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Understanding by Design Templates 

Understanding By Design Stage 1 — Desired Results Week 1 

LM Chapter 1 Introduction 
G Established Goals 
•	 Using Matlab for scientific computing & graphics 
•	 Graph data using bar charts and scatter plots with regression lines (will be covered in 

depth in later weeks) 
U Understand 
•	 Statistics, among other things, is applied probability and a method for separating 

chance variability from real patterns in nature 
Q Essential Questions 
•	 What is an algorithm? 
K Students will know how to define (in words or equations) 
•	 algorithm 
S Students will be able to 

st•	 Get Matlab running for the 1  time.
•	 Write their first Matlab programs 
•	 Plot their first graph in Matlab and create a Word, rtf of Word processing document 

incorporating that figure. 
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Understanding by Design Stage 2 — Assessment Evidence Week 1 

Read LM Chapter 1 Introduction, start on chapter 2 & Handout 5 
•	 Post in the discussion section by 6/9/11 W 

• Watch the 1-h video the joy of statistics & post a comment on the online 
discussion http://www.gapminder.org/videos/the-joy-of-stats/ 

•	 Problems due Wednesday 6/9/11 W 10 PM 
•	 Each problem must be solved using Matlab 
•	 Basic problems (4 problems 10 points) 

•	 Problem 1. S&P 500 stock prices Go the web and download 2 years 
months of S&P 500 closing prices and graph them 
•	 http://finance.yahoo.com/q/hp?s=%5EGSPC+Historical+Price 

s 
•	 You may have to use a spreadsheet program to get dates on the 

plot, but dates aren’t required. You can add dates to fulfill 
Advanced Problem 1 below 

•	 Problem 2. Analyze the S & P 500 closing prices with runs2.m and 
compare with the pattern in Table 1.2.2 in the text. Report on the results. 
Use LMcs010201_4th.m as a model. 

•	 Problem 3. Case Study 1.2.2 a) Calculate the sample median for the data 
presented in Table 1.2.3 Use my case study 1.2.2 as a guide b) plot a 
histogram with the sample median and expected values as vertical lines, 
c) transfer the histogram to a Word processor document 

•	 Problem 4. Find a particularly good graphic display of quantitative 
information from the popular press or the scientific literature (do a 
google scholar search under an area of research that interests you). Cut & 
paste it into your homework submission. Describe why the graphic is 
good 

•	 Advanced problems (2.5 points each) 
•	 Problem 1. In graph 1, replace the numbers on the x axis with actual 

dates (use the Matlab help file for datetick) 
•	 Problem 2. Plot the data in Table 1.2.4 as histograms after converting the 

data to percentages so that each month’s admissions sum to 100% 
•	 Master problems (1 only, 5 points) 

•	 Go to the USGS website (see help documentatior for earthquakes_LA.m 
or earthquakes_Japan.m and download the earthquake data for a region 
of interest to you (Boston, Haiti, London, Helena Montana). Does the 
Gutenberg-Richter relationship work? Just plot the data. No need for a 
formal test of significance. Note that there is only data compiled since 
1973 (38+ years). I created a 2 degree or 5 degree latitude and longitude 
box for my data requests depending on the locality to ensure getting 
sufficient numbers of earthquakes. 

Watch%20the%20video%20the%20joy%20of%20statistics%20http://www.gapminder.org/videos/the-joy-of-stats/
http://finance.yahoo.com/q/hp?s=%5EGSPC+Historical+Prices
http://finance.yahoo.com/q/hp?s=%5EGSPC+Historical+Prices
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Introduction 

Welcome to the class. During the first week of class, the goals are rather modest. Begin reading 
the text (Read Chapter 1 and start on the very long chapter 2) and begin familiarizing yourself 
with Matlab. The most important task is to run the Matlab tutorial and play with the program to 
start getting familiar with the program. I do mean play. Try out different commands. Use the 
help file to find examples of Matlab code and run those. Run examples of my program. Make 
some pretty graphs. 

Handout 2 and 3 are reference handouts. Handout 2 includes definitions of statistical terms and 
concepts. Maybe half of the terms will be covered in this course, but you’ll come across others 
in your future work. I’ve provided Handout 3 which lists most of the Matlab functions that will 
be used in the hundreds of Matlab m.files that we’ll be using this semester. 

Start Reading Chapter 2. Chapters 2 and 3 are the longest and most difficult in the book. Don’t 
get discouraged with these chapters. As you read the chapters, follow along my annotated outline 
included in each handout. As you read the handouts, you’ll come across highlighted words, when 
I wrote and edited these handouts, I created hypertext links for all of the references and many of 
the terms. Click on the term to find the definition. To return to your original poistion in the pdf 
document from within a pdf reader, use the alt-left arrow combination of keystrokes, that is the 
pdf reader equivalent of the back arrow on a web browser. Alt-right arrow is the equivalent of a 
web browser’s forward arrow. I’ve inserted the Matlab m.file code for most of the examples and 
most of the case studies. You’ll never have to transcribe m.files. I distribute two zipped files for 
the course: EEOS601 and LMfiles. The first includes over one hundred utility m.files and m.files 
not specific to the text, and LMfiles includes script m.files for most of the case studies, examples 
and even figures in the text, labeled as Lmex*.*, Lmcs*.* and LMFig*.* 

I have handouts prepared for each chapter in the book, which roughly corresponds to each week 
of the 10-week class. At the start of each of these handouts, I provide the Understanding by 
Design templates for the week. Then, I discuss some of the more important concepts, case 
studies and examples from the text. I’ll often go beyond the text and discuss the application of 
these concepts for my own work in the analysis of marine benthic communities. 

