. A. Fisher 
F-test A ratio of variances or mean squares with expected value of unity, tested with the F 

distribution given numerator and denominator degrees of freedom. 
Factor Analysis (FA) A term coined by Spearman (1904). The goal of PCA is to account for as 

much variance in the data as possible, whereas the goal of FA is to account for the 
covariance between descriptors (variables). Factor analysis assumes that the observed 
descriptors are linear combinations of hypothetical underlying variables (or factors). 
Factor analysis can be divided into two types: Exploratory factor analysis and 
Confirmatory factor analysis. Factor Analysis is primarily directed towards the analysis 
of covariation among descriptors, so that with most models, the relative positions of 
samples can not be readily determined, but methods do exist to estimate the orientation 
of samples (termed factor scales or factor scores) in factor space. In confirmatory 
factor analysis, specific expectations about the number of factors and their loadings can 
be tested. 
Confirmatory Factor Analysis factor analysis in which specific expectations 

regarding the number of factors and their loadings are tested on sample data. 
(Kim & Mueller (1978), Legendre & Legendre (1998)) 

Exploratory Factor Analysis no a priori specification of the number of factors or 
loadings 

Factor score R mode: the estimate for a case on an underlying factor formed by a linear 
combination of observed variables. Q mode: the estimate for a variable on an 
underlying factor formed by a linear combination of observed cases. 

Factor loadings The elements of the eigenvectors are also the weights or loadings of the 
various original descriptors. If the eigenvectors have been normalized to unit 
length (i.e., the sum of the squared loadings for a variable across factors equals 
1.0), then the elements of the eigenvector matrix (the loadings) are direction 
cosines of the angles between the original descriptors and the principal axes. So 
that if the element of the U vector (the loading for a variable) is .8944, the angle 

ois cos-1 (.8944)=arc cos(.8944)=26  (Legendre and Legendre 1983). The 
principal component axis is rotated 26º from the original axis. For this reason, the 
factor loadings are sometimes called directional cosines. 

oblique factor rotation In orthogonal rotations the causal underlying factors are not 
permitted to be correlated, while in oblique rotations the factors can be rotated. 
The geometric relationships among variables in ordination 2-space is greatly 
altered with oblique rotations. For example, one can no longer assume that 
descriptors plotted at right angles relative to the origin are uncorrelated. The main 
virtue of oblique rotations is in naming axes or factors and using factors as 
explanations rather than as descriptions. Legendre & Legendre (1983; Fig 8.13; 
p. 308) describe the relationship between oblique factor rotations and path 
analysis. Oblique rotations may be needed when common factors are correlated. 

orthogonal factors factors that are not correlated with each other. 
Factorial n! is pronounced “n factorial” 

http://www.tufts.edu/~gdallal/extra.htm
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In calculations with large n, the natural log of the gamma distribution (Ã) is usually 
used: nfactorial=exp(gammaln(n+1)) 

Family-wise error The error associated with rejecting one or more true null hypotheses in an 

observation study or experiment. If alpha ( ) is the probability of Type I error for a 

single test and n independent tests are performed on the results of the experiment, then 

. For example, the experimentwise error level if each of 10 

independent tests is performed at alpha = 0.05 is 40.1%. Various multiple comparisons 
tests have been designed, some of which control for family-wise or experimentwise 
alpha level, synonymous with Experimentwise error rate. 

Fixed effects cf., random effects 
Fixed point probability vector (= stationary vector, Limiting vector) 

The left eigenvector (if the transition matrix is in “from rows to columns form”) 
associated with the dominant eigenvalue of an ergodic Markov chain process. The 
dominant eigenvalue is 1.0 for ergodic Markov chains. 

Pierre de Fermat (1601-1665) With Pascal, the father of the mathematical theory of 
probability (Bell 1937, p. 87). 

Fisher, Sir Ronald A., discoverer of maximum likelihood, discriminant 
analysis (with Burt), and ANOVA. His Genetics of Natural 
Populations laid the foundation for quantitative population 
genetics. His statistics for experimenters laid the foundation for 
experimental design. Fisher is one of the fathers of the 
frequentist school of statistics, the others being Jerzy Neyman 
and Egon Pearson. Fisher introduced many of the test statistics 
and advocated the use of p values in judging the significance of 
results. Neyman & Pearson introduced critical values and 
confidence limits. The frequentist philosophy of statistics differs Figure 5. RA Fisher 
from the Bayesian philosophy of statistics. from BMJ 

Fisher’s exact test A test for 2x2 tables, designed for hypergeometric 
distributions, but widely applicable to other 2x2 problems. 

Fisher’s sign test	 A distribution-free test for paired data, analogous to the paired t test. The 
number of positive (or negative) differences is compared to expectations 
from the binomial distribution. 

Fligner-Policello test A rank-based test for differences in central tendency for two independent 
samples with unequal variances. Note, that the Wilcoxon rank sum test assumes equal 
variances. On Matlab Central file exchange, Trujillo-Ortiz et al. have posted fptest.m, 
which implements the Fligner & Policello (1981) test, which is described in Hollander 
& Wolfe (1999). Cf., Behrens-Fisher problem, Wilcoxon rank-sum test 

Forward selection One of many automatic selection procedures in multivariate regression. The 
explanatory variable with the highest correlation with the response variable is entered in 
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the equation first, and the explanatory variable with the highest partial correlation with 
the response variable is entered next, and so on. 

Friedman’s test A non-parametric 2-way ANOVA, specifically designed for repeated measures 
problems. cf., Kruskal-Wallis ANOVA 

Frequentist theory of statistical inference This is the traditional model of statistical inference, 
developed in the 20th century by RA Fisher and Neyman & Pearson. Statistical tests are 
performed with an assumed probability model. The p value is the probability that an 
observed even or one more extreme would have been observed if the assumed probability 
model and associated null hypothesis was true. Neyman & Pearson introduced the use of 
critical values and confidence limits for describing the results of statistical tests cf., 
Bayesian inference 

Fundamental matrix For an absorbing Markov chain, N is the fundamental matrix and is 
found as the inverse of the identity matrix minus the transitions among the non-absorbing 
states (the Q submatrix): N = (I-Q)-1. See Kemeny & Snell 1976 

Galton, Francis (1822-1911) Darwin’s brother in law who coined the term regression in the 
context of describing regression to the mean 
http://en.wikipedia.org/wiki/Francis_Galton 

Gamma A measure of association “The estimator of gamma is based only on the number of 
concordant and discordant pairs of observations. It ignores tied pairs (that is, pairs of 
observations that have equal values of X or equal values of Y). Gamma is appropriate 
only when both variables lie on an ordinal scale. It has the range . If the two variables are 
independent, then the estimator of gamma tends to be close to zero.” 
http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap28/sect20.htm 

Gamma distribution 
Gamma function 

GAMS Generalized additive models 
Gauss, Carl Friedrich Arguably the most influential mathematician of all time, but Stigler argues 

that he should not be given credit for the normal curve, which is sometimes called the 
Gaussian curve cf., Stigler’s law of eponymy 

Gaussian curve see normal curve 
Generalized additive models (GAMS) According to Leathwick & Austin (2001, p 2562), 

GAMS are an extension of generalized linear models ‘ which offer a more realistic 
approach to the analysis of ecological data in that complex relationships between 
preditor and response variables can be accommodated in a nonparametric manner 
through use of scatter-plot smoothers, rather than using more inflexible parametric terms 
as in GLM’s.’ 

http://en.wikipedia.org/wiki/Francis_Galton
http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap28/sect20.htm
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Generalized least squares (GLS) The general linear model is 

where y is an n x 1 matrix of observations, â is a p x 1 matrix of regression parameters, X 
is an n x p matrix of explanatory variables, and å is an n x 1 vector of residuals. General 
least squares modeling assumes that the errors are independently, identically, normally 

distributed (å -N(0,ó2 I) ), leading to the normal equation solution for â 

Generalized least squares permits a broader array of variance-covariance matrices for the 

error (å -N(0, ') ), where ' is a symmetric, positive-definite variance-covariance 
matrix. 

One simple form of generalized least squares analysis is weighted least squares 
regression. 

General linear model Regression, especially regression using indicator or ‘dummy’ 
variables for categorical explanatory variables is one form of the general linear model. 
McCulloch & Searle (2001, p. 1) describe the essence of the general linear model, 
“...the mean of each datum [is] taken as a linear combination of unknown parameters ..., 
and the data [are] deemed to have come from a normal distribution... The model is linear 
in the parameters, so ‘linearity’ also includes being of the form 

where the xs are known and there can be (and often are) more than 

two of them.” ANOVA is a subset of the general linear model and regression, and 
almost all ANOVA problems, can be analyzed as regression problems, although some 
problems (such as Model II ANOVA or mixed model ANOVA) are better handled as 
ANOVA problems since it is often difficult to determine the appropriate error term for 
testing hypotheses regarding random effects in a regression context. 

Generalized linear model “A Generalized Linear Model (GLM) is a probability model in which 
the mean of a response variable, or a function of the mean, is related to explanatory 
variables through a regression equation.” Ramsey & Schafer 2002 p 584 (or 1997 p. 
568) The data are not necessarily assumed to be normally distributed. Probit analysis 
(appropriate for types of survival data), tobit analysis (for censored data), and logistic 
regression (binary and binomial), and Poisson loglinear regression are regarded as types 
of generalized linear model. 
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Geometric distribution http://mathworld.wolfram.com/GeometricDistribution.html The 
probability function is 

Geometric series Sum of a geometric series, where 0 < x <1: 

or (from Abromowitz & Stegun, 1965) 

Note, Nahin (2002) solves several problems in probability, including ‘The Duelling 
Idiots’ problem of the title using the sum of convergent geometric series. Often, 
absorbing Markov chains can be used to model these problems. 

Gompertz distribution 
Goodness of fit 
Gosset, W. S. Developed Student’s t distribution in 1908 
GLM Generalized linear model 
GLS Generalized least squares 
Hazard rate, hazard ratios 
http://www.weibull.com/AccelTestWeb/proportional_hazards_model.htm 
Heteroscedasticity Unequal variance or unequal spread cf., homoscedasticty 
Homoscedasticity Equal variance or equal spread cf., heteroscedasticity 
Hotelling’s T2 A multivariate test for the difference in location. It is a generalization of the 

2univariate Student’s t test. SPSS prints Hotelling’s trace, which is T /(N-1).
Hurlbert’s E(S ) The expected number of species from a random draw of n individuals from a n

sample (Hurlbert 1971) 

http://mathworld.wolfram.com/GeometricDistribution.html
http://www.weibull.com/AccelTestWeb/proportional_hazards_model.htm
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Hypergeometric distribution 
Hypethetico-deductive method 
ICA Independent components analysis, used to solve ‘the cocktail party problem’ 

http://www.cis.hut.fi/projects/ica/cocktail/cocktail_en.cgi

http://www.cis.hut.fi/projects/ica/fastica/

See http://ica2001.ucsd.edu/index_files/pdfs/115-hundley.pdf


Independence (Larsen & Marx 2001, p. 70 Definition 2.7.1) Two events are said to be 
independent if and only if P(A 1 B) = P (A) @ P(B), otherwise A and B are dependent 
events. For more than two events: (Larsen & Marx Definition 2.7.2 ) Events A , A , …, 1 2

A  are said to be independent if for every set of indices i , i , …, i  between 1 and n, n 1 2 k

inclusive, 

Theorem from Hogg & Tanis (1977, p. 42) If A and B are independent events, then the 
following pairs of events are also independent: (i) A and B’, (ii) A’ and B, (iii) A’ and B’. 
[A’ is the complement of A] 

Independent trials process The outcome of the process is unaffected by earlier events. cf., 
Bernoulli trial. 

Inference An inference is a conclusion that patterns in the data are present in some broader 
context A statistical inference is an inference justified by a probability model linking the 
data to the broader context Ramsey & Schafer (1997) 

Inter-quartile range See boxplots 
Intersection (Definition 2.2.1 from Larsen & Marx 2001, p. 24) Let A and B be any two events 

defined over the same sample space S. Then 
! The intersection of A and B, written A 1 B, is the event whose outcomes belong 

to both A and B. 
! The union of A and B, written A c B, is the event whose outcomes belong to 

either A or B or both. 

http://www.cis.hut.fi/projects/ica/cocktail/cocktail_en.cgi
http://www.cis.hut.fi/projects/ica/fastica/
http://ica2001.ucsd.edu/index_files/pdfs/115-hundley.pdf
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Jackknife In a 1-sample bootstrap, 1 sample is dropped from a sample of n and the statistical 
test repeated. n samples produces n jackknifed samples. Usually, the value of the test 
statistic is subracted from the test statistic based on all n samples (with a scaling for 
sample size) to produce the Tukey jackknife pseudovalue cf., bootstrap 

Kaplan-Meier survival analysis Available as an SPSS advanced model 
(analyze\survival\kaplan-meier). From the SPSS help file: “There are many situations in 
which you would want to examine the distribution of times between two events, such as 
length of employment (time between being hired and leaving the company). However, 
this kind of data usually includes some censored cases. Censored cases are cases for 
which the second event isn’t recorded (for example, people still working for the company 
at the end of the study). The Kaplan-Meier procedure is a method of estimating time-to
event models in the presence of censored cases. The Kaplan-Meier model is based on 
estimating conditional probabilities at each time point when an event occurs and taking 
the product limit of those probabilities to estimate the survival rate at each point in 
time.” See also: http://www.statsoft.com/textbook/stsurvan.html 
http://www.cmh.edu/stats/model/survival/kaplan.asp cf., Cox regression 

Kendall’s ô (Kendall’s tau) The most non-parametric of correlation coefficients. The sign of 
the difference of all combinations of two observations in one vector of data are compared 
with observations holding the same positions in the 2nd list of data vector. If the signs in 
both sets are the same, the match is concordant. Kendall’s tau is the ratio of {concordant 
- discordant ranks} to total possible ranks. Using Kendall’s triangle, exact p values can 
be calculated if there are no tied ranks. Cf., Spearman’s ñ 

Kendall’s tau-b Stuart’s tau-c makes an adjustment for table size in addition to a correction for 
ties. Tau-c is appropriate only when both variables lie on an ordinal scale. 
http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap28/sect20.htm 

Kendall’s tau-c Kendall’s tau-b is similar to gamma except that tau-b uses a correction for ties. 
Tau-b is appropriate only when both variables lie on an ordinal scale. 
http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap28/sect20.htm 

Kolmogorov-Smirnov test A test of whether one cumulative frequency distribution (cfd) differs 
from another. A one-sample test compares a known cfd with an observed cfd. A two-
sample test compares two cfds. The test statistics is the maximum difference between 
cfds. 

