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Assignment 

Required reading 

! Larsen, R. J. and M. L. Marx. 2006. An introduction to mathematical statistics and its 
applications, 4th edition. Prentice Hall, Upper Saddle River, NJ. 920 pp. 

" Read chapter 6, but skip p. 455-466 (decision rules for nonnormal data & the 
generalized likelihood ratio) 
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Understanding by Design Templates 

Understanding By Design Stage 1 — Desired Results Week 6 
LM Chapter 6 Hypothesis Testing Read 6.1-6.4, 6.6 {Skip 6.5} 

G Established Goals 
•	 Learn the standard hypothesis testing procedure with decision rules, null & alternative 

hypotheses, critical values, confidence limits, Type I and Type II error and power. 
U Understand 
•	 Failure to reject the null hypothesis does not imply that the null hypothesis is true. 
•	 Factors controlling the power of a test. 
Q Essential Questions 
•	 Why do so many statisticians object to Neyman-Pearson hypothesis tests, and what is 

the alternative? 
•	 What are null and alternative hypotheses? 
•	 The p-value is a probability, but of what? 
•	 If we reject the null hypothesis with an α-level of 5%, is the probability that the 

alternative hypothesis is true ; 95%? 
•	 How can the power of a test be improved? 
K Students will know how to define (in words or equations) 
•	 alpha level, alternative hypothesis, critical region, critical value, decision rule, 

hypothesis testing, null hypothesis, one-sided vs. two-sided alternative hypotheses, 
p-value, positive predictive value, significance level, statistically significant, test 
statistic, Type I & Type II error, Z Ratio 

S Students will be able to 
•	 Carry out and interpret hypothesis tests using the one-sample z test, and the one-

sample binomial test 
•	 Understand and calculate the probability of Type II error and power of a test 
•	 Create one-sided and two-sided power curves for a test and understand the factors 

controlling the relative power of a test 
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Understanding by Design Stage 2 — Assessment Evidence Week 6 (7/5-7/11 M) 
Chapter 6 

•	 Post in the discussion section by 7/13 W 10 PM by  W 
•	 Read Sterne & Smith’s (2001) “What’s wrong with significance tests?” and 

post an answer to that question in the weekly discussion board. 
•	 HW 6 Problems due Wednesday 7/13/11 W 10 PM 

•	 Basic problems (4 problems 10 points) 
•	 Problem 6.2.4. Write your own program or just use Matlab’s ztest.m; see 

how it is called in LMex060202_4th.m 
•	 Problem 6.3.2 Pawedness. Use LMcs060301_4th.m as a model 
•	 Problem 6.4.6 part c only, use LMEx060401_4th as a model. 
•	 Problem 6.4.8 use LMEx060401_4th as a model, convert from power to 

Type II error 
•	 Advanced problems (2.5 points each) 

•	 Problem 6.4.4 Use LMFig060405_4th.m as a model. 
•	 Problem 6.4.18 Suggest using LMex060403_4th.m as a model 

•	 Master problems (1 only, 5 points) 
•	 Solve problem 6.2.2 include a graph that shows the two critical regions. 

Modify LMFig060203a_4th.m for the graph 

Introduction
 

Chapter 6 is a quick, relatively non-mathematical (no calculus) 
introduction to hypothesis testing. It introduces the one-sample 
binomial and z test and introduces the concepts of null and 
alternative hypotheses, critical values, Type I and Type II error 
and power. For the opening pictures of statisticians, this chapter 
should have had pictures of the Polish and English statisticians 
Jerzy Neyman and Egon Pearson because they are are chiefly 
responsible for our current practice hypothesis testing. Dennis Figure 2. 

Figure 1. (1996) in a rousing defense of hypothesis testing against an Egon Pearson 
Jerzy Neyman attack by Bayesians refers to the paradigm presented in Chapter 

6 as Fisher-Neyman-Pearson-Wald (-Rao -Efron) frequentist statistics.  Mayo 
(1996) praises the work of Neyman & Pearson, especially Pearson, in proposing their hypothesis 
testing method and their invention of confidence intervals. Confidence intervals, which Larsen 
& Marx introduced in Chapter 5, were first described by Neyman in a 1934 talk, but the concept 
like hypothesis testing in general was controversial from the beginning. Salsburg (2001, 
Chapter 12) describes Pearson’s first presentation of confidence limits only to be accused of 
attempting to fool the audience with a  ‘confidence trick.’ Fisher never accepted Neyman & 
Pearson’s approach to hypothesis testing and confidence limits. Neyman & Pearson would enjoy 
chapter 6, but Fisher might object to the sections on confidence intervals. 

Many modern statisticians have rejected some features of hypothesis testing especially the 
decision rule, whereby results are divided into ‘significant’ and ‘non-significant.’ A Google 
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search under ‘What’s wrong with hypothesis testing?’ brings up hundreds of web pages, but one 
of the best is the link to the paper by Sterne & Smith (2001), who advocate abandoning the 
adjective significant from the statistician’s lexicon. Nevertheless, most practicing environmental 
scientists follow the Neyman-Pearson frequentist theory of hypothesis testing. Many times a 
question from the audience at a meeting is, “Is that result significant?” By that, the questioner is 
asking whether the speaker had followed the standard decision rule and had been able to reject 
the appropriate null hypothesis at an α = 0.05 level. 

As noted by Salsburg (2001), Neyman-Pearson hypothesis testing is the foundation for statistical 
analysis used by the FDA and the EPA. Mayo (1996) gives a rousing defense of the Neyman-
Pearson hypothesis testing paradigm in her book, “Error and the Growth of Knowledge,” which 
is a mixture of philosophy, history of statistics, prescription for how statistics and science should 
be done, and a polemic against Bayesian analysis. Dennis (1996) vigorously defends frequentist 
statistics as used by ecologists. 

For this week’s discussion, I want you to read and comment on Sterne & Smith’s (2001) article, 
“What’s wrong with significance testing?” Ecologists may want to read Dennis (1996) on 
“Should ecologists become Bayesians?,” which also addresses the controversy over hypothesis 
testing. So, with that in mind, let’s cover chapter 6 on hypothesis testing. 

Definitions and Theorems 

“The process of dichotomizing the possible conclusions of an experiment and then using the 
theory of probability to choose one option over the other is known as hypothesis testing. The 
two competing propositions are called the null hypothesis  (written H ) and the alternative o

hypothesis  (written H  [or H ])” 1 a

Comment (p. 433). If H : µ=µ  is rejected using a 0.05 decision rule, we say that the difference o o 

between and µ  is statistically significant ... decision rules are statements that spell out the o 

conditions under which a null hypothesis is to be rejected.” 