Examples and Case Studies 

Earthquakes & Matlab 

Figure 1.1.1 in the text covers a very interesting example of Matlab, plotting Southern California 
earthquakes on the Richter scale. If the average number of earthquakes for a year are plotted vs. 
the Magnitude of the quake, the points fall along a straight line. In my program 
earthquakes_LA.m, I provide an updated analysis of Southern California earthquakes. I 
searched online and found several databases for earthquakes, with this being the best for 
Southern California: http://earthquake.usgs.gov/earthquakes/eqarchives/epic/epic_rect.php. I 

http://earthquake.usgs.gov/earthquakes/eqarchives/epic/epic_rect.php


 

EEOS 601 
Prob & Applied Sttistics 
Week 1, P. 6 of 26 

downloaded all of the data from 
1973 through 2010 and produced 
Figure 1. The major difference 
between this figure and the text’s is 
that I’ve plotted all of the 
earthquakes of magnitude 2 or above 
within 1 degree latitude and 
longitude of LA  (LA is -118.25, 
34.05), producing a slope 
considerably more gradual than that 
in the text. Figure 2 shows the fit of 
the Gutenberg-Richter relation for Figure 1. A reanalysis of Southern California earthquake 
earthquakes �Richter scale 4. data with analysis from earthquakes_LA.m 

Figure 2. A reanalysis of Southern California earthquake 
data with analysis from earthquakes.m Only earthquakes of 
magnitude 4 or greater are plotted, producing a steeper 
slope than the previous figure and one comparable to the 
text. 
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Larsen & Marx fit the data using 
natural logarithms. A more 
interesting fit is obtained if the data 
are analyzed on the log10 scale as 
shown in Figure 3. The general 
pattern is that no matter where in the 
world earthquake data are obtained, 
the slope of this relation is roughly 
-1. In the case of LA earthquake 
data, the slope is the slope is  
0.79 ± 0.15. 

Figure 3. A reanalysis of Southern California earthquake 

With the USGS database, I can data with analysis from earthquakes_LA.m Only 

download data from any latitude and earthquakes of magnitude 4 or greater are plotted. When 

longitude around the world. Figure 4 plotted on a semilog plot with base 10 logs, the slope is 

shows the Gutenberg-Richter usually about -1, but in this case the slope is about 

relation for Japan, 0.79 ± 0.15. 

with and without the 
magnitude 9 
earthquake of 11 
March 2011.  Without 
that Richter 
Magnitude quake, the 
regression model 
predicts a magnitude 
9 quake about once 
every 130 years. 
We’ll be covering Figure 4. The Gutenberg-Richter relation for a 5 degree latituden and 
regression in Chapter longude box centered on the March 11 2011 Magnitude 9 quake in Japan. 
11 and Week 11 in I fit the line with an without that datum. The probability of a magnitude 9 
the course. quake went from once per 133 years to about once per century. Of course 

in this 38-year database, the actual datum of once per 38 years is plotted 
for this earthquake, which is one of the largest in recorded history. 

A note on figures 

Matlab graphics have always been optimized for display as encapsulated postscript files. When I 
generate a figure in Matlab, I usually export the figure as an eps file, short for encapsulated 
postscript. These eps files provide the commands for Adobe software to redraw the graphs using 
lines and fonts. Most Windows programs expect bitmapped graphics, where a picture is 
submitted to the program. When eps files are expanded, the fonts and lines remain jagged, but 
bitmapped graphics become ragged. When Matlab exports eps files it includes a bitmapped 
graphic version of the figure. So, when I see the figure in my word processor (WordPerfect), I 
see the bitmapped graphic. When I make a pdf of the file, the graphic is converted by my Adobe 
Acrobat Pro to a high resolution vector graphic. 



 

     

Figure 5. Closing prices for the S & P 500 from F
17, 1994 to February 9, 1996 from Yahoo.
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The Stock Market, Runs & Matlab 

Case Study 1.2.1 provides an interesting statistical analysis. In the problem, the closing price 
from February 17, 1994 to February 9 1996 are analyzed for runs. I’ve programmed these data in 
LMcs010201_4th below These data and most other stock price data can be downloaded from 
http://finance.yahoo.com/q/hp?s=^GSPC+Historical+Prices. The key questions to be asked 
of these data are, “If the stock market goes up today, what is the probability that it will go up 
tomorrow?” and “Is the pattern of upturns and downturns consistent with a random, memory-less 
model?” 

First, let’s take a look at the data, 
shown in Figure 5. There is a general 
positive trend in the data leading one 
to suspect that in analyzing the day-
to-day variation that there should be 
far more upturns than downturns. Or, 
so one might expect. 

I kept the previous graph close to the 
Matlab defaults, but the default 
settings in Matlab often leave the 
axis legends to small to read. Matlab 
uses a programming convention 
common to C++ and other structured 
programming languages in that the 
graph is created by the program and 
then the children of the graph — the 
axes, legends, points, type of data 
plotting symbol, and line widths — 
are adjusted in a set of statements. In 
reading my programs, bear that in mind. One of the nice features about Matlab, once you get 
used to it, is that virtually every component of the graph can be programmed. This can produce 
long programs but very nice graphs. One nice improvement in the previous graph would be to 
have the calendar dates on the graph. I’ve done that in Figure 6. 

In the text, the authors calculate just the downturns in the stock market. In my program, 
runs2.m, which calls Daniel Kaplan’s runs.m from the resampling toolbox for Matlab (a very 
nice set of programs), the total number of runs, including the number of positive and negative 
runs (and ties) is calculated. The program ties2.m returns the information that there were 242 
runs in the data set, including 121 positive runs and 121 negative runs. This analysis has already 
answered one of our questions, the daily upturn and downturn in the market for this period was 
as random as the tossing of a fair coin despite the nearly 200 point rise in the S & P 500 during 
this period. The second question deals with the run length. Are the lengths of runs consistent 
with a memory-less process, where the probability of an upturn or downturn is independent of 
the previous history of the stock price? Larsen & Marx provide the following equation to predict 

ebruary 

Figure 6. Closing prices for the S & P 500 from February 
17, 1994 to February 9, 1996 from Yahoo. 

http://finance.yahoo.com/q/hp?s=^GSPC+Historical+Prices
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the expected probabilities of runs of different lengths dependent upon the probability of an 
k-1 kupturn or downturn on each day: p(k) =  p  (1-p) , where k is the length of run. We can apply 

that equation with p=0.5 to see how closely the observed run lengths (both up and down) 
compare to the expected run lengths: 

No. of Runs Observed 
1 121 

Expected
121

 2 48  60.5000
 3  43  30.2500
 4 12  15.1250
 5  9  7.5625
 6 8  3.7813
 7 0  1.8906
 8 0  0.9453
 9 0  0.4727