Kruskal-Wallis test Nonparametric one-way ANOVA. This is a k-independent samples 
extension of Wilcoxon rank sum test cf., Friedman’s ANOVA 

Kurtosis The fourth moment about the mean (Larsen & Marx, 2001 p. 233). The peakedness 
of a distribution. a flat pdf is callyed platykurtic, while a peaked distribution is called 
leptokurtic. cf., skewness 

Lack of fit In a regression analysis with one explanatory factor, if there are true replicate 
observations at one or more values of the explanatory variable, then the residual variation 
from a simple least squares regression can be partitioned into pure error and lack of fit 
components (Ramsey & Schafer 1997, p. 212): 

(46) 

http://www.statsoft.com/textbook/stsurvan.html
http://www.cmh.edu/stats/model/survival/kaplan.asp
http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap28/sect20.htm
http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap28/sect20.htm
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The pure error sum of squares can be obtained by performing a one-way ANOVA to test 
for differences in means among replicated groups. This one-way ANOVA will also 
produce the among replicated means sum of squares. If there are n groups of replicated 
means, there are n-1 df for this among means SS. The lack of fit SS is the among means 
sum of squares minus the regression sum of squares (with 1 df). Therefor, the lack of fit 
MS has n-2 df, where n is the number of replicated groups. The Lack of Fit F-test uses 
the ratio of the Lack of Fit MS over the Pure error MS. The former measures the 
departure of the mean of replicated observations from the line and the latter the within 
group variation. Draper & Smith (1998) recommend performing a lack of fit F test and 
only pooling the two sources of residual variation into the regression error sum of 
squares if the lack of fit test is not significant (p>0.05). 

Laplace, Pierre Simon (1749-1827) Described the central limit theory 
Latent class analysis http://ourworld.compuserve.com/homepages/jsuebersax/index.htm or 

http://www2.chass.ncsu.edu/garson/pa765/latclass.htm 
Latent trait models for rater agreement 
http://ourworld.compuserve.com/homepages/jsuebersax/ltrait.htm 
Latent variables Unmeasured variables or factors estimated from measured variables and used 

in structural equation models 
Latin hypersquare sampling A Monte Carlo method used to assess the variance of 

model predictions cf., Monte Carlo method 
Latin squares A method of arranging experimental units in a 2-factor (or more rarely a 3- or 4

factor) ANOVA 
Least significant difference LSD Sometimes called Tukey’s LSD. A pair of means is tested 

using the ANOVA error mean square and df for testing differences among means. 
Contrasts tested with the LSD must be established a priori, because the test offers no 
protection against the inflation of Type I error due to multiple hypothesis testing. Indeed 
the LSD test is more powerful than the independent samples t test if there are more than 
2 groups. 

Least squares Adrien Marie Legendre (1805) clearly described the method of least squares 
(Stigler 1986, p. 13), an improvement of Laplace’s earlier work in minimizing the sum 
of absolute deviations: 

On the method of least squares 
In most investigations where the object is to deduce the most accurate 

possible result from observational measurements, we are led to a system of 
equations of the form: 

E = a + bx+ cy + fz + &c., 
in which a, b, c, f, &c. are known coefficients varying from one equation to the 
other, and x, y, z, &c. are unknown quantities, to be determined by the condition 
that each value of E is reduced either to zero or to a very small quantity … Of all 
the principles that can be proposed for this purpose, I think there is none more 
general, more exact, or easier to apply, than that which we have used in this 
work; it consists of making the sum of the squares of the errors a minimum. By 
this method, a kind of equilibrium is established among the errors which, since it 
prevents the extremes from dominating, is appropriate for revealing the state of 
the system which most nearly approaches the truth. 

http://ourworld.compuserve.com/homepages/jsuebersax/index.htm
http://www2.chass.ncsu.edu/garson/pa765/latclass.htm
http://ourworld.compuserve.com/homepages/jsuebersax/ltrait.htm
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… We see therefore, that the method of least squares reveals, in a manner of 
speaking, the center around which the results of observations arrange 
themselves, so that the deviations from the center are as small as possible.” 
(Adrien Marie Legendre, 1805). 
Legendre’s paper can be read in translation at: 
http://www.stat.ucla.edu/history/legendre.pdf 
Least squares regression Solving the regression model by minimizing the sum of 

squares of residuals of the response variable to the regression line.cf., regression 
Leibniz, Gottfried Wilhelm (1646-1716) (Larsen & Marx 2001 p 86) The 1666 treatise, 

“Dissertatio de arte cominatoria” was perhaps the first monograph written on 
combinatorics 

Levene’s test There are at least 4 different versions of Levene’s test for equality of variance, an 
assumption of general linear models (e.g., ANOVA, regression, 2-sample t tests). They 
are all ANOVAs of deviations from the mean (squared deviation from mean, squared 
deviation from median, absolute deviation from the mean or absolute deviation from the 
median). All test the equal-variance assumption in ANOVA or regression. SPSS 
calculates the Levene’s test based on absolute deviations from the group mean. A 
Brown-Forsythe test for equal variance performs an ANOVA on the absolute deviation 
from group medians. Cf., homoscedasticity, heteroscedasticity 

Leverage The deviation of an individual case from the range of explanatory variables. Cases 
with high leverage have the potential for being outliers, with outliers being more readily 
detected by Cook’s D. See http://www.j.org/v02/i05/pirls/node15.html 

Likelihood from Mathworld Likelihood is the hypothetical probability that an event that has 
already occurred would yield a specific outcome. The concept differs from that of a 
probability in that a probability refers to the occurrence of future events, while a 
likelihood refers to past events with known outcomes. Cf., Maximum likelihood 

Likelihood function invented by Fisher 1922 A definition from Mathworld: A likelihood 
function L(a) is the probability or probability density for the occurrence of a sample 
configuration , ..., given that the probability density with parameter a is known 

Likelihood ratio Hogg & Tanis 1977, p. 394 The likelihood ratio is the quotient 

where is the maximum of the likelihood function with respect to è when è 0ù and 

is the maximum likelihood function with respect to è when è 0 Ù. Cf., Maximum 

likelihood 
Linear combination An estimated value obtained by a linear equation in which the coefficients 

need not add to zero. If the sum of coefficients is zero, then the linear combination is, by 
definition, a linear contrast. The variance of a linear combination and contrast can be 
readily calculated using formulae for the propagation of error. See: 
http://www.itl.nist.gov/div898/handbook/prc/section4/prc426.htm 

http://www.stat.ucla.edu/history/legendre.pdf
http://www.jstatsoft.org/v02/i05/pirls/node15.html
http://mathworld.wolfram.com/Likelihood.html
http://mathworld.wolfram.com/LikelihoodFunction.html
http://www.itl.nist.gov/div898/handbook/prc/section4/prc426.htm
http:line.cf.
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Linear contrast A contrast is a linear combination of 2 or more factor level means with 
coefficients that sum to zero. Cf., linear combination, orthogonal contrast 
http://www.itl.nist.gov/div898/handbook/prc/section4/prc426.htm 

Log-linear model “Log-linear modeling is an analog to multiple regression for categorical 
variables. When used in contrast to log-linear regression models like logit and logistic 
regression, log-linear modeling refers to analysis of tables without necessarily specifying 
a dependent. Rather the focus is in accounting for the observed frequencies.” 
http://www2.chass.ncsu.edu/garson/pa765/logit.htm 

Logistic regression A form of generalized linear model, with the logit link function, 

There are several forms of logistic regression, including binary logistic regression 
(=bivariate logistic regression), with the response variable taking only two states (e.g., 
dead or alive), and binomial logistic regression with the response variable taking on 
discrete values along the interval (0,1). See 
http://www2.chass.ncsu.edu/garson/pa765/logistic.htm 

logit is the log odds function ln(p/(1-p)). Logits can be converted to probabilities, frequencies or 
proportions using p = 1-1/(1+Exp(Logits)), or p = exp(logits)/(1+exp(logits)) 

logit link function is used to convert probabilities or frequency data in logistic regression. 
logit transform If x ranges between 0 & 1, then log [(x)/(1-x)] often expands the tail of a 

distribution. Ramsey & Schafer (1997, 2002) apply this transform to percentage cover 
data (scaled to range from 0 to 1) and call it the regeneration ratio. 

Lognormal distribution 
Longitudinal data The same subjects or experimental units are followed through time. Often 

analyzed with repeated measures designs 
LSD Tukey’s Least significant difference is a test of means using the error mean square from 

the overall ANOVA as the estimate of pooled standard error. It does not protect against 
inflation of the experimentwise error. It is one of the least conservative of 20 or more 
multiple comparison tests. 

Mallow’s C p cf., Bayesian information content, AIC 
Mann-Whitney U Test Algebraically identical to Wilcoxon rank sum test 
Markov, Andrei Andreevich (1856-1922) 	 http://www-history.mcs.st-andre 

ws.ac.uk/Mathematicians/Marko 
v.html 

Markov chain  A stochastic model in which the future state of the system can 
be predicted from the probability matrix and the state of the system on 
the previous time step (see also absorbing Markov chain and ergodic 
Markov chain). Figure 6. A.A. 

Markov chain Monte Carlo (MCMC) A search method used to estimate Markov. 

model parameters. 
Markov property (process) A Markov process is defined as a stochastic process with the 

property for any set of n successive times (i.e., t <t <...<t ) one has 1 2 n 

P (y ,t |y ,t ;...;y ,t )=P (y ,t |y ,t ).	 (1.1)1|n-1 n n 1 1 n-1 n-1 1|1 n n n-1 n-1 

http://www.itl.nist.gov/div898/handbook/prc/section4/prc426.htm
http://www2.chass.ncsu.edu/garson/pa765/logit.htm
http://www2.chass.ncsu.edu/garson/pa765/logistic.htm
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Markov.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Markov.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Markov.html
IT
Stamp

IT
Stamp
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n n-1  at t ,In other words, the conditional probability density at t , given the value y n-1 

is uniquely determined and is not affected by any knowledge of the values at 
earlier times. P1|1 is called the transition probability. Van Kampen (1981, p. 76) 

Maxmium likelihood “The maximum likelihood estimate of a parameter is defined to be the 
parameter value for which the probability of the observed data takes its greatest value.” 
Agresti 1996, p. 9 From Mathworld: Maximum likelihood, also called the maximum 
likelihood method, is the procedure of finding the value of one or more parameters for a 
given statistic which makes the known likelihood distribution a maximum. The 
maximum likelihood estimate for a parameter ì is denoted . See: 

http://www.mathdaily.com/lessons/Maximum_likelihood and 
http://socserv.socsci.mcmaster.ca/jfox/Courses/SPIDA/MLE-basic-ideas.pdf 

Maximum likelihood estimator From Mathworld: A maximum likelihood estimator is a value 
of the parameter such that the likelihood function is a maximum. see estimators 

McNemar’s test A test of proportions in a 2 x 2 classification for repeated measures (paired) 
data. http://www.amstat.org/publications/jse/secure/v8n2/levin.cfm 

MDS Multidimensional scaling (sometimes called NMDS, for nonmetric multidimensional 
scaling). See http://forrest.psych.unc.edu/teaching/p208a/mds/mds.html 

Measurement scales Variables can be classified into nominal, ordinal, interval and ratio scales 
of measurement. Stevens (1951) and Roberts (1976) show that some mathematical 
operations require at least an interval or even ratio scale of measurment. For example, 
temperature on the Fahrenheit scale is an interval measure and the ratio of interval 
measurments is meaingless. Some procedures, like Factor Analysis, assume at least an 
interval scale of measurement. Vellman & Wilkinson (1993) review 40 years of research 
indicating that Stevens’ proscriptions may have been too severe, e.g., it is valid to 
calculate average GPA from an ordinal measure. 

Median The median is the sample item that is in the middle in magnitude, or if the average of 
the two middle items if the number of items is even. 