Gallagher’s comments on the decision rule: The decision rule should explicitly identify IN 
ADVANCE how the data are to be collected, the test to be used, the alternative hypothesis (i.e., 
one-tailed left, one-tailed right or two-tailed), and the α-level for the test. Yes, in frequentist 
statistics, the p value depends on how you planned your experiment. Berger & Berry (1988) in 
a critique of frequentist statistics note that  p-values depends on how the data were collected. 
They present the hypothetical case of a test of vitamin C vs. a Placebo in which 17 pairs of 
subjects were given placebos and Vitamin C. In 13 of the 17 trials, the subject taking Vitamin C 
improved to a greater extent, producing a p value of 0.049 (sum(binopdf([0:4 13:17],17,0.5))). If 
on the other hand, the investigators had designed the study such that they continued assigning to 
pairs Vitamin C & placebo until there were 4 successes in each group, then the study might 
produce exactly the same result 13 successes for Vitamin C and only 4 for the placebo. The p 
values would be different. Even though the data might be the same — 4 successes for Placebo 
and 13 for Vitamin C — the p value is now 0.021 (Berger & Berry 1998, Figure 2). 
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Much of statistical inference and the scientific method is based on the logical syllogism called 
the modus tollens: 

modus tollens: 
If A
 
Then B
 
Observe Not B (~B)
 
Conclude Not A
 

Observing not B (often abbreviated ~B) allows us to reject A. Observing B allows us neither to 
accept nor reject A. A in the case of hypothesis testing is the null hypothesis including the 
underlying probability model for the data. For example A could comprise 4 components, using 
the gas mileage example from Larsen & Marx (2006, Chapter 6): 

C The null hypothesis H : µ  = 25 mpg, σ = 2.4o o 

@ The underlying probability model and proposed test. In this case, the data will 
be analyzed with a one-sample z test against a right-tailed alternative 
hypothesis µ > 25 mpg. 

® the assumptions of the statistical test are met or don’t matter. For the z test, the data 
must represent a random sample from a normally distributed population 

® an α level of 0.05 will be used to set the probability of Type I error. 

Then, B is the predicted outcome of the statistical test if the null hypothesis specified in A is true 
and the other 3 conditions in A are satisfied. Now A and B must be set in advance before 
examining the data, or better yet, before the experiment or survey is even conducted. Once the 
data are collected and analyzed they will either meet the conditions in B or be classified as not 
B. 

After the experiment or survey has been performed, the data tested for assumptions, and 
analyzed, the result will be B or not B, but the decision between B and not B is based on the p 
value, the probability of the observed test statistic or a test statistic more extreme if the null 
hypothesis is true. The p value is NOT the probability of the null hypothesis. B can take three 
equivalent forms: 0 the test statistic will have a p-value ; α level, f the test statistic will be 
outside of the critical region when expressed in the natural scale or @ the test statistic, expressed 
as a z-ratio (or t ratio, or F ratio), lies outside of the critical region, e.g., Z ; zα  (left-tailed),  Z : 
z1-α  (right-tailed) or zα/2 : Z : z1-α/2  (two-tailed). If B is observed, one fails to reject the null 
hypothesis specified in A and reports the p-value of the test, “I failed to reject the null 
hypothesis at the 5% significance level (right-tailed z test, =25.25, n=30, µ=25, σ=2.4, 
p=0.284).” 

Not B,the complement of B, can take three equivalent forms: 0 the test statistic will have a 
p-value < α level, f the test statistic will be within the critical region when expressed in the 
natural scale or @ the test statistic, expressed as a z-ratio (or t ratio, or F ratio), lies within the 
critical region: e.g, Z < zα  (left-tailed),  Z > z1-α  (right-tailed) or Z< zα/2 or Z > z1-α/2  (two-tailed). If 



 

 

 

 

 

 

 

 

EEOS 601 
Prob. & Applied Statistics 
Week 6, P. 8 of 41 

Not B is observed, the probability of observing the actual data or data more extreme is very 
unlikely if the null hypothesis is true.  One rejects the null hypothesis specified in A at the α­
level of significance, e.g., “I rejected the null hypothesis at the 5% significance level (right­

tailed z test, =26.8, n=30, µ=25, σ=2.4, p=0.0003).” Many scientists reduce the α level of the 

test after the fact to match the p-value, concluding “I rejected the null hypothesis at the 0.1% 
significance level (1-tailed z test, p=0.0003).” This is unfortunate since the p values have their 
proper meaning only if the decision rule including the α level, test statistic, and alternative 
hypotheses is set in advance. You are not allowed to change the α-level to a higher or lower level 
or to change from a two-tailed to a one-tailed alternative hypothesis after you’ve analyzed the 
data. The decision rule requires that the α-level and alternative hypothesis be set before you 
analyze the data. You shouldn’t report an α level of 0.001 as being the criterion for statistical 
significance if the a priori decision rule would have permitted rejecting the null with an alpha 
level of 0.05. Reporting the actual p value and sample size for the test is sufficient information 
for the reader of your work to evaluate the strength of evidence against the null hypothesis. One 
doesn’t need to imply, “In my lab the tests have such power than only α levels of 0.001 are 
used.”) 

There is a third possibility as well. After collecting the data and analyzing them, it may turn out 
that the assumptions of the test, indicated in A® above have been grossly violated. For example, 
an analysis of the data may indicate such severe departures from normality that a z test can not 
be used. In that case, one stops the hypothesis test and creates a new decision rule based on 
transformed data or a new statistical test. In hypothesis testing, one must check the assumptions 
of the test and adjust the test statistic accordingly. One is not allowed to change the α level after 
the data have been analyzed. 

Mayo (1996, Chapter 5) describes a slightly different model for performing hypothesis testing 
in the Neyman-Pearson framework. Based on an earlier analysis by Suppes (1969), Mayo argues 
that there are three hierarchic and linked models that are evaluated in hypothesis testing: the 
primary, experimental, and data models. The primary model links the hypothesis with the 
larger area of inquiry and includes the specification of the null hypothesis. For example, the 
theory of evolution by means of natural selection was tested by evaluating whether a latitudinal 
cline in fruitfly body size evolved from a single population of fruitflies introduced in South 
America in 1978. Huey et al. (2000) tested three null hypotheses. First, they tested whether 
regression of body size versus latitude in North American (NA) flies had zero slope (i.e, the flies 
hadn’t evolved in the two decades since their introduction). Second, they tested whether NA 
male and female flies evolved (or failed to evolve) at the same rate (i.e., the slope of size versus 
latitude was the same for male and female flies), and third that NA flies evolved to have the 
same body size versus latitude regression as European (EU) flies. Mayo’s (1996) & Suppes’ 
(1969) experimental model includes the research procedure detailing how the data are to be 
collected and would specify choice of experimental model, sample size, experimental variables, 
test statistics, alternative hypotheses, and the α-level for evaluating the null hypothesis. In Huey 
et al.’s (2000) fruitfly study, flies were to be collected from different latitudes and reared for 
several generations under identical conditions in the lab to ensure that the body size differences 
weren’t due to difference in food supply or temperature in different regions. Finally the data 
model puts the data in proper form for applying the analytical methods, including testing 
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whether the assumptions of statistical model are met. In Huey et al.’s (2000) study, the fruitfly 
wing lengths had to be log-transformed to meet the linearity and equal variance assumptions of 
ordinary least squares regression (to be covered in Larsen & Marx’s (2006) Chapter 11). 