 10 0  0.2363
 11 0  0.1182
 12 1  0.0591 

As shown in Figure 7 and the above 
table, the fit seems quite good, 
matching the number of runs of 
length 1 exactly. There was one 
remarkable run of 12 straight days of 
increase which was not fit well by 
the model.  Note that Larsen & 
Marx’s Table 1.2.1 was modeling 
just the downturns in the stock 
market. Figure 7. The observed length of runs from the S & P 500 

from February 17, 1994 to February 9, 1996 (data from 
Now, as noted by Larsen and Marx, Yahoo) and the expected pattern of runs if the probability 
there may be a better fit to the of an upturn is equal to the probability of a downturn on 
number of runs if we p(k) =  pk-1 (1- each day. 
p)k . There are a large number of 
possible ways to find a value of p which will provide a better fit to the data. One way is to just 
enter different values for p and do a ‘chi-by-eye’ fit to see which p provides a set of histograms 
closer to the observed data. The chi in that expression (from Press et al.’s Numerical Recipes) is 
for the chi square test, which we’ll cover in chapter 10. The chi-square statistic is one of the 
standard ways for fitting models to data. The Chi-square statistic is the sum of the 

2(observed-expected) /expected for every observed datum. So, we can find the value of p that
provides the closes fit to the data by minimizing chi square. We could try a brute-force 
procedure by plugging different values of p into the equation and the solving for chi square, or 
we could use a graphical procedure to find the p value that finds the minimum chi square on a 
graph, we could use a Matlab minimization routine. I’ve worked with all 3 approachs, and the 
final version of the program calls Matlab’s fminbnd.m, which finds the value of p that 
minimizes the chi-square statistic. This routine is only used a few more times in the course 



(listed on Handout 3) and is not one 
of the methods described in the text. 
For standard probability models, 
there are more conventional way of 
finding estimates of model 
parameters. With this minimization 
routine, it turns out that a p 0.5556 
will produce an expected pattern of 
runs that is a closer fit to the data. 
This pattern is shown in Figure 8 and 
the observed and expected number 
of runs is shown below: 
Observed Expected


(p=0.5556)

121  115.5389

 48  60.3768

 43  31.5509

 12  16.4874

 9  8.6158

 8  4.5023

 0  2.3528

 0  1.2295

 0  0.6425

 0  0.3357

 0  0.1754

 1  0.0917
 

As we’ll cover in Chapter 10 (Week 
10 of the course), the chi-square test 
is usually modified so that the 
expected value in each category is 
greater than 5. This is done by 
combining adjacent categories. In 
the S & P 500 data, there are a 
number of categories with expected 
values less than 5. I modified the 
program so that it would fit the p 
value with this constraint. This was a 
little tricky, since the number of 
categories is a function of the p 
value. But, the result was that with a 
p value of 0.5226, the chi-square 
statistic was minimized. The results 
are shown in Figure 9 and the 
following table: 
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Figure 8. The observed length of runs from the S & P 500 
from February 17, 1994 to February 9, 1996 (data from 
Yahoo) and the expected pattern of runs if the probability 
of an upturn is equal to the probability of a downturn on 
each day. Also shown is the expected pattern of runs if the 
probability of a run persisting is p = 0.5556, which 
provides a better fit to the data. 

Figure 9. The observed length of runs from the S & P 500 
from February 17, 1994 to February 9, 1996 (data from 
Yahoo) and the expected pattern of runs if the probability 
of an upturn is equal to the probability of a downturn on 
each day. The categories have been pooled so that the 
model expected values are equal to or greater than 5. Also 
shown is the expected pattern of runs if the probability of a 
run persisting is p = 0.52266, which produces the minimum 
chi-square statistic indicating the closest fit between model 
predictions and observations. 
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Observed  Expected

121  115.5389

 48  60.3768

 43  31.5509

 12  16.4874

 18  17.9457
 

Using techniques described in Chapter 10 (Week 10), the probability of observing results as 
different from the predictions of the null hypothesis or more extreme in their differences form 
the null hypothesis can be determined by examining the value of the chi-square statistic relative 
to cumulative Chi-square probability distribution with 3 degrees of freedom. This probability, 
called the p-value, is 0.0426, which indicates that the memoryless property of our model is not 
an adequate fit for these data. All other values of p, the probability of a run continuing for a 2nd 

day produce lower p values and are an even less likely choice for model parameter if the goal is 
the minimize the difference between model predictions and observations. 

Case Study 1.2.2 Golden rectangles 

Golden rectangles have the property 
that the width to length ratios equal 
the length divided by the width plus 
length. Is the ratio of Shoshone 
Indian beaded  rectangles equal to 
0.618, the golden ratio? Figure 10 
shows the ratio and the Golden ratio 
expectation.  One of the questions 
we’ll be addressing at several points 
in the course is whether departures Figure 10. The observed width-to-length ratios of 

from expectation as severe as those rectangles in Shoshoni beads plotted with the expected 

shown in the figure could have been ratio from the Golden rectangle. Also plotted is the mean 

due to chance. width to length ratio for the Shoshone beads. 

Case Study 1.2.3 Lunacy 

Figure 11. Admission rates to the emergency room of a 
Virginia mental health clinic by month and phase of moon. 

Do the admissions to the emergency 
rooms of a mental health clinic vary 
as a function of the phases of the 
moon? Figure 11 shows the 
admissions rate to a Virginia mental 
health clinic before, during, and after 
the twelve full moons from August 
1971 to July 1972. 

We will cover methods in Week 12 
of the course that will allow us to 
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assess whether the differences in admission rates are likely due to chance after accounting for 
the month-to-month differences. 

Case Study 1.2.4 Cancer Deaths in Oregon 

The Hanford nulcear reservation abuts the 
Columbia River which flows through 
Washington and Oregon. Over the years, it 
leaked radioactive material into the river. 
Table 1 shows the exposure index for the 9 
counties of Oregon that are adjacent to the 
Columbia River or Pacific Ocean. The index 
is based partially on the distance from the 
Hanford nuclear reservation. 

Figure 12 shows a graph of the 
cancer death rate versus index of 
exposure. In week 11 of the course, 
when we cover regression models, 
we’ll learn the techniques for fitting 
regression lines and judging their 
adequacy.  