Mediation http://davidakenny.net/cm/mediate.htm Consider a variable X that is assumed 
to affect another variable Y. The variable X is called the initial variable and the variable 
that it causes or Y is called the outcome. In diagrammatic form, the unmediated model is 

The effect of X on Y may be mediated by a process or mediating variable M, and the 
variable X may still affect Y. The mediated model is 

http://mathworld.wolfram.com/MaximumLikelihood.html
http://www.mathdaily.com/lessons/Maximum_likelihood
http://socserv.socsci.mcmaster.ca/jfox/Courses/SPIDA/MLE-basic-ideas.pdf
http://mathworld.wolfram.com/MaximumLikelihoodEstimator.html
http://www.amstat.org/publications/jse/secure/v8n2/levin.cfm
http://forrest.psych.unc.edu/teaching/p208a/mds/mds.html
http://davidakenny.net/cm/mediate.htm


Handout 2 
Intro Prob & Statistics 
Terms P. 32 of 68 

The mediator has been called an intervening or process variable. Complete mediation is 
the case in which variable X no longer affects Y after M has been controlled and so path 
c’ is zero. Partial mediation is the case in which the path from X to Y is reduced in 
absolute size but is still different from zero when the mediator is controlled. When a 
mediational model involves latent constructs, structural equation modeling or SEM 
provides the basic data analysis strategy. If the mediational model involves only 
measured variables, however, the basic analysis approach is multiple regression or OLS. 
Regardless of which data analytic method is used, the steps necessary for testing 
mediation are the same. 
•	  Step 1: Show that the initial variable is correlated with the outcome. Use Y as the 

criterion variable in a regression equation and X as a predictor (estimate and test 
path c). This step establishes that there is an effect that may be mediated. 

•	 Step 2: Show that the initial variable is correlated with the mediator. Use M as the 
criterion variable in the regression equation and X as a predictor (estimate and 
test path a). This step essentially involves treating the mediator as if it were an 
outcome variable. 

•	 Step 3: Show that the mediator affects the outcome variable. Use Y as the 
criterion variable in a regression equation and X and M as predictors (estimate 
and test path b). It is not sufficient just to correlate the mediator with the 
outcome; the mediator and the outcome may be correlated because they are both 
caused by the initial variable X. Thus, the initial variable must be controlled in 
establishing the effect of the mediator on the outcome. 

•	 Step4: To establish that M completely mediates the X-Y relationship, the effect of 
X on Y controlling for M should be zero (estimate and test path c’). The effects in 
both Steps 3 and 4 are estimated in the same regression equation. 

See also http://www.public.asu.edu/~davidpm/ripl/mediate.htm 
Metaanalysis From Wikipedia A meta-analysis is a statistical practice of combining the results 

of a number of studies that address a set of related research hypotheses. The first 
meta-analysis was performed by Karl Pearson in 1904, in an attempt to overcome the 
problem of reduced statistical power in studies with small sample sizes; analyzing the 
results from a group of studies can allow more accurate estimation of effects ...Modern 
meta-analysis does more than just combine the effect sizes of a set of studies. It tests if 
the studies’ outcomes show more variation than the variation that is expected because of 
sampling different research participants. If that is the case, study characteristics such as 
measurement instrument used, population sampled, or aspects of the studies’ design are 
coded. These characteristics are then used as predictor variables to analyze the excess 
variation in the effect sizes. 

http://www.public.asu.edu/~davidpm/ripl/mediate.htm
http://en.wikipedia.org/wiki/Metaanalysis
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Metric A dissimilarity measure obeying the following four axioms, the last being the 
triangular inequality axiom (Legendre & Legendre 1983, p. 193): 

1) if a = b, D(a,b)=0 
2) if a � b, D(a,b)>0 
3) D(a,b)=D(b,a) 
4) D(a,b)+D(b,c)$D(a,c), as the sum of 2 sides of a triangle is 

necessarily equal to or larger than the third side (triangle inequality 
axiom) 

see also semimetric, Triangular inequality & ultrametric. 
Mill’s cannon of the difference J. S. Mill’s (1843) fifth cannon of experimental enquiry (The 

cannon of difference) “Whatever phenomenon varies in any manner whenever another 
phenomenon varies in some particular manner is either a cause or an effect of that 
phenomenon, or is connected with it through some fact of causation” Kendall & Stuart 
(1979) find two major problems with basing an experimental or sampling design on 
Mill’s 5th cannon: 1) the one-phenomenon (factor)-at-a-time approach does not work, and 
2) “We can never be quite sure that all the important, or even the most important, causal 
factors have been incorporated in the structure of the experiment. Some may be quite 
unknown; others although known, may wrongly be considered to be of minor importance 
and deliberately neglected. We always need to guard against the perversion of the 
inferences within an experiment by adventitious outside effects.” 

Mixed model (linear mixed model) Mixed models are either general linear models or 
generalized linear models which contain both fixed and random factors. Generalized 
mixed models are a subset of generalized linear models, which include logistic, probit & 
log-linear models, in which random and fixed effects can affect the response variable. 
Linear mixed models are particularly useful for longitudinal data, in which the same 
subjects are followed through time. All such repeated measures designs, including paired 
t-tests, can be regarded as a subset of mixed models.. The standard mixed model is of the 
form 

where, â contains population parameters describing average responses to external 
variables and  contains subject-specific parameters describing how the i’th subject 

deviates from the average population, and  is a vector of error components. The 

matrices are covariates. Mixed models, including those in SPSS, allow a 

variety of error structures including analyses of autocorrelated errors and other features 
of repeated measures designs. There are a number of different methods for estimating 
model parameters, including restricted maximum likelihood, penalized likelihood, 
Bayesian techniques, and simulated maximum likelihood. Adequacy of models involve 
likelihood tests, with penalties for fitted parameters. 

Minimum noise fraction (MNF) (or Maximum Noise Fraction) an eigendecomposition 
method used in satellite remote sensing. Examples: 
http://www.earthsat.com/geo/oil&gas/hydrocarbon_MNF.html or

http://www.eoc.csiro.au/hswww/oz_pi/svt_hilo/burke.pdf


http://www.earthsat.com/geo/oil&gas/hydrocarbon_MNF.html
http://www.eoc.csiro.au/hswww/oz_pi/svt_hilo/burke.pdf
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modus tollens The logical syllogism: “If A then B, not B implies not A” The modus tollens is 
the basis of Popper’s method of falsificationism. 

Monte Carlo method Any method, including bootstrap sampling, that uses randomly selected 
subsets of the data to estimate model parameters cf., bootstrap, permuation analysis 

Monty Hall Problem A contestant must choose one of three doors. Behind one door is a 
desirable prize and the other two contain goats. The contestant picks one door, and 
Monty Hall immediately opens one of the two remaining doors, revealing a goat. Monty 
then offers the remaining unopened door for the door you’ve chosen. Should you switch? 

Multicollinearity (Collinearity) In multiple regression, if there is a strong correlation 
among explanatory variables, neither the sign nor the magnitude of the coefficient can be 
trusted. Draper & Smith (1998, p. 369) provide the following description of 
multicollinearity: 

Suppose we wish to fit the model Y=Xâ + å, The solution 

would usually be sought [b=X\Y in Matlab]. However, if 

X’X is singular, we cannot perform the inversion and the normal 
equations do not have a unique solution. (An infinity of solutions exists 
instead). … at least one column of X is linearly dependent on (i.e., is a 
linear combination of) the other columns. We would say that collinearity 
(or multicollinearity) exists among the columns of X. 

Multicollinearity is tested with the variance inflation factor or VIF or the tolerance. 
2 2VIF=1/tolerance. Tolerance = 1 -R , where Rk  is the amount of variation in one k

explanatory variable explained by the other explanatory variables. 
Other links: UCLA Statistics page (Note that the implication that VIF’s less than 20 
aren’t cause for concern is a dubious bit of advice. VIF’s as low as 3 or 4 could create 
problems in a regression model 
http://www.ats.ucla.edu/stat/stata/modules/reg/multico.htm 

Multilevel models See Singer & Willett (2003) And 
http://www2.chass.ncsu.edu/garson/pa765/multilevel.htm 

Multinomial distribution 
Multiple comparison procedures (multiple hypothesis tests, a posteriori tests, post hoc tests) 

After an ANOVA indicates that all means are equal, an investigator may wish to know 
which pairs or groups of means differ. A variety of multiple comparisons tests, also 
known as a posteriori contrasts, have been developed to test for differences among 
means while considering the overall or experiment-wise error. These tests include 
Bonferroni, Duncan’s, Dunn’s, Dunnett’s (for comparisons with a control group), 
Dunnett’s C (for unequal variances), Dunnett’s T3 (for unequal variances, Gabriel, 
Games-Howell (conservative for unequal n and unequal variance), Hochberg’s GT2, 
Least significant difference or LSD (not conservative), Scheffe’s, Sidak, Student-
Newman Keuls (SNK), Tamhane’s T2 (for unequal variances), Tukey’s HSD, Tukey-
Kramer (a general form of Tukey’s HSD), Waller (Bayesian approach for equal n). 
There are at least 20 such tests (see Sokal & Rohlf (1995) for a thorough discussion). 
The most important are perhaps the Bonferroni, Tukey-Kramer, and Scheffé tests, 
which adjust for the number of a posteriori contrasts. The Bonferroni adjustment for 
experimentwise alpha level can be used in any test. Hotelling’s T2 can be used to adjust 
for multiple correlation (cf., multiple hypothesis testing) 

http://www.ats.ucla.edu/stat/stata/modules/reg/multico.htm
http://www2.chass.ncsu.edu/garson/pa765/multilevel.htm
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Multiple regression A regression with more than one explanatory variable. 
Multiplication rule of combinatorics 

http://www.math.uah.edu/stat/comb/comb1.html#Multiplication 
Multivariate hypergeometric distribution http://www.math.uah.edu/stat/urn/urn4.html 
Mutually exclusive Events A and B defined over the same sample space are said to be mutually 

exclusive if they have no outcomes in common – that is, if A 1 B = �, where � is the 
null set (Larsen & Marx 2001, Definition 2.2.2) 

MVUE Minimum variance unbiased estimator 
Natural logarithms [often inidicated with ln(x)] Logarithms were invented by the Scot John 

Napier in 1614 and natural logarithms are logarithms to the base e, but Napier didn’t use 
the exponential function, another case of Stigler’s law of eponymy. 

Negative binomial distribution The random variable X is said to have a negative binomial 
distribution if 

The expected value E(X), like the Poisson distribution is ë but Var(X) = ë + ë2/r, where r 
is called the dispersion parameter. See 
http://ehs.sph.berkeley.edu/hubbard/longdata/webfiles/poissonmarch2005.pdf 

Negative binomial regression In the analysis of count data, Poisson regression assumes 
the variance equals the mean. Overdispersion, or the variance exceeding the mean, may 
indicate the need for a negative binomial regression. 
http://www.uky.edu/ComputingCenter/SSTARS/P_NB_3.htm 

Nested ANOVA	 An Analysis of variance in which the experimental units are a subset of 
treatment levels 

Newton-Raphson method (Newton’s method) Used to estimate the parameters of 
generalized linear models, as described McCullagh & Nelder (1989, Ch 2, p. 40-41). 
http://mathworld.wolfram.com/NewtonsMethod.html 

Neyman-Pearson school A frequentist statistical research program led by Jerzy Neyman and 
Egon Pearson. They introduced critical values and confidence limits 

NIPALS Algorithm (“Nonlinear Iterative Partial Least Squares”) In addition to solving partial 
least squares problems, can be used to find dominant eigenvalues & eigenvectors of a 
square matrix. 

Nonparametric statistics An underlying parametric distribution, such as the normal 
distribution, is not assumed for the data. Normal and chi-square distributions are often 
used for calculating p values. 

Nonsense correlation cf., spurious correlation 
Normal distribution [Gaussian distribution, Normal curve, error function]. Stigler (1986, p. 

284) traces this distribution to Abraham De Moivre (1733). Figure 7 shows a Matlab 
ezplot of a normal distribution with mean 5.3 and sd 1.3. 

http://www.math.uah.edu/stat/comb/comb1.html#Multiplication
http://www.math.uah.edu/stat/urn/urn4.html
http://ehs.sph.berkeley.edu/hubbard/longdata/webfiles/poissonmarch2005.pdf
http://www.uky.edu/ComputingCenter/SSTARS/P_NB_3.htm
http://mathworld.wolfram.com/NewtonsMethod.html
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Figure 7. Matlab Ezplot of normal distribution, 
shown in above equation. 

(59)


(60)


(61)


Normal equations According to Stigler (1999, p. 415-420), a term introduced by Gauss (1822) 
(“normalgleichungen”) to describe how the least squares method could be applied. 
Stigler (1986, p. 14) argues that the concept of the normal equations was used by 
Legendre (1805). Cf., least squares, regression 

Null hypothesis In the frequentist school of statistics, the null hypothesis is the hypothesis that 
statistical tests are designed to reject (cf., modus tollens, Type I error, Type II error). 

Observational study The sampling units are inherently finite cf., experiment 
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Odds The odds are a different way of expressing the probability of an event occurring. If you 
know the probability of an event, then you can calculate the odds. If the probability of an 
event is p, then odds=p/(1-p): 

If the probability of rain today is 50% or 0.5 then the odds of rain are 0.5/(1-0.5) = 1/1 = 
1:1 or 1 to 1. This is also expressed as saying the odds of rain today are even. The odds of 
getting a six when rolling a die (the singular of dice) 

is  This is sometimes 

expressed as saying the odds being 5 to 1 against getting a six. The odds of getting the 
King of Hearts when drawing a single card from a 52-card deck 

 This is could be expressed as saying the odds are 51 to 1 is

are

against drawing a King of Hearts. Bets in horse races are set by the odds. If the 
probability of the favorite horse winning a race is 60% then the odds 

 This horse would be listed as a 3:2 favorite. In order to 

win $2, you’d have to bet $3. If you bet $3, you would get $5 back if the horse won. A 
longshot in a horse race might have a probability of winning of 1%. The odds of that 

horse winning would be  This would be expressed as 

saying the odds are 99 to 1 against winning. If you bet $1 on this horse and it won, you’d 
win $99. 
As shown at right, some casinos express odds using the notation ‘10 for 1'. This means 
that a $1 dollar bet at 9 to 1 odds returns $10. Richard Frey (1970, p 269) in his edition of 
‘According to Hoyle’ describes the convention of reporting odds with ‘for:’ 

“On many [craps] layouts the actual odds being offered are disguised by 
the use of the word “for.” If the house, for example, pays 4-to-1 odds, the 
winner of a bet receives his $1 bet back together with $4 paid by the 
house, a total of $5. Some houses quote these odds by offeinr “five-for
one,” meaning that for every $1 the bettor puts up, he recieves, when he 
wins, $5 — including his own $1. This is equivalent ot odds of 4-to-1.” 