In Huey et al. (2000), the latitudinal gradient 
in fly-wing lengths revealed one of the most 
rapid rates of evolution ever recorded. Figure 3 
shows the ln (wing size) versus latitude 
regression for North American and European 
fruitflies. The NA female slope (0.0020 ± 
0.0004 {± standard error}, p<0.001) 
approximately equals the European female 
slope (0.0018 ± 0.0004, p<0.001). However, 
the decision rules of Neyman-Pearson 
statistical inference only allow Huey et al. 
(2000) to conclude that they failed to reject 
the null hypothesis that the slopes of North 
American and European female wing lengths 
were the same. The modus tollens provides the 
logical foundation for rejecting null 
hypotheses, but it doesn’t provide logical 
justification for accepting null hypotheses. If A 
then B, observe B, then accept A is true is not 
a valid syllogism. Based on these data, we can 
conclude that the slopes of wing length versus 
latitude for both NA male and female flies are 
not zero. We can reject the null hypothesis that 
NA flies have not evolved. Huey et al. (2000) 
rejected the null hypothesis that NA male and 
female flies were evolving at the same rate 
because the wing-length slope vs. latitude for 
NA male flies (0.0007±0.0004, p=0.0265) was 
less than the slope for 

Figure 3. Top panel: Wing Size vs. latitude 
for North American and European flies from 
Huey et al. (2000). Hypothesis tests led to 
the rejection of zero slope for North 
American female and male flies. The 
authors also rejected the null hypothesis that 
North American males and females had the 
same slope. The authors failed to reject the 
null hypothesis that North American and 
European female flies had the same slope. 

females (0.0020±0.0004). Science, through the modus tollens, advances through the rejection of 
false null hypotheses, but sometimes failure to reject null hypotheses can also provide 
convincing support for theories. It is amazing that those NA females evolved to resemble the 
European females. 

If the null hypothesis is rejected, it used to be customary to state that the alternative hypothesis 
was significant. However, statisticians and natural scientists were troubled over using the same 
adjective ‘significant’ or the phrase ‘signficant at an α-level of 0.05,’ to describe a result with p-
value 0.049 or 0.00001. Sterne & Smith (2001) and Ramsey & Schafer (2002) provide sliding 
scales based on p-value to express the strength of evidence against the null hypothesis. A p-value 
of 0.05 is regarded as ‘moderate’ evidence against the null hypothesis and p-values less than 
0.001 are regarded as convincing or strong evidence against the null hypothesis. 
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Figure 4. Adjectives to describe the strength of 
evidence against a null hypothesis from 
Ramsey & Schafter (2002). 

Figure 5. Adjectives to describe the strength of 
evidence against a null hypothesis from Sterne 
& Smith (2001). 

There are two troubling aspects about the use of the Sterne & Smith (2001) and Ramsey & 
Schafer (2001). First, as noted in many letters to the British medical journal after the publication 
of Sterne & Smith (2001), it is essential that the sample size be noted in reporting the results. 
This point is raised nicely by Larsen & Marx (2006) in Section 6.6. If the sample size is very 
large, even minor differences in a test statistic can have exceptionally low p-values. Second, 
there is a potential for weakening the strict guidance that the Neyman-Pearson decision rule 
provides. The scientific method depends on scientists being able to reject false hypotheses. It is 
the basis for Popper’s scientific method based on Conjectures and Refutations. Figures 4 and 5 
tend to weaken that key element of the scientific method, Popper’s demarcation principle that 
tells a scientist the conditions under which he can confidently reject a proposition. In the above 
figures, a p-value of 0.05 provides just ‘suggestive’ evidence against the null hypothesis. The 
modern scientific method isn’t based on a suggestion principle. Scientists don’t perform 
experiments or surveys to provide mere suggestions that the null hypothesis is wrong; they 
choose an α level where a clear decision can be reached. Rather than using adjectives like 
‘suggestive’ and ‘moderate’ to weaken the decision rule, perhaps more attention should be made 
in picking the α level for the test. If there is risk in having too high a Type II error, then recast 
the decision rule to increase the power of the test, for example by increasing the α level to 0.1 
from 0.05. 

Definition 6.2.1 Any function of the observed data whose numerical value dictates whether H  is o 

accepted or rejected is called a test statistic. The set of values for the test statistic that result in 
the null hypothesis being rejcted is called the critical region and is denoted C. The particular 
point in C that separates the rejection region from the acceptance region is called the critical 
value. 

Definition 6.2.2 The probability that the test statistic lies in the critical region when H  is true iso 

called the level of significance and is denoted α. [significance level is also called α­
level] 

“If there is reason to believe before any data are collected that the parameters being tested is 
necessarily restricted to one particular “side” of H , then H  is defined tgo reflect that limitation o 1
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and we say that the alternative hypothesis is one-sided... If no such a priori information is 
available, the alternative hypothesis needs to accommodate the possibility that the true 
parameter value might lie one either side of µ . Any such alternative is said to be two-sided. For o 

testing H : µ=µ , the two sided alternative is written H : µ * µ .” (p 434)o o 1 o 

Definition 6.2.3 The P-value associated with an observed test statistic is the probability of 
getting a value for that test statistic as extreme or more extreme than what was actually observed 
(relative to H ) given that H  is true. Gallagher note: one should NOT conclude that the p­1 o 

value is the probability that the null hypothesis is true, nor should one conclude that the 
complement of the p-value (1 - p-value) is the probability that the alternative hypothesis is true. 
If one rejects the null hypothesis with a p-value of 0.04, ones should NOT conclude that there is 
a 96% chance that the alternative hypothesis is true. In fact, the probability may be no better than 
about 50% that the alternative hypothesis true. Sterne & Smith (2001, Table 2, p. 228) provide 
an example drawn from modern clinical medical practice in which they calculate the positive 
predictive value of a test, the probability that a significant result is indeed true. The positive 
predictive value is the complement of the probability of a false positive result (1-false positive 
probability). Even with an α-level of 0.05, the positive predictive value may only be about 50% 
if a field uses tests with low power (say 50%) and the initial probability of false null hypotheses 
is low (e.g, 10%). Under those conditions, only half the significant results published are true. 
Ioannidis (2005) pursues a similar argument to argue that the majority of published scientific 
research findings are false. So, don’t be fooled into thinking that by rejecting a null hypothesis at 
the α-level of 0.05 that you have at least a 95% chance that your alternative hypothesis is true. 

Type I and Type II error There are two kinds of errors that can be committed in the process of 
hypothesis testing. They are shown in the following table. Type I error is rejecting the null 
hypothesis H  when H  is true. Once a decision has been made to reject H , the probability of o o o

Type I error is the test statistic’s p-value. The symbol for the probability of committing Type I 
error is α. The probability of committing a Type I error is a test’s α-level or level of 
significance. Type II error  is the probability of failing to reject the null hypothesis H  when H o o

is false. The symbol for the probability of committing Type II error is β. 

Table 1. Hypothesis testing decision tree, 
Type I and Type II errors. Larsen & Marx 
(2006, p 447). 