Figure 12. Cancer deaths per 100,000 versus an Index of 
Exposure to the Hanford nuclear reservation. 
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Annotated outline (with Matlab scripts) for Larsen & Marx 
Chapter 1 

Chapter 1: Introduction 
Francis Galton photo 

2.1 A brief history 

Figure 1.1.1 Average earthquake number vs. Magnitude on Richter scale 
Larsen & Marx don’t provide the data for their problems. This problem involved plotting the 
frequency of earthquakes, using techniques that we will cover near the end of the course (on 
regression). I downloaded all of the earthquake data (Richter magnitude �2 )from California 
from 1973 to 2010 and fit the data in earthquakes_LA.m . This relationship is called the 
Gutenberg-Richter relationship. When frequency of quakes is plotted using log , the slope of the 10

relation should be about -1. As described in the introduction, the slope of the LA earthquake data 
is -0.79 ± 0.15. 
% earthquakes_LA.m, modeled on Bostonquakes.m 
% See Also earthquakes_Japan.m 
% Modeled after LMFig010101poissr.m & earthquakes_Haiti.m 
% Data from USGS/NEIC (PDE) 1973 - 2010 12 31 
% http://earthquake.usgs.gov/earthquakes/eqarchives/epic/epic_rect.php 
% Search 1/1/73 to 12/31/10 38 years 
% LA is -118.25, 34.05 
% LA 33.05 to 35.05 lat Long -119.25 to -117.25 
% All quakes greater than 2.0 
% a) copy data from screen to Matlab window, b) save as comma delimited 
% text file, c) open file in spreadsheet (excel or quatro pro) d) 
% delete unnecessary columns, especially last column of characters that 
% fouls up a Matlab load. e) paste Richter magnitude data into Matlab 
% editor and save. 
% Using example 4.3.5 as a model 
% Example 4.3.5 Memphis earthquakes and the Poisson distribution 
% Pp 305-306 in 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% Written Fall 2010 by Eugene Gallagher for EEOS601 Revised: 3/18/11 
% Eugene.Gallagher@umb.edu 
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html 
earthquakes_LA_38y; % calls the data file. 
Richter=4;  % Could be set to any value greater than 2 for LA quakes 
year=38; 
k=find(DATA(:,7)>=4); 
edges=Richter:.5:ceil(max(DATA(k,7))); 
N=histc(DATA(k,7),edges);bar(edges,N/year,'histc'); 
s=sprintf('LA Earthquakes >= Richter Scale %3.1f',Richter); 
title(s,'FontSize',20); 

http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
mailto:Eugene.Gallagher@umb.edu
http://earthquake.usgs.gov/earthquakes/eqarchives/epic/epic_rect.php
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set(get(gca,'Children'),'FaceColor',[.8 .8 1]); 
xlabel('Richter Scale','FontSize',16) 
ylabel('Frequency per year','FontSize',16) 
ax1=gca; 
figure(gcf);pause 
i=find(~~N);  % find only the positive values for N. 
Y=log(N(i)/year); 
X=[ones(length(i),1) edges(i)']; 
B=X\Y; 
Yest=X*B; 
% Now use Matlab's regress to produce the same regression coefficients: 
[b,bint,r,rint,stats] = regress(Y,X); 
% Note for other problems, more significant figures will be needed for 
% reporting the regression coefficients and 95%% CI's 
fprintf('\nThe Y intercept = %6.3f with 95%% CI = [%6.3f %6.3f]\n',...
    b(1),bint(1,1),bint(1,2)); 
fprintf('The slope is %6.3f with 95%% CI = [%6.3f %6.3f]\n',...
    b(2),bint(2,1),bint(2,2)); 
fprintf(... 
'R^2 = %4.1f%%; F = %5.1f with p-value = %7.2g; RMSE = s^2 = %6.3g\n',...
    stats(1)*100,stats(2),stats(3),stats(4)) 
P=2*(1-tcdf(sqrt(stats(2)),df)); 
fprintf('P(t >= %4.1f |Ho: slope = 0 & %3.0f df) = %7.2g\n',...
    sqrt(stats(2)),df,P) 
semilogy(edges,N/year,'or',edges(i),exp(Yest),'-m'); 
axis([Richter-0.1  6.7 0.009 109]) 
xlabel('Richter Scale','FontSize',16) 
ylabel('Frequency per year','FontSize',16); 
s2=sprintf('N=%8.2f e^{%6.3f R}',exp(B(1)),B(2)); 
text(4.2296,10,s2,'FontSize',20); 
title(s,'FontSize',20) 
figure(gcf);pause 

% Redo the analysis with for earthquakes greater than 4 with log_10 scaling to
 
% see whether the slope is -1to match the figure 

% in the text.
 
Y=log10(N(i)/year);
 
X=[ones(length(i),1) edges(i)'];
 
B=X\Y;
 
Yest=X*B;
 

% Now use Matlab's regress to produce the same regression coefficients:
 
[b,bint,r,rint,stats] = regress(Y,X);
 
% Note for other problems, more significant figures will be needed for
 
% reporting the regression coefficients and 95%% CI's
 

http:e^{%6.3f
http:s2=sprintf('N=%8.2f
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fprintf('\nThe Y intercept = %6.3f with 95%% CI = [%6.3f %6.3f]\n',...
    b(1),bint(1,1),bint(1,2)); 
fprintf('The slope is %6.3f with 95%% CI = [%6.3f %6.3f]\n',...
    b(2),bint(2,1),bint(2,2)); 
fprintf(... 
'R^2 = %4.1f%%; F = %5.1f with p-value = %7.2g; RMSE = s^2 = %6.3g\n',...
    stats(1)*100,stats(2),stats(3),stats(4)) 
P=2*(1-tcdf(sqrt(stats(2)),df)); 
fprintf('P(t >= %4.1f |Ho: slope = 0 & %3.0f df) = %7.2g\n',...
    sqrt(stats(2)),df,P) 