The odds, ù, can be converted to a probability by using the relation that if the odds of yes 
are ù, P(yes)=ù/(ù + 1). So 4-to-1 odds would have a probability of 1/(4+1) or 0.2. Odds 
reported as 5 for 1 would have a p value of 0.2 
[cf., craps, odds ratio] 

Odds ratio the ratio of two odds. If the odds of a person getting a cold taking vitamin C are 3 
and the odds of a person getting a cold taking a placebo are 4.5, then the estimated odds 
ratio is 1.5. One can say that the odds of getting a cold are 50% greater if one doesn’t 
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take vitamin C. Ramsey & Schafer (2002, p. 540) prefer reporting the odds ratio to 
differences in proportions because: 1) the odds ratio tends to remain more nearly constant 
over levels of confounding variables, 2) the odds ratio is the only parameter that can 
describe the binary responses of two groups from a retrospective study, and 3) the 
comparison of odds extends nicely to logistic regression analysis. 

OLS Ordinary least squares cf., WLS 
One-sided test also called one-tailed test cf., two-sided test 
orthogonal right angle 
Orthogonal arrays In experimental design, you might want to test 1000 drugs on a mammalian 

cell culture, including the 2- and 3-way interactions. How can that be done with a 
relatively small number of experimental units. Orthogonal arrays and factorial designs 
provide ways of constructing choices of factors and levels of factor and the analyses that 
can be performed on them. See http://support.sas.com/techsup/technote/ts723.html or 
http://support.sas.com/techsup/tnote/tnote_stat.html#market. Sleuth Chapter 24 
provides a concise introduction to the concepts. Cf., experimental design 

Orthogonal contrast Two contrasts are orthogonal if the sum of the products of corresponding 
coefficients (i.e., coefficients for the same means) adds to zero. Cf., linear contrast 
http://www.itl.nist.gov/div898/handbook/prc/section4/prc426.htm 

orthonormal basis http://mathworld.wolfram.com/OrthonormalBasis.html 
Overdispersion In fitting binomial and Poisson logistic regression models, the variance of 

the observed data is greater than that predicted from the variance expected from the 
binomial or Poisson models. “The terms extra-binomial variation and overdispersion 
describe the inadequacy of the binomial model in these situations.” Ramsey & Schafer 
(2002, p. 621). 

Overfitting “When a [regression] model is fitted that is too complex, that is, it has too many 
free parameters to estimate for the amount of information in the data, the worth of the 

2model (e.g., R ) will be exaggerated and future observed values will not agree with the
predicted values. In this situation, overfitting is said to be present, and some of the 
findings of the analysis come from fitting noise or finding spurious associations between 
X and Y.” Harrell (2002, p. 60) 

p value (from K Wuensch, edstat, 3/19/03) The probability of obtaining data as or more 
discrepant with the null hypothesis than are those in the present sample, assuming that 
the null hypothesis is absolutely correct. Jerry Dallal has a lengthy discussion on his web 
site: http://www.tufts.edu/~gdallal/pval.htm 

Paired t test A form of Student’s t test in which observations are paired and the null hypothesis 
is that the difference between paired observations is equal to some value (usually zero). 
This is a form of repeated measures design. 

Parameter An unknown numerical value describing a feature of a probability model. 
Parameters are indicated by Greek letters (Ramsey & Schafer 1997, p. 19) cf., statistic 

Partial Least Squares (PLS) “In partial least squares regression, prediction functions are 
represented by factors extracted from the Y’XX’Y matrix. The number of such 
prediction functions that can be extracted typically will exceed the maximum of the 
number of Y and X variables. In short, partial least squares regression is probably the 
least restrictive of the various multivariate extensions of the multiple linear regression 
model. This flexibility allows it to be used in situations where the use of traditional 

http://support.sas.com/techsup/technote/ts723.html
http://support.sas.com/techsup/tnote/tnote_stat.html#market
http://www.itl.nist.gov/div898/handbook/prc/section4/prc426.htm
http://mathworld.wolfram.com/OrthonormalBasis.html
http://www.tufts.edu/~gdallal/pval.htm
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multivariate methods is severely limited, such as when there are fewer observations than 
predictor variables. Furthermore, partial least squares regression can be used as an 
exploratory analysis tool to select suitable predictor variables and to identify outliers 
before classical linear regression. Partial least squares regression has been used in 
various disciplines such as chemistry, economics, medicine, psychology, and 
pharmaceutical science where predictive linear modeling, especially with a large number 
of predictors, is necessary. Especially in chemometrics, partial least squares regression 
has become a standard tool for modeling linear relations between multivariate 
measurements (de Jong, 1993).” http://www.statsoft.com/textbook/stpls.html, 
http://www.vcclab.org/lab/pls/m_description.html, See also NIPALS, SIMPLS, WA
PLS 

Pascal, Blaise (b. 6/19/1623, Clermont Auvergne France d. 1662). With Fermat, the father of 
mathematical probability theory. (Bell 1937, p. 86) 

Path analysis Sewall Wright invented this technique in 1921 in the paper “Causation and 
Correlation” to explain the causal basis of a set of partial correlations among a set of 
variables. Sometimes referred to as causal analysis. Path analysis is now a subset of 
structural equation modeling. 

pdf Acronym for probability density function 
Pearson, Karl 1857-1936 
Pearson’s r Pearson’s product-moment correlation coefficient 
Permutations (Larsen & Marx 2001, p. 92) Theorem 2.9.1 The number of permutations of 

length k that can be formed from a set of n distinct elements, repetitions not allowed, is 
denoted by the symbol P , where n k

Corollary The number of ways to permute an entire set of n distinct objects is n! The 
symbol n! is called n factorial 

Phi Phi is a chi-square based measure of association, sometimes called Pearson’s coefficient of 
mean-square contingency, though sometimes this term is applied to Pearson’s 
contingency coefficient, discussed below, which is a modification of phi.. With 
dichotomized continuous data, tetrachoric correlation is preferred. phi = 
(bc-ad)/sqrt[(a+b)(c+d)(a+c)(b+d)], 
http://www2.chass.ncsu.edu/garson/pa765/assocnominal.htm 

Poisson, Siméon Denis (1781-1840) 
Poisson distribution (Larsen & Marx 2001 Theorem 4.2.2, p. 251) First described by Poisson 

as a limit theorem and then used in 1898 by Professor Ladislaus von 
Bortkiewicz to model the number of Prussian cavalry officers kicked to 
death by their horses. 

The random variable X is said to have a Poisson distribution if 

http://www.statsoft.com/textbook/stpls.html
http://www.vcclab.org/lab/pls/m_description.html
http://www2.chass.ncsu.edu/garson/pa765/assocnominal.htm
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The expected value E(X) and variance (Var(X)) are both ë. 

Poisson limit theorem (Larsen & Marx 2001 Theorem 4.2.2, p. 251) If n �4 and p �0 in 
such a way that ë = np remains constant, then for any nonnegative integer k, 

The Poisson limit theorem justifies the use of the Poisson distribution to approximate the 
binomial distribution. The Poisson approximation to the binomial is quite accurate if 
n $ 20 and p # 0.05 and is very good if n $100 and np #10, 

Poisson process (Hogg & Tanis 1977, p 78) Let the number of changes that occur in a given 
continuous interval be counted. We have an approximate Poisson process with parameter 
ë > 0 if the following are satisfied: (i) the number of changes occurring in 
nonoverlapping intervals are independent, (ii) the probability of exactly one change in a 
sufficiently short interval of length h is approximately hë, and (iii) The probability of two 
or more changes in a sufficiently short interval is essentially zero. 

Poisson regression	 A generalized linear model for the analysis of count data, which meet the 
assumption that the variance of the counts equals the mean. 

Popper, Sir Karl R. Austrian philosopher of science, who spent most of his career at the 
London School of Economics, who proposed his method of “conjectures of refutations” 
in his magnum opus Logik der Forschung, translated as Logic of Scientific Discovery in 
1959. His scientific method is founded on the demarcation principle of falsificationism. 
Science is distinguished from pseudoscience because scientific principles are subject to 
falsification. His long career is profiled in the wonderful 2003 book, “Witgenstein’s 
Poker.” 

Posterior distribution See Bayes theorem 
Power The probability that a null hypothesis will be rejected, given that it is false. 

Power = 1 - P ( Type II error ) = 1-â. In order to calculate the statistical power, the 
alternate hypothesis must be specified. Bill Trochim’s web page has a very nice 
discussion of statistical power (http://trochim.human.cornell.edu/kb/power.htm) 

Power function 
Precision indicates the random or chance variability about the mean of repeated 

observations (cf. accuracy) 
PRESS Prediction error sum of squares. 
principal component method = Principal Components Analysis (PCA) Developed by 

Hotelling (1933). PCA is simply the rotation of the original system of axes in the 
multidimensional space. The principal axes are orthogonal and the eigenvalues measure 
the amount of variance associated with each principal axis. PCA is used to summarize in 
a few important dimensions the greatest part of the variability of a dispersion matrix of a 
large number of descriptors R-mode) or cases (Q-mode). cf., EOF 

principal component scores the value of a principal component for individual points, hence the 
new coordinates of data points measured along axes created by the principal component 

http://trochim.human.cornell.edu/kb/power.htm
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method. A principal component score can be regarded as an additional variable for each 
case, this variable is a linear function of the original variables. 

Probability density function 
Probit analysis A maximum likelihood regression procedure to estimate the proportion of a 

population that will be affected by a given treatment level. The method was pioneered by 
Bliss to analyze bioassay data from toxicology experiments. For example, a toxicologist 
might want to find the lethal dose required to kill 50% of a population of invertebrates in 
a beaker. Probit analysis is now regarded as one of many methods included among the 
generalized linear models. These generalized linear models are usually fit using the 
principle of maximum likelihood. In practice, the logistic regression modeling procedure 
often gives very similar results.  See, 
http://www2.chass.ncsu.edu/garson/pa765/logit.htm 

Probit link function Agresti (1996, p 79) writes, “The probit link applied to a probability ð(x) 
transforms it to the standard normal z-score at which the left-tail probability equals  ð(x). 
For instance, probit (.05) = -1.645, probit (0.50) = 0, probit (.95) = 1.645, and probit 
(.975)=1.96. The probit model is a GLM with a random component and a probit link.” 

Probability Larsen & Marx (2001) provide four distinctly different definitions of probability: 
•	 Classical probability, Pascal & Fermat 

•	 “Imagine an experiment, or game, having n possible outcomes—and 
suppose that those outcomes are equally likely. If some event A were 
satisfied by m out of those n, the probability of A [Written P(A)] should 
be set equal to m/n. This is the classical or a priori definition of 
probability. 

•	 Empirical probability (Attributed to von Mises, but can be found at least a 
century earlier) 
• “Consider a sample space S, and any event A, defined on A. If our 

cexperiment were performed on them, either A or A  would be the
outcome. If it were performed n times, the resulting set of sample 
outcomes would be members of A on m occasions, m being some integer 
between o and n, inclusive. Hypothetically, we could continue the process 
an infinite number of times. As n gets large, the ratio m/n will fluctuate 
less and less. The number that m/n converges to is called the empirical 
probability of A, that is 

•	 Axiomatic probability. Andrei Kolmogorov 
•	 If S has a finite number of members, Kolmogorov showed that as few as 

three axioms are necessary and sufficient for characterizing the 
probability function P. 
•	 Axiom 1. Let A be any event defined over S. Then P(A) $0. 
•	 Axiom 2 P(S)=1. 
•	 Axiom 3 Let A and B be any two mutually exclusive events 

defined over S. Then 

• When S has an infinite number of members, a fourth axiom is needed 

http://www2.chass.ncsu.edu/garson/pa765/logit.htm
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•	 Axiom 4 Let A , A , …, be events defined over S. If A 1 A  =  �for1 2	 i j 

each i �j, then 

•	 From these simple statements, all other properties of the probability 
function can be derived. 

•	 Subjective probability 
• What is a person’s measure of belief that an event will occur? 

Humorous definitions 1) “probability” = long-run fraction having this characteristic. 
2) “probability” = degree of believability. 3) A frequentist is a person whose 
lifetime ambition is to be wrong 5% of the time. 4) A Bayesian is one who, 
vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes 
he has seen a mule. 
http://www.statisticalengineering.com/frequentists_and_bayesians.htm 

Probability function There are two fundamentally different types of probability functions 
(Larsen & Marx 2001). 