True State of Nature 

H  is true o 1H  is true 

Fail to 
Our reject H 

Decisio 
o

Reject n 
Ho

Correct Type II 
Decision error 

Type I Correct 
error Decision 
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If β is the probability that we fail to reject H  when H  is true, then 1 - β is the probability of the o 1 

complement, that we reject H  when H  is true. We call 1 - β the power of the test; it represents o 1

the ability of the decision rule  to “recognize” (correctly) that H  is false. o

Testing with the the one-sample Z test 

Theorem 6.2.1 (Larsen & Marx, 2006, p. 435) introduces the 1-sample Z test. The Z arises 
because the z distribution is the conventional name for the standard normal distribution, with 
mean 0 and unit variance. The name may arise from the conventional labeling of the X-axis as 
‘z,’ although Larsen & Marx (2006) usually label the abscissa with ‘y’ and the ordinate as ‘f(y)’ 

Theorem 6.2.1 Let Y , Y , … Y  be a random sample of size n from a normal distribution where 1 2 n 

σ is known. Let . 

" To test H : µ = µ  versus H : µ > µ  at the α level of significance, reject H  if o o 1 o o 

z ; z .α 

" To test H : µ = µ  versus H : µ < µ  at the α level of significance, reject H  if o o 1 o o 

z : -z .α 

" To test H : µ = µ  versus H : µ * µ  at the α level of significance, reject H  if z iso o 1 o o 

either (1)  : -zα/2 or (2) ; zα/2 

In most statistical testing, σ is not known and must be estimated from the sample or samples. In 
that case, the standard normal, or z, distribution is not appropriate. The usual distribution that is 
used to account for the reduced precision when σ must be estimated from a sample is Student’s t 
distribution, invented by William S. Gossett of the Guinness Brewing Company, who published 

his famous t ratio under the pseudonym ‘Student:’ . Larsen & Marx (2006) 

introduce the use of Student’s t distribution with their Theorem 7.4.3. 

Examples and Case Studies 

Gas Fuel Additive Study 

Throughout Chapter 6, Larsen & Marx use the example of the fuel additive study. Thirty cars 
were driven cross country to test a fuel additive designed to increase gas mileage. The gas 
mileage before the additive is µ = 25 with σ = 2.4. Assume σ is known to be 2.4. Then the 
probability density function is described by the normal curve f : Y
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If the existing gas mileage was 25 mpg, we are testing 
H : µ = 25o

H : µ > 25 

Is 25.25 a good choice for rejecting 
the null hypothesis? No. As shown in 
Figure 6, if the null hypothesis were 
true, then 28.43% of the samples of 
size 30 would have means ; 25.25. 

Should the cutoff be 26.5%? As 
shown in Figure 7, only 0.03% of the 
area of the curve would have means 
; 26.5 if the null hypothesis was true 
(µ=25; σ=24). 

Figure 6. What percentage of means from a sample size 30 
would have means ; 25.25 if the null hypothesis was true? 
28.42% 

Figure 7. What percentage of means from a sample size 30 
would have means ; 26.5 if the null hypothesis was true? 
.03% 
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What would the appropriate cutoff 
be? We can solve for the gas mileage 
such that 5% or fewer of the samples 
would have mileages greater than 
that critical value. That value is 
25.7207 
(norminv(0.95,25,2.4/sqrt(30)) and 
the relationship to the normal 
distribution is shown in Figure 8. 

Z ratios & the gas-additive study 

Decision rules and critical values 
can either be expressed in the natural 
scale, such as 25.7207 mpg or converted to z-ratios. A z-ratio is dimensionless since it is the 
ratio of a statistic, with appropriate units such as mpg, divided by the standard error for the 
statistic, which will always have the same units, such as mpg. In the case of the critical value for 
the fuel additive study, rejecting H : µ=25.0 mpg when o

Figure 8. What percentage of means from a sample size 30 
would have means ; 25.72 if the null hypothesis (µ=25, 
σ=2.4) was true? 5% 

 is clearly equivalent to rejecting H  when .o

With µ=25 & σ=2.4, the decision rule  stated that H  should be rejected at an α-level of 0.05 if o

equaled or exceeded 25.7207 (25.781 due to rounding in the text. The probability of committing 
Type I error is set by the decision rule at 0.05: 

P(Type I error) = P (reject H  | H  is true) o o

= P ( ; 25.7207 | µ = 25 & σ = 2.4) 

P(Z ; 1.64) = 0.05 

For example, what is the probability of committing a Type II error in the gasoline experiment if 
µ  were 25 mpg, but the true µ (with the additive) were 25.750. By definition, o

P(Type II error | µ = 25.750) = P (fail to reject H  | µ = 25.750 & σ = 2.4)o 

= P (  < 25.781 | µ = 25.750 & σ = 2.4) 

P(Z < -0.07) = 0.4721
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So, even if the fuel additive increased gas mileage to 25.75 mpg, our decision rule would be 
tricked 47.21% of the time, telling us not to reject H . The symbol for the probability of o

committing type II error is β. 

Figure 9 shows the sampling 
distribution of  when µ = 25 & σ = 
2.4 and when µ = 25.75 & σ = 2.4 
(H  is true). 

Figure 10 shows the probability of 
Type II error if µ = 26.8 mpg. 

“If β is the probability that we fail to 
reject H  when H  is true, then 1 - βo 1

is the probability of the complement, Figure 9. If µ=25.75, a decision rule based on H : µ=25.0,
that we reject H  when H  is true. We 

o 

o 1 σ=2.4 & n=30 (i.e., critical value =25.2707= 
call 1 - β the power of the test; it norminv(.95,25,2.4/sqrt(30))) would have a P (Type II 
represents the ability of the decision error) = β = 0.4734 = 
rule to ‘recognize’ (correctly) that normcdf(norminv(.95,25,2.4/sqrt(30)),25.75,2.4/sqrt(30)) 
H  is false.” A power curve is ao

graph of 1 - β versus the set of all 
possible parameter values. 

Figure 10. If µ=26.8, a decision rule based on H : µ=25.0,o 

σ=2.4 & n=30 (i.e., critical value =25.2707= 
norminv(.95,25,2.4/sqrt(30))) would have a P (Type II 
error) = β = 0.0069 = 
normcdf(norminv(.95,25,2.4/sqrt(30)),26.8,2.4/sqrt(30)) 
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Figure 11 shows the power curve for testing H : µ = 25 mpg & σ = 2.4 mpg vs. H : µ > 25 mpg & o 1 

σ = 2.4 mpg. 

Figure 12 shows the power curves for the gas 
mileage experiment comparing a 60-car and 30­
car experiment. The power curves are shown for 
a 2-tailed test. 

Figure 11. Power curve for H  = 25, σ = 2.4 &o 

n=30. Also shown are the estimated power of 
the test against alternative hypotheses µ = 25.75 
and µ = 26.8 

Figure 12. Two-tailed power curves for H  = o 

25, σ = 2.4 & n=30 (black) and n=60 (red 
dashed lines). Also shown are the estimated 
power of each test against alternative 
hypotheses µ = 25.75 and µ = 26.8. With n=30, 
the power of the test against H : µ=25.75 is1

0.4019, but with n=60, the power increases to 
0.6775. The power also increases versus H : 1

µ=26.8 from 0.9841 to 0.9989. The previous 
figure was the power curve for the 1-tailed test, 
which is more powerful than the 2-tailed test for 
equal sample size. 
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Figure 13 shows what happens to 1-β 
(when µ = 25.75) if σ, n, and µ are 
held constant but α is increased to 
0.10 instead of 0.05. 

Using the gasoline additive example, 
Figure 14 reveals the strong effects 
of reducing σ on the power of a test. 