semilogy(edges,N/year,'or',edges(i),10.^Yest,'-m'); 
axis([Richter-0.1  6.7 0.009 109]) 
xlabel('Richter Scale','FontSize',16) 
ylabel('Frequency per year','FontSize',16); 
s2=sprintf('N=%8.2f 10^{%6.3f R}',10.^B(1),B(2)); 
text(4.2296,10,s2,'FontSize',20); 
title(s,'FontSize',20) 
figure(gcf);pause 
% earthquakes_Japan.m, modeled on earthquakes_LA.m 
% Modeled after LMFig010101poissr.m & earthquakes_Haiti.m 
% Data from USGS/NEIC (PDE) 1973 - 2010 12 31 
% http://earthquake.usgs.gov/earthquakes/eqarchives/epic/epic_rect.php 
% Search all years 
% Japan 9.0 epicenter 38.22 to 142.369 (searched 2.5 n, s e & w 
% All quakes greater than 2.0 
% Using example 4.3.5 as a model 
% Example 4.3.5 Memphis earthquakes and the Poisson distribution 
% Pp 305-306 in 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% Written Fall 2010 by Eugene Gallagher for EEOS601 Revised: 1/9/11 
% Eugene.Gallagher@umb.edu 
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html 
% Calculate the exact probability that 2 or more Richter 5 earthquakes will 
% strike next year using the Poisson distribution and compare that with the 
% normal approximation based on the central limit theorem. 
japaneq; % calls the data file. 
Richter=4;  % Could be set to any value greater than 3 
year=38; % Jan 1973 to 3/16/2011 
k=find(DATA>=Richter & DATA<9); 
s=sprintf('Japanese Earthquakes >= Richter Scale %3.1f & R < 9',Richter); 
edges=Richter:.5:ceil(max(DATA(k))); 
N=histc(DATA(k),edges);bar(edges,N/year,'histc'); 
set(get(gca,'Children'),'FaceColor',[.8 .8 1]) 
title(s,'FontSize',20); 

http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
mailto:Eugene.Gallagher@umb.edu
http://earthquake.usgs.gov/earthquakes/eqarchives/epic/epic_rect.php
http:10^{%6.3f
http:s2=sprintf('N=%8.2f
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xlabel('Richter Scale','FontSize',16)
 
ylabel('Frequency per year','FontSize',16)
 
ax1=gca;
 
figure(gcf);pause
 
i=find(~~N);  % find only the positive values for N.
 
Y=log(N(i)/year);
 
X=[ones(length(i),1) edges(i)'];
 
B=X\Y;
 
Yest=X*B;
 
% Now use Matlab's regress to produce the same regression coefficients:
 
[b,bint,r,rint,stats] = regress(Y,X);
 
% Note for other problems, more significant figures will be needed for
 
% reporting the regression coefficients and 95%% CI's
 
fprintf('\nThe Y intercept = %6.3f with 95%% CI = [%6.3f %6.3f]\n',...

    b(1),bint(1,1),bint(1,2)); 
fprintf('The slope is %6.3f with 95%% CI = [%6.3f %6.3f]\n',...
    b(2),bint(2,1),bint(2,2)); 
fprintf(... 
'R^2 = %4.1f%%; F = %5.1f with p-value = %7.2g; RMSE = s^2 = %6.3g\n',...
    stats(1)*100,stats(2),stats(3),stats(4)) 
P=2*(1-tcdf(sqrt(stats(2)),df)); 
fprintf('P(t >= %4.1f |Ho: slope = 0 & %3.0f df) = %7.2g\n',...
    sqrt(stats(2)),df,P) 
semilogy(edges,N/year,'or',edges(i),exp(Yest),'-m'); 
axis([Richter-0.1  9.1 0.001 109]) 
xlabel('Richter Scale','FontSize',16) 
ylabel('Frequency per year','FontSize',16); 
s2=sprintf('N=%8.2f e^{%6.3f R}',exp(B(1)),B(2)); 
text(6,10,s2,'FontSize',20); 
title(s,'FontSize',20) 
figure(gcf);pause 

% Redo the analysis for earthquakes greater than 4 with log_10 scaling to
 
% see whether the slope is -1 to match the figure 

% in the text.
 
Y=log10(N(i)/year);
 
X=[ones(length(i),1) edges(i)'];
 
B=X\Y;
 
Yest=X*B;
 

% Now use Matlab's regress to produce the same regression coefficients:
 
[b,bint,r,rint,stats] = regress(Y,X);
 
% Note for other problems, more significant figures will be needed for
 
% reporting the regression coefficients and 95%% CI's
 
fprintf('\nThe Y intercept = %6.3f with 95%% CI = [%6.3f %6.3f]\n',...
 

http:e^{%6.3f
http:s2=sprintf('N=%8.2f
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    b(1),bint(1,1),bint(1,2)); 
fprintf('The slope is %6.3f with 95%% CI = [%6.3f %6.3f]\n',...
    b(2),bint(2,1),bint(2,2)); 
fprintf(... 
'R^2 = %4.1f%%; F = %5.1f with p-value = %7.2g; RMSE = s^2 = %6.3g\n',...
    stats(1)*100,stats(2),stats(3),stats(4)) 
P=2*(1-tcdf(sqrt(stats(2)),df)); 
fprintf('P(t >= %4.1f |Ho: slope = 0 & %3.0f df) = %7.2g\n',...
    sqrt(stats(2)),df,P) 

semilogy(edges,N/year,'or',edges(i),10.^Yest,'-m');
 
axis([Richter-0.1  9.1 0.009 109])
 
xlabel('Richter Scale','FontSize',16)
 
ylabel('Frequency per year','FontSize',16);
 
s2=sprintf('N=%8.2f 10^{%6.3f R}',10.^B(1),B(2));
 
text(6,10,s2,'FontSize',20);
 
title(s,'FontSize',20)
 
figure(gcf);pause
 
hold off
 

semilogy(edges,N/year,'om',edges(i),10.^Yest,'m','LineWidth',3);
 
set(gca,'ytick',[0.0001 0.001 0.01 0.1 1 10 100])
 
axis([Richter-0.1  9.1 0.00007 109])
 
xlabel('Richter Scale','FontSize',16)
 
ylabel('Frequency per year','FontSize',16);
 
s2=sprintf('N=%8.2f 10^{%6.3f R}',10.^B(1),B(2));
 
text(6,10,s2,'FontSize',20);
 
title(s,'FontSize',20)
 
hold on
 
% Continue the line from R 7.5 to  R 9
 
X=[1 7.5;1 9];
 
Yest=10.^(X*B);
 
semilogy(X(:,2),Yest,'m','LineWidth',3);
 
grid
 
figure(gcf);pause
 
Richter=4; 

year=38; % Jan 1973 to 3/16/2011
 
k=find(DATA>=Richter);
 
s=sprintf('Japanese Earthquakes >= Richter Scale %3.1f',Richter);
 
edges=Richter:.5:ceil(max(DATA(k)));
 
N=histc(DATA(k),edges);
 
i=find(~~N);  % find only the positive values for N.
 