A discrete probability function is a function defined for a process with a finite 
or countably infinite number of outcomes. Suppose that the sample space for a given 
experiment is either finite or countably infinite, Then any P such that a) 0 #P(S) for all s 
0 S and b)  The probability of an event A is the sum of the probabilities 

associated with the outcomes in A: 

A continuous probability function is defined for a process with an uncountably 
infinite number of outcomes. If S is a sample space with an uncountable number of 
outcomes and if f is a real valued function defined on S, then f is said to be a continuous 

probability function if a) 0 # f(y) for all y 0 S, and b)  Furthermore, if A is 

any event defined on S, it must be true that 

Probability density function Larsen & Marx (2001, p. 121, 126) Describing the variation of 
a discrete random variable Associated with each discrete random variable X is a 
probability density function (or pdf), p (k). By definition p (k) is the sum of all the x	 x

probabilities associated with outcomes in sample space S that get mapped into k by the 
random variable X. That is 

Conceptually, p (k) describes the probability structure induced on the real line by the x

random variable X. 
Describing the variation of a continuous random variable 

http://www.statisticalengineering.com/frequentists_and_bayesians.htm
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Associated with each continuous random variable Y is also a pdf  in this f (y) , but f (y) , y y

case is not the probability that the random variable Y takes on the value y. Rather, f (y) isy 

a function having the property that for all a and b, 

Profile Analysis or, ‘the multivariate approach to repeated measures’ which does not require 
sphericity as an assumption. Tabachnick & Fidell (2001, p 422) describe profile 
analysis as  an alternative to traditional repeated measures designs, ‘a special application 
of multivariate analysis of variance (MANOVA) to a situation when there are several 
[response variables], all measured on the same scale.’ Profile analysis requires more 
cases than dependent variables in the smallest group. Morrison (1976, p 153) describes 

2profile analysis involving T  tests of parallel profiles followed by tests of different levels
among groups. Profile analysis is available in SPSS MANOVA and SPSS GLM/Repeated 
measures as described by Tabachnick & Fidell (2001, p 391). 

Propagation of error Variables estimated from data usually have an associated error which 
should be incorporated in calculations involving those parameter estimates. For example, 
Larsen & Marx (2001, p. 222-223) present the propagation of error formula for the 
variance of linear combinations: 

Calculating the variance of a linear combination. Theorem 3.13.1 Let W be any 
random variable, discrete or continuous, and let a and b be any two constants, Then 

Calculating the variance of a sum of random variables. Theorem 3.13.2 Let W1, 
W2, ..., Wn  be a set of independent random variables for which E(Wi

2) is finite for all i. 
Then 

The formulae and Monte Carlo approaches used to propagate error are covered well in 
Bevington & Robinson (1992) and Taylor (1997). 

Pseudoreplication A term coined by Hurlbert (1984) for a concept called model 
misspecification by Underwood (1997). It specifically refers to the use of an 
inappropriate statistical model, especially one with inflated degrees of freedom used to 
estimate the error variance. 

Q-mode, R-mode Legendre & Legendre (1983,p. 172). The measurement of dependence 
between two descriptors (variables) is achieved my means of coefficients like Pearson’s 
product-moment correlation, r. The study of the correlation or variance-covariance 
matrices is therefore called an R analysis. In contrast, a study of an ecological data 
matrix based upon the relationship between objects is called Q analysis. Cattell (1966) 



Handout 2 
Intro Prob & Statistics 
Terms P. 44 of 68 

also defined O-,P-,S-, and T-modes. n.b., many authors (Pielou 1984) reverse this 
conventional usage. Occasionally, the terms normal mode and inverse mode are used 
instead of Q and R mode, but these terms should be avoided due to the overlap with the 
corresponding statistical terms. 

Quadratic equation Any equation of the form:  “In mathematics, a quadratic 

function is a polynomial function of the form where a is nonzero. It 

takes its name from the Latin quadratus for square, because quadratic functions arise in 
the calculation of areas of squares. In the case where the domain and codomain are R 
(the real numbers), the graph of such a function is a parabola. If the quadratic function is 
set to be equal to zero, then the result is a quadratic equation.” 
http://en.wikipedia.org/wiki/Quadratic 

Quadratic term Any term raised to a power of 2. 
Quantile http://mathworld.wolfram.com/Quantile.html 
Quartile http://mathworld.wolfram.com/Quartile.html See also Tukey hinges 
Quetelet, Adolphe (1796-1874) From the Columbia Encyclopedia: Belgian 
statistician and astronomer. He was the first director (1828) of the Royal 
Observatory at Brussels. As supervisor of statistics for Belgium (from 1830), 
he developed many of the rules governing modern census taking and stimulated 
statistical activity in other countries. Applying statistics to social phenomena, 
he developed the concept of the “average man” and established the theoretical 
foundations for the use of statistics in social physics or, as it is now known, 
sociology. Thus, he is considered by many to be the founder of modern 
quantitative social science. A Treatise on Man (1835; tr., 1842) is his 
best-known work. From the 
Quota sampling Gave rise to “Dewey beats Truman” cf., census, probabilistic UCLA 
sampling portraits of 

2R squared	 [coefficient of determination, R ] Percentage of the total statisticians 
response variation explained by the regression with the site 

explanatory variables (Ramsey & Schafer 1997, p. 213; Larsen 
& Marx 2006, p 309-310) 

2Adjusted R squared R  adjusted for the number of terms used to fit the model, cf., 
PRESS 

Random effects In ANOVA, effects are modeled as fixed or random. The appropriate 
denominator for F tests in factorial ANOVAs differ depending on whether the main 
effects are fixed or random. A random effect model is one in which the levels are chosen 
as if they were random samples from a probability distribution. McCulloch & Searle 
(2001, p. 17) discuss whether an effect is fixed or random: “In endeavoriing to decide 

http://en.wikipedia.org/wiki/Quadratic
http://mathworld.wolfram.com/Quantile.html
http://mathworld.wolfram.com/Quartile.html
http://www.bartleby.com/65/qu/Quetelet.html
IT
Stamp
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Stamp
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whether a set of effects if fixed or random, the context of the data, the manner in which 
they were gathered and the environment from which they came are the determining 
factors. In considering these points the important question is: are the levels of the factor 
going to be considered a random sample from a population of values which have a 
distribution? if “yes” then the effects are to be considered as random effects; if “no” 
then, in contrast to randomness, we think of the effects as fixed constants and so the 
effects are considered as fixed effects. Thus when inferences will be made about a 
distribution of effects from which those in the data are considered to be a random 
sample, the effects are considered as random; and when inferences are going to be 
confined to the effects in the model, the effects are considered fixed. Another way of 
putting it is to ask the questions: ‘do the levels of a factor come from a probability 
distribution?’ and ‘Is there enough information about a factor to decide that the levels of 
it in the data are like a random sample?’ Negative answers to these questions mean that 
one treats the factor as a fixed effects factor and estimates the effects of the levels; and 
treating the factor as fixed indicates a more limited scope of inference. On the other 
hand, affirmative answers mean treating the factor as a random effects factor and 
estimating the variance component due to that factor. In that case, when there is also 
interest in the realized values of those random effects that occur in the data, then one can 
use a prediction procedure for those values.” cf., fixed effects 

Random variable 
Rank sum test see Wilcoxon rank sum test 
Rao-Blackwell theorem (Hogg & Tanis 1977, p. 404) Let V and Y be two random variables 

such that V has mean E(V)=è and positive finite variance. Let E(V|Y=y)=w(y). Then the 
random variable W=w(Y) is such that E(W)=è and Var(W) # Var(V). 
This theorem means that if a sufficient statistic for è exists, say Y, we may limit our 
search for a minimum variance unbiased estimator to functions of Y. 

Recurrent groups analysis A method to graphically display species associations, introduced by 
Fager (1957) 

Reference level To analyze discretely distributed variables in a regression model, they are 
usually coded as 0,1 dummy variables. One of the levels must be left out, and the one 
level that is left out is called the reference level (see Ramsey & Schafer 1997, p. 237) 

Regression A term coined by Francis Galton in 1879 and 1886 to explain the bivariate 
association between filial and parental heights. Yule (1897) was the first to use least 
squares to fit a regression of Y on X by minimizing the squared residuals between the 
regression line and Y. The term regression was later applied to the entire field of fitting 
linear models with least-squares methods. Ramsey & Schafer (1997) state “regression 
refers to the mean of a response variable as a function of an explanatory variable. A 
regression model is a function used to describe the regression. The simple linear 
regression model is a particular regression in which the regression is a straight-line 
function of a single explanatory variable.” 
These least squares methods used in regression can be traced back at least to Legendre 
(1805) and the normal equations to Gauss (1822). 

The regression phenomenon – also called regression to mediocrity, regression 
to the mean, the regression artifact – is expressed mathematically as (Stigler 1999, p. 
176): 



Handout 2 
Intro Prob & Statistics 
Terms P. 46 of 68 

(83)


Galton was the discoverer of regression to the mean, which Stigler (1999, p. 6) regards 
as one of the most original in the last two centuries: 

“ … regression to the mean, one of the trickiest concepts in all of 
statistics. Galton’s completion of his discovery of this phenomenon 
in the 1880's should rank with the greatest individual events in the 
history of science — at a level with William Harvey’s discovery of 
the circulation of blood and with Isaac Newton’s of the separation 
of light. In all three cases the discovery is apparently of such an 
elementary character that it could have been made at least a 
thousand years earlier, but the fact that it wasn’t and the problems 
the discoverer had in communicating it convincingly to the world 
hint at the profound difficulty involved. In all three cases the 
consequences were immense and far-reaching.” 

Regression to the mean is described in 
William Trochim’s database: 
http://trochim.human.cornell.edu/kb/re 
grmean.htm 

Figure 9. The regression ellipse from p. 248 
in Galton (1886), posted at the UCLA 
statistics history site: 
http://www.stat.http://www.stat.ucla.edu/ 
history/regression_ellipse.gif 

Figure 10. Plate X from Galton (1886), 
posted at 
http://www.stat.ucla.edu/history/regression.g 
if 

http://www.stat.http://www.stat.ucla.edu/history/regression_ellipse.gif
http://www.stat.http://www.stat.ucla.edu/history/regression_ellipse.gif
http://trochim.human.cornell.edu/kb/regrmean.htm
http://trochim.human.cornell.edu/kb/regrmean.htm
http://www.stat.ucla.edu/history/regression.g
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OLS Regression Fitting data using ordinary least squares. The assumptions that matter 
are that there are no outliers which significantly affect the regression fits or 
statistics, detected by Cook’s D for example. You don’t want to see pattern in the 
plot of residuals vs. predicted values, nor should there be pattern between the 
residuals and the order in which samples were taken (in space or time). The 
former problem could indicate the need for transformation or for a higher order 
regression, and the latter could indicate lack of independence among the errors. 

Regression: Model II Model II regression is called for when both the X and Y variables are 
measured with considerable error. Legendre & Legendre (1998) provide a thorough 
discussion of methods for Model II regression, including principal components 
regression. 

Regression diagnostics See Jerry Dallal’s page: 
http://www.tufts.edu/~gdallal/diagnose.htm for 
descriptions of 

Cook’s distance differences between the

predicted responses from the model

constructed from all of the data and the

predicted responses from the model

constructed by setting the i-th observation

aside.


DFITSi scaled difference between the predicted 
responses from the model constructed 
from all of the data and the predicted 
responses from the model constructed by Figure 11. Galton’s regression to the 
setting the i-th observation aside mean, from Freedman et al. (1998) 

DFBetai when the i-th observation is included or

exlcuded, DFBETAS looks at the change

in each regression coefficient.


See also: studentized residuals 
Relative power efficiency 
Relative risk see risk ratio 
\Repeated measures design When 2 or more variables are measured from the same experimental 

units (often subjects or patients in drug trials). A paired t test is a repeated measures 
design (actually a repeated measures ANOVA with two levels of 1 ‘within subjects’ 
factor and no ‘between subjects’ factors). 

Residuals Observed minus predicted value 
PRESS residuals Prediction residual error sum of squares. Residuals obtained from 
regression coefficients derived after the effect of each case is removed. 

http://www.tufts.edu/~gdallal/diagnose.htm
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Studentized residual, raw residual for a case standardized or ‘studentized’ by scaling 
with variable standard error after that case is deleted. This can be done by adjusting the 
mean square error for a regression by that case’s leverage 

Response variable The variable that is being modeled in a regression model. Sometimes called 
the dependent variable. cf., explanatory variable 

Retrospective studies. Ramsey & Schafer 1997 p. 529 
Ridge regression Hoerl & Kennard (1970), quoted in Kendall & Stuart 1979, p. 92 Ridge 

regression is one method for coping with colinearity among explanatory variables. If X is 
the matrix of explanatory variables, then the normal equations are solved by adding a 
small constant to the sum of squares and croxx products matrix before inversion with 
inv(X’X + lambda*I)) instead of inv(X’X). The effect of adding small amounts to the 
main diagonal is assessed with a ridge-trace plot. There is an SPSS macro available from 
Raynald Lavesque to carry out ridge regression. 

Risk ratio or Relative Risk “The risk ratio is a ratio of probabilities, which are themselves 
ratios. The numerator of a probability is the number of cases with the outcome, and the 
denominator is the total number of cases. The risk ratio lends itself to direct intuitive 
interpretation. For example, if the risk ratio equals X, then the outcome is X-fold more 
likely to occur in the group with the factor compared with group lacking the factor.” 
Holcomb et al. 2001. Zhang & Yu (1978) show the  relation between risk ratio and 
odds ratio: 

As shown by Zhang & Yu (1978, Fig 1) the odds 
ratio overestimates the risk ratio if the event is 
common. See also 
http://www.childrens-mercy.org/stats/journal/ 
oddsratio.asp 

Robust	 [robustness] P values remain accurate 
despite slight violations of assumptions. 