Figure 13. Increasing α from 0.05 to 0.10 decreases β from 
0.4734 (see Figure 6.4.2) to 0.336, thus increasing power 
from 53% to 67%. 

Figure 14. Decreasing σ from 2.4 to 1.2 decreases β from 
0.4734 (see Figure 6.4.2) to 0.0377, thus increasing power 
from 53% to 96%. 



   

 

 

 

 

Figure 15 shows the 1-tailed power 
curve for the gasoline additive data. 

Figure 16 shows the 1-tailed power 
curves for the gasoline additive data 
for sample sizes of 30, 60 and 900. 

Examples 6.2.1 & 6.2.2 

Eighty six students with typical 
scores from a high school were 
taught with a new curriculum. Their 
SAT-1 math scores at the end of the 
instructional period was 502. Given 
that the national average on the 
SAT-1 math score is 494 with σ = 
124, are the scores that these 
students earned greater or less than 
expectation?  The null hypothesis is 
that µ = µ  = 494.o 

The phrasing of the question implies 
a two-tailed alternative test. This can 
be tested at the α=0.05 level of 
significance by computing the z 
score and comparing it to the critical 
value for a two-tailed z test of 1.96. 
If the z ratio is less than -1.96 or 
greater than 1.96, the conclusion 
would be to reject the null 
hypothesis. 

The z ratio for these data is 

critical values of ­
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Figure 15. One-tailed power curve for H  = 25, σ = 2.4 &o 

n=30. Also shown is the estimated power of the test against 
alternative hypotheses µ = 25.75 and µ = 26.8. With n=30, 
the power of the 1-tailed test against H : µ=25.75 is 0.5266.1

The two-tailed test shown in a previous figure had a power 
of only 0.4019. The power of the 1 tailed test against H : 1

µ=26.8 is 99.31%, which is an increase from 98.41%. Tests 
against 1-tailed alternatives are more powerful than two-
tailed tests. 

Figure 16. One-tailed power curves for H  = 25, σ = 2.4 &o 

n=30, 60 and 900. 

, which is within the two 

1.96 and 1.96, so the conclusion is fail to reject. 
Figure 17 shows the z-ratio=0.60 relative to the 
two critical regions. 

What is the p-value of the test? The p-value is 
defined above and is the smallest α level at which 
these data can be used to reject H . As o

programmed in LMex060202_4th.m, the two-

Figure 17. The z ratio of 0.6 is within the 
two shaded critical regions, so the decision 
is ‘fail to reject H ’ o

http:z-ratio=0.60
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tailed p-value associated with the z ratio = 0.6 can be found directly from the Matlab’s one-
sample z test (ztest.m): 
[H,P,CI,ZVAL] = ztest(repmat(Ybar,n,1),muo,sigmao,alpha,'both') 
fprintf('The two-tailed p-value is %6.4f\n',P); 
Or, the 1-tailed p-value can be found from the cumulative normal distribution function and 
multiplied by two. Note that the program must check whether z is less than 0 before determining 
whether the normal cumulative distribution function should be used to find the left tail or the 
right tail of the distribution: 
if z<0
    pvalue=normcdf(z); 
else
    pvalue=1-normcdf(z); 
end 
fprintf('The two-sided p-value is %6.4f\n',pvalue*2) 
Figure 18 shows that the above statement finds the 
upper portion of the normal cumulative 
distribution function. 

Case Study 6.3.1 Point Spread 

Point spreads are designed so that the both teams 
should have an equal probability of winning once 
the point spread has been added to the team’s 
points. In a study of 124 NFL games, the favored 
team beat the spread in 67 games (54%) of the 
time. Is this more than could be expected by 

Figure 18. The p-value is the region to the 
right of abs(z ratio) and to the left of -abs (z 
ratio). The z ratio was 0.6 producing a two-
tailed p-value of 0.5486. 

chance? Apply the one sample binomial test, two tailed with an α level of 0.05. 

I’ve written a program called onesamplebinom.m which solves the one-sample binomial test 
with both the approximate solution, as described in the text (4th edition page 441-442), and using 
the exact test based on the binomial pdf. As described in the text, there is a test to determine 
whether the normal approximation is adequate. Here is the call to binomonesmple: 
X=67; n=124;p=0.5; 
[p2tailed,exact,zval]=onesamplebinom(n,X,p,usebinomial); 

Passed the test for the normal approximation 
Using the normal approximation for the 1-sample binomial, z=0.8980 and 2-tailed p=0.3692 
Using the binomial pdf for the 1-sample binomial, 2-tailed p=0.4191 
Using the binomial pdf for the 1-sample binomial, 1-tailed p=0.2095 

Using the decision rule and an α-level of 0.05, I conclude that there is little evidence to reject 
the null hypothesis (one-sample binomial test, z = 0.89, approximate two-tailed p-value = 0.37). 
Note that if I were doing this analysis for real, I would use the exact two-tailed test, reporting 
again that there is little evidence to reject the null hypothesis (one sample binomial test, exact 
two-tailed p-value = 0.42). 
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Brown et al. (2001) have shown that the standard methods for generating 95% confidence limits 
using the large sample approximation are invalid. Larsen & Marx (2006) don’t generate 
confidence limits for their approximation. 

Case Study 6.3.2 Deaths after birthdays 

Do people hang on until after their birthdays to die? Among 747 decedents reported in a Salt 
Lake newspaper, only sixty (8%) had died in the three months prior to their birthday. The 
expected value would be 25%. Could this result have been due to chance? 

I can solve that with binomonesample, implemented below in LMcs060302_4th.m 
X=60; n=747; p=3/12; [p2tailed,exact,zval]=onesamplebinom(n,X,p,usebinomial); 
which provides the following output 
DeMoivre-Laplace rule is met, Normal approximation probably ok 
Passed the test for the normal approximation 
Normal approximation for the 1-sample binomial test, z=-10.7099, 1-tailed p= 4.6e-027 
Using the binomial pdf, Lower Tail p= 3.9e-033 

Based on these results, I’d conclude that there was overwhelming evidence to reject the null 
-6 hypothesis (one-sample binomial test, 1-tailed p < 10 ). In general, it isn’t a good idea to report

p-values as extreme as 5 x 10-27. With the exact test, while it would be warranted reporting such 
low p-values, p < 10-6 should suffice as providing sufficient grounds for rejecting the null 
hypothesis. 

Example 6.3.1 

A drug is given to 19 elderly patients. The standard drug is effective in relieving arthritis pain in 
85% of the cases. The researcher wishes to test the null hypothesis p=0.85 vs. the two-sided 
alternative hypothesis H : p * 0.85. The decision rule will be based on an exact one-sample 1

binomial test. What are the critical values if the α level is to be approximately 10%? 