Y=log10(N(i)/year);
 
X=[ones(length(i),1) edges(i)'];
 
B=X\Y;
 

http:10^{%6.3f
http:s2=sprintf('N=%8.2f
http:10^{%6.3f
http:s2=sprintf('N=%8.2f
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Yest2=X*B;
 
semilogy(edges,N/year,'or',edges(i),10.^Yest2,'r','LineWidth',3);
 
set(gca,'ytick',[0.0001 0.001 0.01 0.1 1 10 100])
 
axis([Richter-0.1  9.1 0.00007 109])
 
figure(gcf)
 
pause
 
hold off
 

Figure 1.1.2 Sheep astragalus, an early form of dice 
2.1.1 Probability: the early years 

Figure 1.13. Sample space for a fair die. 
2.1.2 Statistics from Aristotle to Quetelet 

2.1.2.1 Staatenkunde: The comparative description of states 
2.1.2.2 Political arithmetic, “the art of reasoning by figures, upon things 

relating to government.” 
2.1.3 Staatenkunde: the comparative description of states. 

Figure 1.1.4 
2.1.4 Quetelet the catalyst 

2.2 Some Examples 

Case Study 1.2.1 S& P Stock prices 
function LMcs010201_4th 
% LMcs010201_4th.m 
% Opening and closing prices of the S&P 500 from 17 February 1994 amd 9 
% February 1996, the dates listed in Larsen & Marx 4th edition p. 12 
% Last Revised: 3/17/2011 
% Written by Eugene Gallagher, Eugene.Gallagher@umb.edu 
% Data obtained from 
% % http://finance.yahoo.com/q/hp?s=^GSPC+Historical+Prices 
% Note that Yahoo produces a column of closing prices with the most 
% recent closing price first, so the data will have to be flipped using 
% the built-in function flipud(DATA) 
% An excel spreadsheet was used to get the calendar day. 
SandP500=[656.37 723 
656.07 722
 
{Lots of data deleted here}
 
467.69 2
 
470.34 1];
 
SandP500=flipud(SandP500); %day 1, 2nd column is 2/17/1994; % Calendarday
 
[r,c]=size(SandP500);
 
tradingday=[1:r]';
 
SandP500Close=flipud(SandP500);
 
SandP500=[SandP500 tradingday]; % concantenate the matrix
 
% Create labeling string of calendar dates using built-in functions.
 
% Note since 2/16/1994 is day 0, the datenum for 0 is 2/16/1994;
 
datenumb=SandP500(:,2)+datenum('16.02.1994','dd.mm.yyyy');
 
% finds the starting date, assigns it to 0 and then assigns the proper
 

http:SandP500=[656.37
http://finance.yahoo.com/q/hp?s=^GSPC+Historical+Prices
mailto:Eugene.Gallagher@umb.edu
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% Matlab number indicating the calendar date for plotting with datetick
 
SandP500Close=SandP500(:,1); 

% gets the closing prices from the 1st column of SandP500
 
plot(tradingday,SandP500Close)
 
xlabel('Trading Day');ylabel('S & P 500 Closing Price')
 
lt=sprintf('Case Study 1.2.1; S & P 500, 1994-1996'); % to label graphs
 
title(lt,'FontSize',22);figure(gcf);pause
 
plot(datenumb,SandP500Close);
 
datetick('x',2)
 
axis([min(datenumb)-50 max(datenumb)+50 floor(min(SandP500Close)/50)*50 ...

    ceil(max(SandP500Close)/50)*50]); 
% axis([min(datenumb)-20 max(datenumb)+20 400 700]) % will scale axes 
% better, but optional 
title(lt,'FontSize',22) 
figure(gcf); pause 

% Find the number of runs up and down (L&M calculate just downturns)
 
% Use Gallagher's runs2 to analyze the observed number of runs
 
[obsruns,out]=runs2(SandP500Close)
 
% obsruns contains the observed number of runs, up and down
 
% Using the formula on page 13 (L&M 4th edition), calculate the expected
 
% number of runs if the probability of the S & P going up
 
% is 0.5:
 
[r,c]=size(obsruns);
 
k=[1:r]';  % Solve for runs of length 1, 2, 3, ... max run length.
 
p=.5; % probability of the run going up (or down)
 
T=out(1); % Total number of runs
 
% Using the formula on page 13, calculate the expected number of runs if
 
% the probability of the S & P going up
 
% is 0.5:
 

% This is the formula immediately above Table
 
% 1.2.2 on page 13 in Larsen & Marx.
 
Expected=T*p.^(k-1)*(1-p);
 
% Comparing the Observed and Expected, they seem quite close, with maybe too many 2-day
 
runs:
 
disp('No. of Runs Observed  Expected')
 
disp([obsruns Expected])
 
Observed=obsruns(:,2);
 
% Plot the data in a stacked histogram
 
bar(1:length(Observed),[Observed Expected],1,'grouped')
 
%set(gca,'ytick',0:100:300,'xticklabel',{'0 ';'1 ';'2 ';'3 ';'4 ';'5 ';'6';'7+'},'FontSize',20);
 
legend('Observed','Expectation')
 
xlabel('Number of Runs','FontSize',20)
 
ylabel('Frequency','FontSize',20)
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title(lt,'FontSize',22);figure(gcf);pause
 
%-------------------------------------------------------------------
% Advanced from here on; Uses chapter 10 concepts.
 