Figure 12. Relation between the 
odds ratio and relative risk from 
Zhang & Yu (1978, Fig 1). Odds 
ratio overestimates relative risk, 
especially if the event is common. 

http://www.childrens-mercy.org/stats/journal/oddsratio.asp
http://www.childrens-mercy.org/stats/journal/oddsratio.asp
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ROC curve	 Receiver Operating Characteristic curve. 
A curve from signal detection theory 
which describes the classification of a 
signal in the presence of noise (Hosmer 
& Lemeshow 2000, p. 160 & Figure 5.2) 
It is used extensively in evaluating 
diagnostic tests, such as screening tests 
for cancer. See also 
http://www.anaesthetist.com/mnm/stats 
/roc/ , specificity, sensitivity 

Rotation Legendre & Legendre (1983, p. 309). Figure 13. ROC curve from Hosmer 

Transformations of the axes used to portray data. & Lemeshow 

Both orthogonal (rigid rotations preserving 
Euclidean distances among data [see VARIMAX]) and oblique rotations have been used 
in FA. The purpose of rotations is not to improve the degree of fit between the observed 
data and the factors...the purpose is to achieve simple structure. 

Runs	 A consecutive series of events. +++00 represents two runs and ++00+ represents three. 
There are a variety of runs tests available, several are described in Larsen & Marx 
(2001) 

Sample 
SAR	 Simultaneous autoregressive model cf., CAR 
SARIMA seasonal autoregressive integrated moving-average, cf., ARIMA 
Sample outcome “Each of the potential eventualities of an experiment is referred to as a 

sample outcome, s, and their totality is referred to as a sample space, S. To signify the 
membership of s in S, we write s 0 S. Any designated collection of sample outcomes, 
including individual outcomes, the entire sample space, and the null set, constitutes and 
event. The latter is said to occur if the outcome of the experiment is one of the members 
of the event.” (Larsen & Marx 2001, p. 21-22) 

Satterthwaite approximation Satterthwaite’s (1946) approximation of the df for the Welch’s t 
test cf., Behrens-Fisher problem 

Scheffe’s test A very conservative multiple comparison test designed to produce an alpha level 
appropriate for testing linear combinations of the data (e.g., group A+B vs. Group 
C+D+E). 

Scree test (described by Kim & Mueller, 1978, p. 44) Cattell (1966) described the elbow on 
the log (eigenvalue) vs. dimension plot is the point beyond which we are in the “factorial 
litter” or scree (where scree is the geological term for the debris which collects on the 
lower part of a rocky slope). The scree test retains only those factors at or to the left of 
the elbow for interpretation or further rotation. Jackson (1993) reviewed various 
stopping rules for PCA, concluding that the scree test overestimated the “true” number of 
factors by 1. 

http://www.anaesthetist.com/mnm/stats/roc/
http://www.anaesthetist.com/mnm/stats/roc/
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SEM	 Structural equation modeling. From a 4/5/04 post from H. Rubin on sci.stat.edu “The 
formal idea of structural equations modeling, as far as I know, originated in biology in 
1919 by Sewall Wright [This would be Wright’s path analysis]. The idea is that one 
does not simply have regressions with independent and dependent variables, but a 
structure is used to describe the probability model for all dependent variables. It was used 
in psychometrics without formal realization even earlier in multiple factor analysis, and 
it was heavily used in econometrics as soon as it was realized that regression led to bias. I 
do not know when the name “Structural Equation Modeling” was formally introduced, 
but it was clearly understood in the mathematical economics of the 1940s.” 

Sensitivity In a diagnostic test and ROC curve, the 
sensitivity is defined as the proportion of cases 
(e.g., patients with prostate cancer) with a test 
value (e.g., PSA antigen level) exceeding a given 
cutoff value. The specificity is the proportion of 
noncases (cancer-free patients) with a test value 
(PSA antigen level) equal to or below the cutoff 
value. The false-positive rate is (1-specificity) 
(see Thompson et al. 2005) see ROC curve 

Shrinkage From Harrell (2002): There are two related 
meanings. First in regression, when one data set Figure 14. ROC curve for PSA 

is used for calibration & prediction, the slope antigen test from Thompson et al. 
will be 1 (by definition). When however (2005). 1-specificity is the false 
parameter estimates are derived from one dataset positive rate. 

and applied to another, overfitting will cause the 
calibration plot to have a slope less than 1, a result of regression to the mean. Typically 
low predictions will be too low & high predictions too high. Second, shrinkage can refer 
to pre-shrinking regression plots so that the calibration plot will be more accurate with 
future data. 

Simple structure Thurstone’s (1947) term for a factor solution with certain properties: 
Each variable should have factor loadings on as few common factors as possible, and 
each common factor should have significant loadings on some variables and no loadings 
on others. (Kim & Mueller, 1978, p. 86) 
“The principle of simple structure: Once a set of k factors has been found that account 
for intercorrelations of the variables, these may be transformed to any other set of k 
factors that account equally well for the correlations....Thurstone (1947) put forward the 
idea that only those factors for which the variables have a very simple representation are 
meaningful, which is to say that the matrix of factor loadings should have as many zero 
elements as possible...a variable should not depend on all common factors but only on a 
small part of them. Moreover, the same factor should only be connected with a small 
portion of the variables. Such a matrix is considered to yield simple structure.“ 
Reyment & Jöreskog (1993, p. 87) 

SIMPLS Algorithm “An alternative estimation method for partial least squares regression 
components is the SIMPLS algorithm (de Jong, 1993)” 
http://www.statsoft.com/textbook/stathome.html 

http://www.statsoft.com/textbook/stathome.html
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Serial correlation Regression analysis typically assumes that observational errors are pairwise 
uncorrelated. In serial correlation, there is a correlation between errors a fixed number of 
steps apart (Draper & Smith 1998, p. 179). Certain types of serial correlation are tested 
with the Durbin-Watson test. 

Simple random sampling (SRS): A simple random sample of size n from a population is a 
subset of the population consisting of n members selected in such a way that every subset 
of size n is afforded the same chance of being selected. Ramsey & Schafer (1997) 

Simpson’s diversity 
Identical to -1 + Hurlbert’s E(S ) at n=2 (Smith & Grassle 1977)n

Simpson (1949) from Pielou (1969):

“Suppose two individuals are drawn at random and without replacement from an S-

species collection containing N individuals of which N  belong to the jth species (j=1:s);
j

Ó  N =N). If the probability is great that both individuals belong to the same species, we j j 

can say that the diversity of the collection is low. This probability is , and so 

we may use: 

This assumes a random sample of a population. The biased form of Simpson’s 
diversity is: 

Advantages and properties: 
• For m=2, E(S ) = Simpson’s unbiased diversity index (Smith & Grassle 1977)n

Simpson’s index is an unbiased estimator. 
Problems: 

- ignores species occurring only once. Pays little attention to rare species. 
- cannot be decomposed into hierarchical diversity. 

Simpson’s paradox P{A|C} < P{B|C} and P{A|-C}< P{B|-C} but P(A) > P(B). Agresti (1996) 
presents the example of capital punishment in Florida in which the percentage of black 
capital defendants being given the death penalty (A) is lower than the percentage of 
white capital case defendants being given the death penalty (B). But, when the cases are 
partitioned into those with a white victim and those with a black victim, the percentage 
of blacks given the death penalty is higher than whites. cf. ecological fallacy, 
http://plato.stanford.edu/entries/paradox-simpson/ and 
http://www.cawtech.freeserve.co.uk/simpsons.2.html 

http://plato.stanford.edu/entries/paradox-simpson/
http://plato.stanford.edu/entries/paradox-simpson/
http://www.cawtech.freeserve.co.uk/simpsons.2.html
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Singular value decomposition (SVD) All matrices can be decomposed as the product of three 
component matrices: U*S*V’. S is a diagonal matrix of singular values (i.e., the off-
diagonal elements are 0s). The columns of U and the rows of V are orthogonal. The ratio 
of the largest to the smallest singular value is the condition number of the matrix. Ill 
conditioned matrices have large condition numbers (usually in the thousands) and are 
said to be not of full rank. SVD is the method of choice for creating the powers of 
matrices. If P is a matrix and Q*D*R’ is the singular value decomposition of P, then 
Q*D 10*R’ =P 10. The k’th power of the diagonal matrix D is computed by raising each 
diagonal element to the kth power. The best low dimensional display of a matrix in a 
least squares sense is created using the SVD. This is the basis of Eckart & Young’s 
(1936) theorem. See: 
http://mathworld.wolfram.com/SingularValueDecomposition.html 

Sink species Where individuals of a species use a habitat where their carrying capacity is less 
than zero, that species is a sink species (Rosenzweig 1995, p. 260, Pulliam 1988) 

Skewness the skewness of a pdf is the 3rd moment about the mean. A symmetric pdf has a 
skewness of 0. Lognormal pdfs are skewed to the right 
http://mathworld.wolfram.com/Skewness.html cf., kurtosis 

Snedecor, George W 1882-1974. Described the F distribution and named it for Fisher. Author 
of a famous statistics textbook (with Cochran). 

Somers’ D(C |R ) and D (R |C ) Somers’ D(C|R) and Somers’ D(R|C) are asymmetric 
modifications of Kendall’s tau-b. C|R denotes that the row variable X is regarded as an 
independent variable, while the column variable Y is regarded as dependent. 
http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap28/sect20.htm 

Spearman’s ñ A distribution-free, rank-based correlation coefficient. Equivalent to 
Pearson’s r after data converted to ranks. Cf., Kendall’s ô 

Specificity See also ROC curve 
Sphericity A form of variance-covariance matrix assumed by repeated measures ANOVA 

Departures from sphericity are assessed using , and F test statistics are assessed with 

numerator and denominator df adjusted in direct proportion to . Huyhn-Feldt and 

Greenhouse-Geisser are two adjustments of df for departures from sphericity, with the 
latter being judged conservative. Prof. William Ware provided this post on the sphericity 
assumption to sci.stat.edu (8/26/96) “Said assumption is relevant in “within subject” 
designs, either randomized block or repeated measures. Most statistical procedures 
assume that the errors are independent. In “independent groups” designs, this reduces to 
no association between the observations in the groups. But of course, in “dependent” 
samples designs, it is the correlations among the observations that we are employing to 
reduce the error terms... However, if the correlations are assumed to arise from the 
“subject” effects, then it implies that all of the pair-wise covariances between treatments 
should be equal to one common value. Thus, the assumption of sphericity is met is the 
variance/covariance matrix is consistent with the data having been drawn from a 
population in which all of the variances are equal one another, and all of the covariances 
are equal to one another. If you have multiple groups, then the “group” 
variance/covariance matrices are tested for equality prior to pooling them. The pooled 
matrix is then tested for sphericity.” See Sphericity and Compound Symmetry in the 

http://mathworld.wolfram.com/SingularValueDecomposition.html
http://mathworld.wolfram.com/Skewness.html
http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap28/sect20.htm
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ANOVA/MANOVA chapter at 
http://name.math.univ-rennes1.fr/bernard.delyon/textbook/stathome.html 

Spearman’s ñ The Pearson product moment correlation coefficient after the data have been 
converted to ranks cf., Kendall’s ô. 

Split-plot design see ANOVA, split plot 
Spurious correlation A term introduced by Pearson (1897) as noted by Schlager et al. (1998, 

p. 548): 
In a classical paper, Pearson (1897) pointed to a particular property of 
compound varialbes, such as ratios, in correlation. He showed that two 
variables that have no correlation between themselves become correlated 
when divided by a third uncorrelated variable. Pearson (1897) introduced 
the term ‘spurious correlation’ for the ‘amount of correlation which 
would still exist between the indices, were the variables on which they 
depend distributed at random’ 

Another definition from the web:  “A situation in which measures of two or more 
variables are statistically related (they cover) but are not in fact causally linked—usually 
because the statistical relation is caused by a third variable. When the effects of the third 
variable are taken into account, the relationship between the first and second variable 
disappears.” [http://www.autobox.com/spur2.html] [c.f. nonsense correlation] 

SSCP	 the sum-of-squares-and-cross-products matrix. The SSCP matrix for sites is formed by 
premultiplying a site x variable matrix times by its transpose. The (i,i)th element of the 
symmetric SSCP matrix is the sum of squares for the ith variable across sites. The (h,i)th 
element is the sum of cross-products of the hth  and ith  variables. 

Standard deviation	 The typical distance between a single number and the set’s average 
(Ramsey & Schafer 2002); the square root of the variance 

(93)


for a proportion: 

Standard error and coefficient of variation  The standard error of the sample 

mean is the sample standard deviation divided by the square root of sample size. With 
the finite population correction, (1 - n/N), with n being the sample size and N the 
population size,  the standard error of the sample mean and the coefficient of 
variation of the sample mean are: 

http://name.math.univ-rennes1.fr/bernard.delyon/textbook/stathome.html
http://www.autobox.com/spur2.html
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Statistics Statistics is defined by Sokal & Rohlf (1995) as the scientific study of numerical 
data based on variation in nature. Statistics can be used in another valid sense as the 
plural of the noun statistic, any quantity that can be calculated from observed data (e.g., 
the sample standard deviation ). Observations are used in the calculation of 

sample statistics (e.g., the sample mean  and standard deviation , which are 

estimates of population statistics or parameters (ì, ó)). Statistics are usually 
represented by Roman letters, whereas parameters are represented by Greek letters 
(Ramsey & Schafer 1997, p. 20) cf., parameter 

Stem-and-leaf plot A quick graphical display 
method invented by John Tukey. See 
http://mathworld.wolfram.com/Stem-and-
LeafDiagram.html 
Stigler’s law of eponymy “No scientific 

discovery is ever named after its 
original discoverer.” Stigler (1999, p. 
277) 

Stochastic variable 
Stopping rules There are two meanings for 

stopping rules. Jackson (1993) 
reviews tests used to decide how 
many dimensions to retain in a factor 
analysis or a PCA before rotation. 
Stopping rules also play a role in 
sequential medical trials (Armitage Figure 15. Stem & leaf diagram from Statistical 
1975), in which an investigator Sleuth 
performs statistical tests on a small 
number of subjects, and then 
sequentially adds subjects if the initial test was deemed inadequate to distinguish 
between null and alternate hypotheses. In frequentist statistics, an adjustment to 
experiment-wise error rates must be made to take into account the nature of the stopping 
rule employed. Mayo (1996) strongly criticizes Bayesian statistical inference for its 
inability to account for stopping rules. 