I wrote a Matlab program (LMex060301_4th.m), that solves the problem. The lower critical 
value is 13 with a cumulative pdf of 0.0537. The upper critical value is 19 with cumulative pdf 
of 0.0456. With these critical values & H : p=0.85, P(Type I error)=alpha=0.0993. We can o

attempt to use this program to find the critical values for α = 0.05. The program again finds that 
the lower critical value is 13, but now it returns that there is no upper critical value. For α=0.20, 
the program finds that the upper critical value is 19 and that the lower critical value is 14. What 
is the exact 2-sided p-value if 19 of the elderly patients had responded favorably. It is 0.0993, 
calculated using: p2sided=sum(binopdf([0:13 19],19,0.85) 
Why did I find the sum of the binomial pdf from 0 to 13? The expected number of successes is 
0.85*19=16.15. If 19 were observed, that would be 2.85 patients more than expected. A two-
tailed probability, by definition, tallies all of those events that are equal to or more extreme 
given the null hypothesis. We must consider those extreme cases on the other side of the null 
hypotheses. If 0 to 13 patients had responded favorably, the difference from expectation would 

http:0.85*19=16.15
http:19],19,0.85
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exceed 2.85, so the sum of the binomial probability for these variables comprise the lower tail of 
the two-sided p-value. 

Example 6.4.1 

With a null hypothesis of µ = 100 and σ = 14, how many samples are required at the α = 0.05 
level of significance to achieve a power (1 - β) of 60% for the alternative hypothesis µ = 110. 
Larsen & Marx (2006, p 454-455) derive the answer, but it is solved in a few lines in Matlab: 
muo=100;sigma=14;Power=.6;muh1=103; 
N = sampsizepwr('z',[muo sigma],muh1,Power,[],'tail','right'); 
The answer in Matlab is 79, but in Larsen & Marx is 78. Carrying out the Larsen & Marx 
calculations to full double precision reveals that N=78.1925 samples are required to achieve a 
power equal to 60%, but since fractional samples aren’t allowed, 79 is the proper answer. The 
same Matlab function can be used to calculate the power for 78 samples: 
n=78;Power = sampsizepwr('z',[muo sigma],muh1,[],n,'tail','right'); 
The answer returned by Matlab is 59.78%. The sampsizepwr function can also be used for power 
calculations for the t, chi-square and binomial tests. 

Annotated outline (with Matlab scripts) for Larsen & Marx 
Chapter 6 

6 HYPOTHESIS TESTING 
Pierre-Simon, Marquis de Laplace (1749-1827) 

6.1 INTRODUCTION 
“The process of dichotomizing the possible conclusions of an experiment and then using the 
theory of probability to choose one option over the other is known as hypothesis testing. The 
two competing propositions are called the null hypothesis  (written H ) and the alternative o

hypothesis  (written H  [or H ])” A courtroom analogy is presented. 1 a

6.2 THE DECISION RULE 
Let y , y , ..., y30 denote the mileages recorded by each of 30 cars during a cross-country test run 1 2

to evaluate a gas additive. Assume σ is known to be 2.4. Then, 

If the existing gas mileage was 25 mpg, we are testing 
H : µ = 25o

H : µ > 25 1
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Is 25.25 a good choice for rejecting the null hypothesis? No. As 
shown in Figure 19, if the null hypothesis were true, then 28.43% 
of the samples of size 30 would have means ; 25.25. 

% LMFig060202_4th.m 
See LMFig060203a_4th 

Should the cutoff be 26.5%? As shown in Figure 20, only 0.03% of Figure 19. What percentage 
the area of the curve would have means ; 26.5 if the null of means from a sample size 
hypothesis was true (µ=25; σ=24). 30 would have means ; 
% LMFig060203_4th.m 25.25 if the null hypothesis 

See LMFig060203a_4th was true? 28.42% 

What would the appropriate cutoff be? We can solve for the gas mileage such that 5% or fewer 
of the samples would have mileages greater than that critical value. That value is 25.7207 
(solved with Norminv function) and the relationship to the normal 
distribution is shown in Figure 21. 

% LMFig060203a_4th.m 
% Also Figure 6.2.2, 6.2.3, 6.2.3a, 6.4.2, 6.4.3, 6.4.6, 6.4.7 
% Graphs requested by menu prompt 
% Larsen & Marx (2006, p. 448). Introduction to Mathematical 
Statistics 
% The normal probability equation is provided on p. 264. 
% This is for mean 0, and unit standard 
% Written by Eugene.Gallagher@umb.edu 
% written for EEOS601, written 3/10/11, revised 3/10/11 
n=30;sigma=2.4;mu=25;alpha=0.05; 
yhigh=1.05; 
figure622=0; 
figure623=0; 
figure623a=0 
figure642=0; 
figure643=0; 
figure646=0; 
figure647=0; 
onetailed=1; 
tl='Figure 6.2.3a'; 
K = menu('Choose a graph','Figure 6.2.2','Figure 6.2.3',...

 'Figure 6.2.3a, 1-tailed','Figure 6.2.3a, 2-tailed','Figure 6.4.2',...
 'Figure 6.4.3','Figure 6.4.6','Figure 6.4.7'); 

if K==1 

Figure 20. What percentage 
of means from a sample size 
30 would have means ; 26.5 
if the null hypothesis was 
true? .03% 

Figure 21. What percentage 
of means from a sample size 
30 would have means ; 
25.72 if the null hypothesis 
(µ=25, σ=2.4) was true? 5% 

http:yhigh=1.05
http:n=30;sigma=2.4;mu=25;alpha=0.05
mailto:Eugene.Gallagher@umb.edu
IT
Stamp



EEOS 601 
Prob. & Applied Statistics 
Week 6, P. 23 of 41

    tl='Figure 6.2.2';

    figure622=1;

    yup=25.25;
 
elseif K==2
    tl='Figure 6.2.3';
    figure623=1;
    yup=26.50; 
elseif K==3
    tl='Figure 6.2.3a';
    figure623a=1; 
elseif K==4
    onetailed=0;
    tl='Figure 6.2.3a';
    figure623a=1; 
elseif K==5
    figure642=1;
    tl='Figure 6.4.2'; 
elseif K==6
    figure643=1;
    tl='Figure 6.4.3'; 
elseif K==7
    figure646=1;
    alpha=0.10;
    tl='Figure 6.4.6'; 
elseif K==8
    figure647=1;
    sigma=1.2;
    yhigh=2;
    tl='Figure 6.4.7'; 
end 
if onetailed==1 & K>2
        yup=norminv(1-alpha,mu,sigma/sqrt(n))
        % or for those who'd like to try the optimization toolbox:
        yup2 = fsolve(@(x) (1-alpha)-normcdf((x-mu)./(sigma./sqrt(n))),25,optimset('Display','off'))
        yup-yup2  % <e-9
        fprintf('The critical value is %6.4f\n',yup) 
elseif K>2
    % This is two-tailed you must solve for both tails
    yup=norminv(1-alpha/2,mu,sigma/sqrt(n));
    yup3 = fsolve(@(x) (1-alpha/2)-normcdf((x-mu)./(sigma./sqrt(n))),25,optimset('Display','off'))
    yup-yup3;
    ylow=norminv(alpha/2,mu,sigma/sqrt(n));
    % just playing around with the equation solver:
    ylow3 = fsolve(@(x) (alpha/2)-normcdf((x-mu)./(sigma./sqrt(n))),25,optimset('Display','off'))
    ylow-ylow3;  % < 10^-5 