% A slightly more advanced topic. Find the p that provides the best
 
% chi-squared fit to all 12 categories
 
% f calculates the chi-sqauare goodness-of-fit statistic, to be covered in
 
% chapter 10
 
f=@(p,Observed,T,k) sum(  (Observed-  T*p.^(k-1).*(1-p)) .^2  ./ (T*p.^(k-1).*(1-p))  );
 
pfit = fminbnd(@(p) f(p,Observed,T,k),0.1,0.9);
 
fprintf('The chi-square statistic for p=%6.4f is %6.3f\n',0.5,f(0.5,Observed,T,k))
 
fprintf('The chi-square statistic for p=%6.4f is %6.3f\n',pfit,f(pfit,Observed,T,k))
 
% plot the results:
 
Expected2=T*pfit.^(k-1)*(1-pfit);
 
bar(1:12,[Expected2 Observed Expected],1,'grouped')
 
s=sprintf('Expected p = %6.4f',pfit);
 
legend(s,'Observed','Expected p=0.5')
 
xlabel('Number of Runs','FontSize',20)
 
ylabel('Frequency','FontSize',20)
 
title(lt,'FontSize',22);figure(gcf);pause
 

% Following Cochran's rule, the
 
% expected and observed counts will be pooled for those categories in
 
% which the expected values are less than 5
 
% This minimization routine calls function pooledchi2 below
 
pfit3 = fminbnd(@(p) pooledchi2(p,Observed,T,k),0.1,0.9);
 
% finds 0.5352
 
fprintf('The chi-square statistic for p=%6.4f is %6.3f\n',0.5,f(0.5,Observed,T,k))
 
fprintf('The chi-square statistic for p=%6.4f is %6.3f\n',pfit3,f(pfit3,Observed,T,k))
 
% plot the results:
 
Expected3=T*pfit3.^(k-1)*(1-pfit3);
 
disp('Observed Expected')
 
disp([Observed Expected3])
 
bar(1:12,[Expected2 Expected3 Observed Expected],1,'grouped')
 
%set(gca,'ytick',0:100:300,'xticklabel',{'0 ';'1 ';'2 ';'3 ';'4 ';'5 ';'6';'7+'},'FontSize',20);
 
s2=sprintf('Expected p = %6.4f',pfit3);
 
legend(s,s2,'Observed','Expected p=0.5')
 
xlabel('Number of Runs','FontSize',20)
 
ylabel('Frequency','FontSize',20)
 
title(lt,'FontSize',22);figure(gcf);pause
 

% This section just prints the results
 
[chi2p1,O1,E1,df1,pvalue1]=pooledchi2OE(0.5,Observed,T,k);
 
fprintf('The Chi-square statistic for p=%6.4f, with %2.0f df is %6.2f with p-value
 
%6.4f\n',0.5,df1,chi2p1,pvalue1)
 
disp('Observed Expected')
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disp([O1 E1])
 
[chi2p2,O2,E2,df2,pvalue2]=pooledchi2OE(pfit,Observed,T,k);
 
fprintf('The Chi-square statistic for p=%6.4f, with %2.0f df is %6.2f with p-value
 
%6.4f\n',pfit,df2,chi2p2,pvalue2)
 
disp('Observed Expected')
 
disp([O2 E2])
 
[chi2p3,O3,E3,df3,pvalue3]=pooledchi2OE(pfit3,Observed,T,k);
 
fprintf('The Chi-square statistic for p=%6.4f, with %2.0f df is %6.2f with p-value
 
%6.4f\n',pfit3,df3,chi2p3,pvalue3)
 
disp('Observed Expected')
 
disp([O3 E3])
 

% Bar chart with pooled categories
 
bar(1:length(E1),[E1 O1 E3],1,'grouped')
 
set(gca,'ytick',0:50:150,'xticklabel',{'1 ';'2 ';'3 ';'4 ';'5+'},'FontSize',20);
 
legend('Expected p=0.5','Observed','Expected p=0.5226')
 
xlabel('Number of Runs','FontSize',20)
 
ylabel('Frequency','FontSize',20)
 
title(lt,'FontSize',22);figure(gcf);pause
 

function chi2p=pooledchi2(p,Observed,T,k)
 
Expected=T*p.^(k-1).*(1-p);
 
i=length(Expected)+1-find(cumsum(flipud(Expected))<5); % find the indices of cells less than 5
 
E=Expected;
 
E(i)=[]; e=E(end);while(e<5);E(end)=[];e=E(end);end
 
E(end)=E(end)+sum(Expected)-sum(E);
 
O=Observed(1:length(E));
 
O(end)=O(end)+sum(Observed)-sum(O);
 
chi2p=sum((O-E).^2./E);
 

function [chi2p,O,E,df,pvalue]=pooledchi2OE(p,Observed,T,k)
 
Expected=T*p.^(k-1).*(1-p);
 
i=length(Expected)+1-find(cumsum(flipud(Expected))<5); % find the indices of cells less than 5
 
E=Expected;
 
E(i)=[]; e=E(end);while(e<5);E(end)=[];e=E(end);end
 
E(end)=E(end)+sum(Expected)-sum(E);
 
O=Observed(1:length(E));
 
O(end)=O(end)+sum(Observed)-sum(O);
 
chi2p=sum((O-E).^2./E);
 
df=length(E)-1-1;
 
pvalue=1-chi2cdf(chi2p,df);
 
function [out,nruns]=runs2(DATA)
 
% format function [out,nruns]=runs2(DATA)
 