Structural equation modeling (SEM) A technique to create models to explain patterns of 
covariation among variables. The parameters of an SEM are usually fit by the method of 
maximum likelihood cf., factor analysis, path analysis, regression 
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Student’s t distribution A distribution that is similar to the normal distribution but accounts for 
the increased dispersion caused by having to estimate the standard deviation from the 
sample. Developed by William Gosset, who published under the nom de plum of Student 

Student’s t test A test for the difference between two means when the variances are unknown 
and must be estimated from the data. These variances are assumed to be equal in 
estimating the pooled variance. There are two forms of test: the independent samples t t 
test and the paired t test, for paired data. The probability that the observed results are 
compatible with a null hypothesis of no difference is assessed using Student’s t 
distribution. 

The problem of performing a test of mean difference with unequal variance is 
called the Fisher-Behrens problem and the Welch’s t test was developed as a 
replacement for the independent samples t test for that purpose. 

Sum of Squares Type I, II, III & IV SS as used in SPSS GLM are defined at (login as guest with 
password guest): 
http://www.spss.com/tech/stat/algorithms/7.5/ap11smsq.pdf 

Suppressor variable “In the two-predictor situation … traditional and negative suppressors 
increase the predictive value of a standard predictor beyond that suggested by the 
predictor's zero order validity.” Conger (1974) 

Survey design [Sample survey design] A survey is an observational study of a finite statistical 
population, not an experiment. Hurlbert (1984) referred to one type of survey design, 
measuring a response variable at different levels of a covariate, as a mensurative 
experiment. As A survey design describes the goals of the survey, usually to estimate 
population parameters, determines the number and manner of sampling the population or 
populations of interest. Survey design involves the allocation of sampling units, such as 
quadrat samples, with locations determined by systematic, or random sampling. Transect 
sampling is one form of systematic sampling, often including a random component, such 
as random directions or starting points for the transect or random positions along the 
transect. Cluster sampling involves sampling groups of individuals, sometimes by choice 
but usually by necessity. For example a quadrat sample of area provides a cluster sample 
of individuals within that area. Often the statistical population is divided into strata to 
allow more precise estimates of population parameters for a given sampling effort. As 
noted by Hayek & Buzas (1996), data from survey designs involving cluster sampling or 
systematic sampling can’t be pooled to estimate means and variances as if the 
observations were simple random samples; often the variance of cluster or transect 
samples differ from those calculated assuming simple random sampling. SAS has new 
procedures that will incorporate survey designs in the estimation of population 
parameters: http://support.sas.com/rnd/app/papers/survey.pdf Cf., Kendall & Stuart 
distinction between experiment & survey 

t-test Student’s t test 
test statistic Hogg & Tanis (1977, p. 255) A statistic used to define the critical region is 

called a test statistic. The critical region C is often defined as a set of values of the test 
statistic that leads to the rejection of the null hypothesis H . o

Time-series analysis In modeling time series through regression, the independence assumption 
of ordinary least squares regression is often violated. There is positive serial correlation 
in regression residuals, with nearby points in time being more similar than expected by 

http://www.spss.com/tech/stat/algorithms/7.5/ap11smsq.pdf
http://support.sas.com/rnd/app/papers/survey.pdf
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chance. This lack of independence due to positive temporal serial correlation, also called 
positive temporal autocorrelation, is that the standard errors of the estimates are too 
small. Tests based on these standard errors will have inflated Type I errors relative to 
nominal errors. There are two major solutions: adjusting the standard error to account for 
the serial correlation or to use filtering to adjust both the response and explanatory 
variables in regression. Most time-series analysis packages will have routines to fit time 
series, adjusting for autocorrelation, using maximum likelihood extimation. 

Tobit Analysis Tobit analysis is a form of generalized linear modeling, appropriate for 
censored data, e.g., data containing a large number of zeros. Tobit modeling will fit the 
non-zero data. 

Two-sided test also called two-tailed test cf., one-sided test 
Tukey-Kramer test An a posteriori test based on the studentized range statistic. It is an 

extension of Tukey’s HSD, or honestly significant difference, for unequal sample sizes. 
Type I error The error made when rejecting a true null hypothesis. The probability of Type I 

error, called the alpha level or significance level of the test, is set in advance in the 
Neyman-Pearson school of statistical inference. 

Type II error The error made when accepting a false null hypothesis. The probability of Type 
II error is called â and 1-â is the power of the test. 

Union See intersection 
Uniqueness the extent to which the common factors fail to account for the total variance of a 

variable. 
Variable From Mathworld: “A variable is a symbol on whose value a function, polynomial, 

etc., depends. For example, the variables in the function f(x,y) are x and y. A function 
having a single variable is said to be univariate, one having two variables is said to be 
bivariate, and one having two or more variables is said to be multivariate. In a 
polynomial, the variables correspond to the base symbols themselves stripped of 
coefficients and any powers or products.” 

Variance a measure of the dispersion of a variable; defined as the sum of squared 
deviations from the mean divided by the number of cases or entities. cf., standard 
deviation 

(99)


Variance inflation factor A diagnostic test for multicollinearity in multiple regression 
Venn diagrams A graphical display, usually consisting of circles on a square background which 

are used to display the intersection, union and complement of events. 
Vertex (vertices) The points or nodes in a graph. Vertices may be connected with edges. 
Wald statistic Agresti (1996, p. 88): any statistic that divides a parameter by its standard 

error and squares it is called a Wald statistic. In generalized linear models, 

parameter estimates z= /Standard error are evaluated with the standard 

normal distribution or equivalently z2 has a chi-square distribution with 
df=1; the p value is the right-tail distribution of the chi-square 
distribution. 

http://mathworld.wolfram.com/Variable.html
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WA-PLS Weighted Average Partial Least Squares see ter Braak & Juggins 
Weibull distribution 
Welch’s t test An modification of Student’s t test to test for differences in means with samples 

drawn from populations with different variances. The degrees of freedom for the test are 
adjusted by the Sattertherwaite approximation cf., Behrens-Fisher problem.Fligner-
Policello test 
http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap67/sect16.htm 

(101)


Wilcoxon rank sum test A test for difference in location or central tendency between two 
samples. The nonparametric equivalent of the independent samples Student’s t test. The 
test assumes that the samples are drawn from distributions with equal spread, equivalent 
to the equal variance assumption of Student’s t test. The p values are identical to those 
calculated from the Mann-Whitney U test, and the Mann-Whitney U and Wilcoxon’s 
rank sum test statistics can be converted exactly. The Fligner-Policello test is a rank-
based equivalent for samples with unequal spread, but it probably is only appropriate for 
large sample sizes.  Salsburg (2001) profiles Wilcoxon, a chemical engineer. 

Wilcoxon signed rank test The nonparametric equivalent of the paired-samples Student’s t test. 
WLS A Weighted Least Squares is a generalized least squares regression in which the equal 

variance assumption is relaxed. Draper & Smith (1998) is an excellent reference on 
WLS regression, which can be peformed readily with SPSS. 

Wright, Sewall Founder of quantitative population genetics with Fisher and J. B. S. Haldane. 
Invented path analysis early in his career and used this method to analyze patterns of 
inheritance. His major contribution was describing genetic drift and his shifting balance 
model of evolution. Cf., SEM See 
http://books.nap.edu/books/0309049784/html/438.html 

Yule, George Udny (1871-1951) Student of Pearson. Yule (1897) adapted Gauss’s normal 
equation approach to estimate the slope of a regression line (Stigler, 1986, p. 350). Our 
modern approach of estimating the slope and y-intercept of a least-squares regression can 
be traced to Yule (1897). Yule coined the term nonsense correlation. 

z transform The standard normal distribution is often called the z distribution. The z transform 
— subtract the mean and divide by the standard deviation — produces a transformed 
variate with zero mean and unit standard deviation. The z-score is the cut point of the 
standard normal distribution (e.g., a z-score of -1.96 corresponds to p =0.025 on the 
cumulative normal probability distribution, z-score =0.5 corresponds to p=0.5 on the 
cumulative normal probability distribution and z-score =1.96 corresponds to p=0.975 on 
the cumulative normal probability distribution. 

References 

Abramowitz, M. and I. A. Stegun, Eds. 1965. Handbook of mathematical functions with 
formulas, graphs, and mathematical tables. Dover Publications, New York. 1045 pp. [25] 

http://Sattertherwaite%20approximation
http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap67/sect16.htm
http://books.nap.edu/books/0309049784/html/438.html


Handout 2 
Intro Prob & Statistics 
Terms P. 58 of 68 

Agresti, A. 1996.  An introduction to categorical data analysis.  Wiley, New York. [15, 31, 41,

51, 56]


Armitage, 1975. Sequential medical trials, 2nd edition. John Wiley & Sons, New York. [54]


Bell, E. T. 1937.  Men of mathematics.  Simon & Schuster, New York.[22, 39]


Boesch, D. F.  1977.  Application of numerical classification in ecological investigation of water 
pollution.  Environmental Protection Agency, Ecological Research Series 
EPA-600/3-77-033.  Corvallis, Oregon.  115 pp.[?] 

Box, G. E. P and D. R. Cox. 1964. An analysis of transformations. J. Roy. Statist. Soc. B-26, 
211-243, discussion 244-252. As cited in Draper & Smith ( 1998) [8] 

Campbell, D. T. and D. A. Kenny. 1999. A primer on regression artifacts. The Guilford Press, 
New York. [10] 

Cochran, W. G. and G. M. Cox. 1957. Experimental designs. John Wiley & Sons, New York. 
611 p and tables. [5, 14] 

Cohen, J. et al. 2003. Applied multiple regression/correlation analysis for the behavioral 
sciences, third edition. Lawrence Erlbaum Associates,  Mahwah, NJ. [12] 

Conger, A. J. 1974. A revised definition for suppressor variables: a guide to their identification 
and interpretation. Educational and Psychological Measurement 34: 35-46. [?] 

Draper, N. R. and H. Smith.  1998.  Applied Regression Analysis, 3rd  Edition.  John Wiley & 
Sons, New York. 706 p, with data diskette. [8, 19, 28, 34, 51, 57, 58] 

Eckart, C. and G. Young. 1936.  The approximation of one matrix by another of lower rank. 
Psychometrika 1: 211-218. [52] 

Fager, E. W. 1957.  Determination and analysis of recurrent groups.  Ecology 38: 586-595. [45] 

Freedman, D, R. Pisani and R. Purves.  1998. Statistics, 3rd  edition.  Norton, New York. [This is 
a wonderful introduction to probability and statistics.  It is very elementary though, and 
the authors’ avoidance of any equations really limits the book’s usefulness][47] 

Galton, F. 1877.  Typical laws of heredity. Nature 15: 492-495. [?]


Galton, F. 1886.  Family likeness in stature.  Proc. Roy. Soc. London 40: 42-73. [45]


Galton, F. 1888.  Co-relations and their measurement, chiefly from anthropological data.  Proc.

Roy. Soc. London. 45: 133-145.  [12] 



Handout 2 
Intro Prob & Statistics 
Terms P. 59 of 68 

Gauss, C. F. 1822.  Awendung der Warhsceinlichkeitsrecnung auf eine Aufgabe der practischen 
Geometrie.  Astronomische Nacricten , vol. 1/6, cols 81-86.  [Full citation in Stigler 
1999, p. 445] [36, 45] 

Golumbic, M. C.  1980.  Algorithmic graph theory and perfect graphs.  Academic Press, New 
York. [36, 45] 

Gondran, M. and M. Minoux.  1984. Graphs and algorithms.  John Wiley and Sons, New York. 
[18] 

Gower, J. C.  1966.  Some distance properties of latent root vector methods used in multivariate 
analysis.  Biometrika 53:  325-338.  [?] 

Greenacre, M. 1984. Theory and Application of correspondence analysis.  Academic Press, 
Orlando.[12] 

Harman, H. H. 1967. Modern Factor Analysis. Univ. Chicago Press, Chicago & London. 474 pp. 
[19] 

Hogg, R. V. and E. A. Tanis. 1977.  Probability and statistical inference. MacMillan publishing, 
New York. 450 pp. [7, 10, 14, 18, 19, 26, 29, 40, 45, 55] 

Holcomb, W. L., T. Chaiworapongsa, D. A. Luke and K. D. Burgdorf. 2001. An Odd Measure of 
Risk: Use and Misuse of the Odds Ratio. Obstetrics & Gynecology 2001;98:685-688. 
[48] 

Hosmer, D. W. and S. Lemeshow. 2000. Applied logistic regression, 2nd Edition. John Wiley & 
Sons, New York. 373 pp. [49] 

Hurlbert, S. M.  1971.  The non-concept of species diversity:  a critique and alternative 
parameters.  Ecology 52:  577-586. [17, 25] 

Jackson, D. A. 1993.  Stopping rules in principal components analysis: a comparison of 
heuristical and statistical approaches.  Ecology 74: 2204-2214. [49] 

Jardine, N. and R. Sibson.  1968.  The construction of hierarchic and nonhierarchic 
classifications. Computer J. 11:  177-184. [?] 