http:alpha=0.10
http:yup=26.50
http:yup=25.25


    fprintf('The lower critical value is %6.4f\n',ylow)
    fprintf('The upper critical value is %6.4f\n',yup) 
end 
p=1-normcdf((yup-mu)/(sigma/sqrt(n))) 
muj=mu; 
sigmaj=sigma/sqrt(n); % sigmaj is the standard error of the mean 
miny=22.9; 
if figure643==1
    maxy=28.1; 
else
    maxy=27.1; 
end 
y=miny:.01:maxy; 
fyj=normpdf(y,mu,sigmaj); 
% Plot using ax1 handle, saved above,to save this graph 
% on top of the previous graph. 
plot(y,fyj,'linestyle','--','color','r','linewidth',3) 
ylabel('Density','FontSize',20) 
xlabel('Gas Mileage','FontSize',22) 
axis([miny maxy 0 yhigh]) 
set(gca,'Ytick',[0:0.5:2],'FontSize',18) 
set(gca,'Xtick',[23:.5:25 yup 27:0.5:28],'FontSize',18) 
ax1=gca;% save the handle of the graph 
title(tl,'FontSize',22); 
hold on 
fyj1=normpdf(yup,mu,sigmaj); 
plot([yup yup]',[0 fyj1]','-k','linewidth',1) 
fymu=normpdf(mu,mu,sigmaj); 
plot([mu mu]',[0 fymu]','-.r','linewidth',1) 
% Fill in the upper tail with fill 
y2=yup:.1:maxy; 
fyj2=normpdf(y2,mu,sigmaj); 
fyjmax=normpdf(maxy,mu,sigmaj); 
fill([yup y2 maxy maxy],[0 fyj2 fyjmax 0],[1 .4 .4]) 
if p<0.001
    t=sprintf('Mileage>%5.2f\nArea=%6.4f\n',yup,p); 
else
    t=sprintf('Mileage>%5.2f\nArea=%5.3f\n',yup,p); 
end 
text(26,.1,t,'Color','k','FontSize',16); 
if onetailed ~=1
    % Fill in the lower tail

    y4=miny:.01:ylow;

    fyj4=normpdf(y4,mu,sigmaj);

    fyjmin=normpdf(miny,mu,sigmaj);
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    fill([miny miny y4 ylow],[0 fyjmin fyj4 0],[1 .4 .4])

    t=sprintf('Mileage<%5.2f\nArea=%5.3f\n',ylow,p);

    text(miny+.2,.1,t,'Color','k','FontSize',16);
 
end
 
t6=sprintf('Sampling\ndistribution of Y\nwhen Ho true');
 
text(23.3,.9,t6,'Color','r','FontSize',20);
 
if figure642==1 | figure646==1 | figure647==1


 mu2=25.750;

    fyj3=normpdf(y,mu2,sigmaj); 

    % Plot using ax1 handle, saved above,to save this graph

    % on top of the previous graph.

    plot(y,fyj3,'linestyle','--','color','b','linewidth',3);

    y5=miny:.01:yup;

    fyj5=normpdf(y5,mu2,sigmaj);

    fyj5min=normpdf(miny,mu2,sigmaj);

    fyj5max=normpdf(yup, mu2,sigmaj);

    fill([miny miny y5 yup],[0 fyj5min fyj5 0],[.8 .8 1])

    t=sprintf('Sampling\ndistribution of Y\nwhen mu=%5.2f',mu2);

    text(26.15,.9,t,'Color','b','FontSize',20);

    fyj6=normpdf(yup,mu2,sigmaj);

    plot([yup yup]',[0 fyj6]','-b','linewidth',1) 

    h1 = findobj(gca,'Type','patch'); 

    set(h1,'facealpha',0.5);

    Beta=normcdf(yup,mu2,sigmaj);

    t5=sprintf('Beta=%6.4f\n',Beta);

    text(25.05,.05,t5,'Color','b','FontSize',16);

    fymu6=normpdf(mu2,mu2,sigmaj);

    plot([mu2 mu2]',[0 fymu6]','-.b','linewidth',1)
 
elseif figure643==1

 mu2=26.8;
    fyj3=normpdf(y,mu2,sigmaj); 
    % Plot using ax1 handle, saved above,to save this graph
    % on top of the previous graph.
    plot(y,fyj3,'linestyle','--','color','g','linewidth',3);
    y5=miny:.01:yup;
    fyj5=normpdf(y5,mu2,sigmaj);
    fyj5min=normpdf(miny,mu2,sigmaj);
    fyj5max=normpdf(yup, mu2,sigmaj);
    fill([miny miny y5 yup],[0 fyj5min fyj5 0],[.8 .8 1])
    t=sprintf('Sampling\ndistribution of Y\nwhen mu=%5.2f',mu2);
    text(27,.9,t,'Color','g','FontSize',20);
    fyj6=normpdf(yup,mu2,sigmaj);
    plot([yup yup]',[0 fyj6]','-g','linewidth',1) 
    h1 = findobj(gca,'Type','patch'); 
    set(h1,'facealpha',0.5); 
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    Beta=normcdf(yup,mu2,sigmaj);
    t5=sprintf('Beta=%6.4f\n',Beta);
    text(24.6,.05,t5,'Color','g','FontSize',16);
    fymu6=normpdf(mu2,mu2,sigmaj);
    plot([mu2 mu2]',[0 fymu6]','-.g','linewidth',1) 
end 
figure(gcf) 
hold off 

Table 6.2.1 
% LMTable060201_4th.m 
% from the normal pdf 
% From Larsen & Marx  (2006) Introduction to Mathematical Statistics, 
% Fourth Edition. page 432 
% Dept. Environmental, Earth & Ocean Sciences 
% Written by Eugene.Gallagher@umb.edu written & revised 3/4/11 
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html 
% Use Matlab to find the 95% critical value (1-tailed)? it is about 25.178 
y1 = fsolve(@(x) 0.95-normcdf((x-25)./(2.4./sqrt(30))),25,optimset('Display','off')) 
% Generate n random samples of size 30 with mean 25 and sigma=2.4 
MU=25;SIGMA=2.4; 
fprintf('mu =%5.3f and sigma = %5.3f\n',MU,SIGMA); 
n=75; % Larsen & Marx used 75 
samsize=30;              % Larsen & Marx used 30 
Ybar = mean(normrnd(MU,SIGMA,samsize,n)); 
fprintf('\nTable 6.2.1\n\n') 
for i=1:n
    if Ybar(i)>=y1
        fprintf('%6.3f \tyes\n',Ybar(i))

 else
        fprintf('%6.3f \tno\n',Ybar(i))

 end 
end 
fprintf('There were %1.0f of %2.0f samples that exceeded %6.3f.\n',sum(Ybar>=y1),n,y1) 

Comment (p. 433). If H : µ=µ  is rejected using a 0.05 decision rule, we say that the difference o o 

between and µ  is statistically significant at the 5% α-level.o 

http:fprintf('%6.3f
http:fprintf('%6.3f
http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
mailto:Eugene.Gallagher@umb.edu
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6.2.1 Expressing decision rules in terms of Z ratios 
Z ratio isn’t defined, but it is any ratio that is expected to be distributed as the standard normal 
distribution (µ = σ = 1). Z ratios are usually formed by as the ratio of {a statistic ­
 expected value} divided by the standard error of the statistic. 