% input: DATA: a row or column vector
 
% output:
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% out matrix:  column 1 length of runs (1,2,... max run length) 
% column 2 number of runs of each length in col 1 
% nruns:       [Totalruns, posruns, negruns, tiedvalues] 
% posruns: number of positive runs 
% negruns: number of negative runs 
% tiedvalues: elements deleted from rank calcs 
% because of exact ties in DATA 
% calls the resample toolbox runs.m 
% written by E. Gallagher, 5/27/03, revised 9/13/2010 
% Eugene.Gallagher@umb.edu for EEOS601 
[r,c]=size(DATA); 
if c>r
    DATA=DATA'; % change row vector to column vector

 r=c 
end 
if r<3; disp('Vector must have more than 2 values'); return;end 
% Find the tied values in the series, and delete redundant elements
   % provides the positive and negative differences:
   df=diff(DATA);
   % find the differences not equal to zero, make 1
   df=df~=0;
   j=[1; df.*[2:r]']; % change indices of redundant elements in
                      % tied groups to zero
 k=j(find(j>0)); % find the indices,k, just for the 1st untied vals

   untiedd=DATA(k);n2=length(untiedd); % create the untied vector 
% 
% Now, find the runs using the differencing function in Matlab, diff:
   ddiff=diff(untiedd); % create the vector of differences
   signd=ddiff>0; % change positive diffs to 1, negative diffs to 0 
% Use the runs.m file from the resample toolbox to find runs & lengths
   [len,vals]=runs(signd); % runs.m from the resample toolbox
   nruns=length(len);
    maxl=max(len); % find the largest run size 
% create matrix of run lengths(1st column) and observed number of runs 
% Using the built in Matlab function histc, designed for creating histogram 
% bins, but very useful for adding categories. 
% built in matlab function, histc 
sizeruns=[1:maxl]'; 
N=histc(len,sizeruns)'; 
% create the output matrix out 
out=[sizeruns N]; 

% Find the positive runs by deleting extra 1's see above;
 
df=diff(signd);
 
% find the differences not equal to zero, make 1
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df=df~=0;
 
lsd=length(signd);
 
j=[1; df.*[2:lsd]']; % change index of later ties to zero
 
k=j(find(j>0)); % find the indices just for the 1st untied vals
 
posdiffs=signd(k);posruns=sum(posdiffs);
 
Totinruns=sum(out(:,1).*out(:,2));
 
% Number of elements deleted due to exact ties:
 
tiedd=r-Totinruns-1;
 
nruns=[nruns posruns nruns-posruns tiedd];
 

function [len, vals] = runs(data)
 
% RUNS --- finds runs (sequences of repeated values)
 
% runs(data) 

% gives the lengths of runs in the data set.
 
%
 
% [len, vals] = runs(data) 

% gives both the length of the runs and the value of that run.
 
% from the Resampling toolbox
 

% (c) 1998-9 by Daniel T. Kaplan, All Rights Reserved
 
% Version 1.0
 

% put the data into row format
 
[r,c] = size(data);
 
if r~=1 & c~=1

  error('runs: input must be a vector.'); 
end 

if c==1
  data = data'; 
end 

% find the starts of the runs 
inds = [1, (1+find(0 ~= diff(data)))]; 

len = diff([inds,length(data)+1]); 
vals = data(inds); 

Case Study 1.2.2:  Golden rectangle 
% LMcs010202_4th.m 
% p 13-15 in 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% Written by E. Gallagher 9/16/2010 
% Revised 3/18/2011 
% Note that these data are used in problem 14.2.6 (p 810 as an application) 
% of the sign test 
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DATA=[0.693 0.749 0.654 0.670
 0.662 0.672 0.615 0.606
 0.690 0.628 0.668 0.611
 0.606 0.609 0.601 0.553
 0.570 0.844 0.576 0.933]; 

DATA=DATA(:); 
mn=mean(DATA) 
expected=0.5*(5.^0.5-1) 
hist(DATA); 
xlabel('Width-to-Length Ratio of Shoshoni Rectangles') 
ylabel('Frequency') 
% plot a vertical line to the top of the graph 
% to margins of the graph are contained in axis 
v=axis; 
ax1=gca; % get the identifier for the current graph 
h1=line([expected expected]' 
set(h1 
h2=line([mn mn]' 
set(h2 
legend('Observed' 
title('Case Study 1.2.2' 
figure(gcf) 
pause 

Case Study 1.2.3: Lunacy 
% LMcs010203_4th.m 
% Pages 17-18 in 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% written by Eugene.Gallagher@umb.edu 3/18/2011 
% for UMASS/Boston's EEOS601 
DATA=[6.4 5.0 5.8 

7.1 13.0 9.2
 6.5 14.0 7.9
 8.6 12.0 7.7
 8.1 6.0 11.0
 10.4 9.0 12.9
 11.5 13.0 13.5
 13.8 16.0 13.1
 15.4 25.0 15.8
 15.7 13.0 13.3
 11.7 14.0 12.8
 15.8 20.0 14.5];

 % plot a histogram of the data
 bar(1:12,DATA,1,'grouped') 
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 axis([0.6 12.4 0 27]) 
set(gca,'ytick',0:5:25,'xticklabel',{'Aug';'Sept';'Oct';'Nov';'Dec';...

 'Jan';'Feb';'Mar';'Apr';'May';'Jun';'Jul'},'FontSize',20); 
legend('Before Full Moon','During Full Moon','After Full Moon','Location','NorthWest') 
xlabel('Month','FontSize',20) 
ylabel('Admission rates (Patients/Day)','FontSize',20) 
title('Case Study 1.2.3','FontSize',22);figure(gcf);pause 

Case Study 1.2.4 Cancer deaths 
% LMcs010204_4th.m 
% Case study 1.2.4, p. 17 in 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% Written by Eugene.Gallagher 6/03, revised 3/17/11 
IndexExp=[2.49

 2.57
 3.41
 1.25
 1.62
 3.83
 11.64
 6.41
 8.34]; 

Cancer=[147.1
 130.1
 129.9
 113.5
 137.5
 162.3
 207.5
 177.9
 210.3] 

% Or from scratch 
[r,c]=size(IndexExp); % find how many rows and columns; 
% create a column vector of all 1's with the same 
% number of rows as IndexExp. This is needed for the 
% linear regression. 
onex=ones(r,1) 
% Create an X matrix with ones in the first column 
% and the explanatory variable, IndexExp in the 2nd column; 
X=[onex IndexExp] 
% Do the leastsquares regression, solving for 
% Y intercept B(1) and slope B(2)) 
B=X\Cancer 
% Calculated the expected values 
ExpY=X*B 
% plot the data and expected values 
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plot(IndexExp,Cancer,'o',IndexExp,ExpY,'--r')
 
xlabel('Index of Exposure')
 
ylabel('Cancer deaths per 100,000 man years')
 
title('Figure 1.2.2')
 
figure(gcf)
 

2.3 Chapter Summary 
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