Kemeny, J. G. and J. L. Snell.  1976.  Finite Markov chains.  Springer-Verlag, New York, New 
York, U.S.A.  [18, 23] 

Kendall, D. G. 1969.  Some problems and methods in statistical archaeology.  World 
Archaeology 1: 68-76. [?] 



Handout 2 
Intro Prob & Statistics 
Terms P. 60 of 68 

Kendall, M. G. and A. Stuart. 1979. The Advanced Theory of Statistics, Vol. 2.  Hafner, New 
York. [11, 20, 33, 48] 

King, G. 1997. A solution to the ecological inference problem: reconstructing individual 
behavior from aggregate data. Princeton University Press, Princeton NJ. 342 pp. [16] 

Larsen, R. J. and M. L. Marx. 2001.  An introduction to mathematical statistics and its 
applications, 3rd  edition.  Prentice Hall, Upper Saddle River, NJ . [ 12, 20, 41, 43] 

Larsen, R. J. and M. L. Marx. 2006.  An introduction to mathematical statistics and its 
applications, 4th  edition.  Prentice Hall, Upper Saddle River, NJ . 920 p. [ 44] 

Leathwick, J. R.  and M. P. Austin. 2001. Competitive interactions between tree species in New 
Zealand’s old-growth indigenous forests. Ecology 2560-2573. [23] 

Legendre, A. M. 1805.  Nouvelles méthodes pour la détermination des orbites des comètes. 
Paris: Courcier [See full citation in Stigler 1986, p. 388] [28, 36, 45] 

Legendre, P. and L. Legendre. 1998.  Numerical Ecology, 2nd English Edition, Elsevier, 
Amsterdam.  853 pp. [21, 47] 

Legendre, P. and E. Gallagher. 2001.  Ecologically meaningful transformations for ordination of 
species data.  Oecologia: 129: 271-280. [12] 

Lehmann, E. L. 2006. Nonparametrics. Statistical methods based on ranks,  Revised First 
Edition. Springer, New York. 463 pp. [6] 

Mayo, D. G. 1996.  Error and the growth of experimental knowledge. University of Chicago 
Press, Chicago & London. 493 pp. [54] 

McCulloch, C. E. And S. R. Searle. 2001. Generalized, linear, and mixed models. John Wiley & 
Sons, New York. 325 pp. [24, 44] 

Mead, R. 1988. The design of experiments. Cambridge University Press, Cambridge. 620 p.[14, 
15] 

Nahin, P. J. 2002.  Duelling idiots and other probability puzzlers.  Princeton University Press, 
Princeton N.J. [25] 

Neter, J, M. H, Kutner, C. J. Nachtsheim and W. Wasserman. 1996. Applied linear statistical 
models. Irwin, Chicago. 1408 pp. with data diskette. [14] 

Pearson, K. 1897. On a form of spurious correlations which may arise when indices are used in 
the measurement of organs. Proc. Roy. Soc. London 60: 489-502. {Cited by Schlager et 
al. (1998)}[53] 



Handout 2 
Intro Prob & Statistics 
Terms P. 61 of 68 

Pielou, E. C. 1969. An introduction to mathematical ecology. Wiley-Interscience, New York. 
[51] 

Pielou, E. C. 1984. The interpretation of ecological data: a primer on classification and 
ordination. John Wiley & Sons, New York.  Read pp. 13-81  [44] 

Pielou, E. C. 1984. The interpretation of ecological data: a primer on classification and 
ordination. John Wiley & Sons, New York. [44] 

Popper, K. R. 1959.  The Logic of Scientific Discovery.  Hutchinson & Co., London. [40] 

Pulliam, H. R. 1988.  Sources, sinks, and population regulation.  Amer. Natur. 132: 652-661. [p. 
52] 

Ramsey, F. L. and D. W. Schafer. 1997.  The statistical sleuth: a course in methods of data 
analysis. Duxbury Press, Belmont CA. 742 pp. [4, 11, 18, 24, 26, 27, 38, 44, 45, 48, 51, 
54] 

Ramsey, F. L. and D. W. Schafer. 2002. The statistical sleuth: a course in methods of data 
analysis, 2nd Edition. Duxbury Press, Pacific Grove CA. 742 pp. [3, 4, 10, 11, 18, 24, 26, 
27, 30, 38, 44, 45, 48, 51, 53, 54] 

Robert, C. P. and G. Casella. 1999. Monte Carlo statistical methods. Springer-Verlag, New 
York. 507 pp. [6] 

Roberts, F. S.  1976. Discrete mathematical models with applications to social, biological, and 
environmental problems.  Prentice-Hall, Englewood Cliffs, New Jersey. [2, 31] 

Robinson, W. S. 1950. Ecological correlation and the behavior of individuals. American 
Sociological Review 15: 351-357. [16] 

Rosenzweig, M. L. 1995.  Species diversity in space and time.  Cambridge University Press, 
Cambridge. [p. 52] 

Salsburg, D.  2001. The lady tasting tea: how statistics revolutionized science in the twentieth 
century. W. H. Freeman & Co., New York.  340 pp. [57] 

Schlager, W., D. Marsal, P. A. G. van der Geest, and A. Sprenger. 1998. Sedimentation rates, 
observation span, and the problem of spurious correlation. Mathematical Geology 30: 
547-556. [p.53, 60] 

Shmida, A. and S. Ellner. 1984. Coexistence of plant species with similar niches. Vegetatio 58: 
29-55. [p. ?] 



Handout 2 
Intro Prob & Statistics 
Terms P. 62 of 68 

Shmida, A. and M. V. Whittaker. 1981.  Pattern and biological microsite effects in two shrub 
communities, southern California.  Ecology 62: 234-251. [p. ?] 

Shmida, A. and M. V. Wilson. 1985.  Biological determinants of species diversity.  J. 
Biogeography 12: 1-20. [p. ?] 

Smith, W. and J. F. Grassle.  1977. Sampling properties of a family of diversity measures. 
Biometrics 33: [51] 

Sokal, R. R. and F. J. Rohlf.  1995. Biometry, 3rd  Edition.  W. H. Freeman & Co., New York. 887 
pp. [A top-notch guide to statistics with many biological examples.  This text does a 
particularly good job with one-way ANOVA. and multiple-comparison tests][34, 54] 

Stevens, S. S. 1951. Mathematics, measurement, and psychophysics. Pp. 21-30 in S. S. Stevens, 
ed. Handbook of Experimental Psychology. Wiley, New York. [31] 

Stigler, S. M. 1986.  The history of statistics: the measurement of uncertainty before 1900. 
Belknap Press, Cambridge. [10, 12, 15, 28, 35, 36, 57] 

Stigler, S. M. 1999. Statistics on the Table.  Belknap Press, Cambridge.[36, 45, 46, 54] 

Tabachnick, B. G. & L. S. Fidell.  2001. Using multivariate statistics, 4th Ed. Allyn & Bacon, 
Boston. 966 pp. [16, 43] 

Thompson, I. M., D. P. Ankerst, C. Chi, M. S. Lucia, P. J. Goodman, J. J. Crowley, H. L. Parnes, 
C. A. Coltiman. 2005. Operating characteristics of prostate-specific antigen in men with 
an initial PSA level of 3.0 ng/ml or lower. J. Amer. Med. Assoc. 294: 66-70.[50] 

Toothaker, L. E. 1993. Multiple comparison procedures. Sage Publications, Newbury Park, CA. 
96 pp. [16] 

Torgerson, W. S. 1952.  Multidimensional scaling: I. Theory and method. Psychometrika 17: 
401-419.[?] 

Vellman, P. F. and Wilkinson, L. 1993. Nominal, ordinal, interval and ratio typologies are 
misleading. The American Statistician, 47(1), 65-72. [?] 

Yule, G. U. 1897.  On the theory of correlation.  J. Roy. Stat. Soc. 60: 812-854. [45, 57] 

Van Kampen, N. G.  1981. Stochastic process in physics and chemistry.  North Holland, 
Amsterdam.[31] 

Index 



Handout 2

Intro Prob & Statistics

Terms P. 63 of 68


'at least one'  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 34

40 ,5 ,2accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 


adjusted R-squared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

alpha level  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 20, 22, 34, 49, 56

alternative hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

ANCOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 


-22 ,16 ,14 ,9 , 2-5ANOVA . . . . . . . . . . . . . . . . . . . . . . . . 

hierarchical  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

Model II  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24


62 ,53 ,52 ,47 ,44 ,43 ,35 ,34 , 27-30 ,24


35 ,4nested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

one 62 ,28 ,27way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   


autocorrelation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Axiomatic probability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 41

Bartlett’s test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

Bayes theorem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 40

Bayesian inference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 23

Behrens 57 ,49 ,22 ,7Fisher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Bernoulli trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 26

Beta distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

bias  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

Binomial distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 22, 35, 40

Binomial theorem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 


62 ,7Biometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Birthday problem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 


56 ,45 ,30 ,15 ,12 ,7ariate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .biv 

Bonferroni multiple comparison procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 34


34 ,27 ,8ootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B 

Boxplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Box-Cox transformation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 9

canonical correlation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

categorical data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Cauchy distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

causation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

censored data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 56

census . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 20, 44

Central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chebyshev’s inequality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chi square distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Classical probability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

cluster effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

cluster sampling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 55

Coefficient of determination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11


49 ,43 ,27 ,21 ,11 ,7combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

35 ,29 ,11combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

56 ,26 ,15 ,11 ,2complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 




Handout 2

Intro Prob & Statistics

Terms P. 64 of 68


Conditional probability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 31

Confidence interval  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 11

Confounding variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 38

Consistent estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 19

contingency table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 16

Continuous probability function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Cook’s distance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Corner test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

correlation  . . . . . . . . . . . . . . . . . .  10, 12, 13, 16, 22, 23, 27, 34, 35, 39, 43, 51-53, 55-58, 61, 62


61 ,60 ,53 ,38 ,35spurious . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

correspondence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 12, 59


52 ,43 ,24 ,21 ,13 ,12 ,8 ,4 , cov  ariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

covariate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

critical region  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 55

critical value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Data mining  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 5, 8, 15, 21, 28, 43, 49, 52, 56, 57

deviance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

DFFITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Discrete probability function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

discriminant analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 22

Distributions


bivariate normal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 12

empirical  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20


52 ,21F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

23 , gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22


geometric  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Gompertz  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

hypergeometric  35 ,26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

lognormal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

negative binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35


55-57 ,36 ,35 ,24 ,12 ,7normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

40 ,39 ,35Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 


posterior  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Weibull distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57


Duncan’s test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Durbin-Watson test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 51

Ecological fallacy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 51


47 ,15 ,6 ,5Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

efficient estimator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 19

empirical distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Empirical rule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

error sum of squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 40, 47

Estimator
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maximum likelihood  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 31

Expected value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 7, 13, 19, 21, 35, 40


55 ,54 ,49 ,42 ,41 ,36 ,34 ,33 ,22 ,20 ,15 ,10 ,8 ,7 ,2Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 

experimental design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 20, 22, 38

experimental unit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

extra-binomial variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

F-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 28


extra-sum-of-squares  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Lack-of-fit  28 ,27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 


factor analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 31, 50, 54, 59

Fermat  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 39, 41


57 ,55 ,52 ,49 ,29 , 21-23 ,15 ,7 ,3 ,2Fisher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Fisher’s exact test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

forward selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Friedman’s test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Galton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12, 23, 45, 46, 58


59 ,45 ,36 , Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

Gaussian curve  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

General linear model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 24, 25, 41, 43, 55

generalized linear model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 15, 24, 25, 30, 40

Geometric series  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

GLS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 25

Goodness of fit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 15, 25


55 ,25osset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .G 

29 ,25heteroscedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 


homogeneity of variance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 8

honest significant difference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 56

Hotelling’s T-squared test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 34

independence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 26, 47, 55, 56

independent trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 26


56 ,26 ,15 ,2intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

inter-quartile range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

IQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 


27 ,8Jackknife . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Kruskal 27 , Wallis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23


52 ,27kurtosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

28 ,10 ,6aplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .L 


Latin Squares  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Least significant difference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 30, 34

least squares  . . . . . . . . . . . . . . . . . . . . . . .  16, 24, 25, 27-29, 35, 36, 38, 39, 45, 47, 50, 52, 55, 57

Legendre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12, 21, 28, 29, 33, 36, 43, 45, 47, 49, 60

level of significance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Levene’s test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 9, 29


48 , leverag  e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

56 ,54 ,41 ,33 ,31 ,29 ,22 ,19 ,17 ,15 ,12 ,9 ,8 ,4likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Likelihood function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 19, 29, 31

Likelihood ratio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

linear combination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 24, 29, 30, 34, 43

linear contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 30, 38

Linear model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 4, 8, 9, 15, 24, 25, 30, 40

Linear regression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 38, 39, 45

Logistic regression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 30, 38, 41, 59

logit  41 ,30 ,5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Mallow’s Cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 30

Mann-Whitney U Test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 57

Markov chain  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 18, 22, 23, 30


30 ,25 ,23 ,2absorbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

30 ,22 ,18odic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .erg 


Markov process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30


36 ,35 ,22 ,12Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Maximum likelihood  . . . . . . . . . . . . . . . . . . . . . . . . . 4, 8, 9, 12, 17, 19, 22, 29, 31, 33, 41, 54, 56

MDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

mean square  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 14, 28, 30, 48


31 ,29 ,9Median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Method of least squares  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 29

Mill’s cannons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Mixed model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 24, 33

Mode  44 ,43 ,40 ,21 ,18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Modus tollens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 36 
Monty Hall problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
Multicollinearity 

variance inflation factor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 56

multinomial distribution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Multiple comparison tests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 30

Multiple correlation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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