Rejecting H : µ=25.0 wheno

orejecting H  when . 

Definition 6.2.1 Any function of the observed data whose numerical value dictates whether H  is o 

accepted or rejected is called a test statistic. The set of values for the test statistic that 
result in the null hypothesis being rejcted is called the critical region and is denoted C. 
The particular point in C that separates the rejection region from the acceptance region is 
called the critical value. 

Definition 6.2.2 The probability that the test statistic lies in the critical region when H  is true is o 

called the level of significance and is denoted α. [significance level is also called α­
level] 

6.2.2 One Sided Versus Two-Sided Alternatives 
“If there is reason to believe before any data are collected that the parameters being tested is 
necessarily restricted to one particular “side” of H , then H  is defined tgo reflect that limitation o 1

and we say that the alternative hypothesis is one-sided... If no such a priori information is 
available, the alternative hypothesis needs to accommodate the possibility that the true 
parameter value might lie one either side of µ . Any such alternative is said to be two-sided. For o 

testing H : µ=µ , the two sided alternative is written H : µ * µ .” (p 434)o o 1 o 

6.2.3 Testing H : µ=µ  (σ known) o o 

Figure 6.2.4 
% LMFig060204_4th.m
 
% Larsen & Marx (2001, p. 367).
 
% Normal probability pdf
 
% Written by Eugene.Gallagher@umb.edu
 
% written for EEOS601
 
z05=norminv(0.95)
 
z=-3.05:.001:3.05;
 
fzz=normpdf(z)
 
plot(z,fzz,'linestyle','--','color','r','linewidth',3)
 
ylabel('f_z(z)','FontSize',20)
 
xlabel('z','FontSize',22)
 
axis([-3.05 3.05 0 0.405])
 
set(gca,'Ytick',[0 0.2 0.4],'FontSize',18)
 

Figure 22. The z score for a 
1-tailed critical value for α = 
0.05 is 1.64 
(=norminv(1-0.05)). 

http:norminv(1-0.05
http:axis([-3.05
http:z=-3.05:.001:3.05
http:z05=norminv(0.95
mailto:Eugene.Gallagher@umb.edu
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set(gca,'Xtick',[0 1.64],'XtickLabels',{'0','z_{0.05}=1.64'},'FontSize',18)
 
ax=axis;
 
ax1=gca; % save the handle of the graph
 
title('Figure 6.2.4','FontSize',22)
 
hold on
 
fz05=normpdf(z05);
 
plot([z05 z05]',[0 fz05]','-k','linewidth',1) 

% Fill in the upper tail with fill
 
y2=z05:.001:ax(2);
 
fy2=normpdf(y2);
 
fymax=normpdf(ax(2));
 
fill([z05 y2 ax(2) ax(2)],[0 fy2 fymax 0],[.8 .8 1])
 
t=sprintf('Area=%4.2f\n',p);
 
text(z05+.1,.1,t,'Color','b','FontSize',20);
 
figure(gcf)
 
hold off
 

Theorem 6.2.1 (1-sample z test) Let y , y , ..., y  be a random sample of size n from a normal 1 2 n 

distribution where σ is known. Let . 

a. To test H : µ = µ  versus H : µ > µ  at the α level of significance, reject H  if z ;o o 1 o o 

z . α

b. To test H : µ = µ  versus H : µ < µ  at the α level of significance, reject H  if z :o o 1 o o 

�z .α 

c. To test H : µ = µ  versus H : µ * µ  at the α level of significance, reject H  if z is o o 1 o o 

either (1) : �zα/2 or (2) ; zα/2. 

Example 6.2.1 
% LMex060201_4th.m
 
% Larsen & Marx (2001, p. 367).
 
% Introduction to Mathematical Statistics, 4th edition
 
% Normal probability pdf
 
% Written by Eugene.Gallagher@umb.edu
 
% written for EEOS601
 
z025=norminv(0.025);
 
z975=norminv(0.975);
 
z=-3.05:.001:3.05;
 
fzz=normpdf(z)
 
plot(z,fzz,'linestyle','--','color','r','linewidth',3)
 
ylabel('f_z(z)','FontSize',20)
 
xlabel('z','FontSize',22)
 
axis([-3.05 3.05 0 0.405])
 
set(gca,'Ytick',[-1.96 0 0.6 1.96],'FontSize',18)
 
set(gca,'Xtick',[-1.96 0 0.60 1.96],...


 'XtickLabel',{'-1.96', '0','z=0.60','1.96'},'FontSize',18) 
ax=axis; 

http:XtickLabel',{'-1.96
http:set(gca,'Xtick',[-1.96
http:set(gca,'Ytick',[-1.96
http:axis([-3.05
http:z=-3.05:.001:3.05
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ax1=gca; % save the handle of the graph
 
title('Figure 6.2.5','FontSize',22)
 
hold on
 
fz=normpdf([z025 z975]);
 
plot([z025 z025;z975 z975]',[0 fz(1);0 fz(2)]','-k','linewidth',1) 

% Fill in the upper tail with fill
 
y2=z975:.001:ax(2);
 
fy2=normpdf(y2);
 
fymax=normpdf(ax(2));
 
fill([z975 y2 ax(2) ax(2)],[0 fy2 fymax 0],[.8 .8 1])
 
% Fill in the lower tail with fill
 
y3=ax(1):.001:z025;
 
fy3=normpdf(y3);
 
fymin=normpdf(ax(1));
 
fill([ax(1) ax(1) y3 z025],[0 fymin fy3 0],[.8 .8 1])
 
t=sprintf('Area=0.025');
 
text(ax(1)+.3,.2,t,'Color','b','FontSize',20);
 
text(1.6,.2,t,'Color','b','FontSize',20);
 
figure(gcf)
 
hold off
 

6.2 The P-value 
Definition 6.2.3 The p-value associated with an observed test statistic is the probability of 
getting a value for that test statistic as extreme or more extreme than what was actually observed 
(relative to H ) given that H  is true.1 o 

Example 6.2.2 
[Solved as part of LMex060201_4th.m 

Questions p 438-439 
6.3 Testing binomial data - H  :p=p  (p 440) o o 

6.3.1 A Large Sample Test for the Binomial Parameter p 
Theorem 6.3.1 Let k , k , …, k  be a random sample of n Bernoulli random variables for which 0 1 2 n 

< n p  3L(np  (1-p )) < np  + 3 L (np  (1-p ) < n. Let k = k  + k  + …+ k  denote the total number o o o o o o 1 2 n 

of “successes” in the n trials. Define z = (k-np )/(L(np (1-p )), o o o 

to test H : p = p  versus H : p > p  at the α level of significance, reject H  if z ; z . o o 1 o o α 

to test H : p = p  versus H : p < p  at the α level of significance, reject H  if z ; -z . o o 1 o o α 

to test H : p = p  versus H : p * p  at the α level of significance, reject H  if z is either (1) o o 1 o o 

: -zα/2 or (2) ; zα/2. 

Case Study 6.3.1 Point Spread 
Point spreads are designed so that the both teams should have an equal probability of winning 
once the point spread has been added to the team’s points. In a study of 124 NFL games, the 
favored team beat the spread in 67 games (54%) of the time. Is this more than could be expected 
by chance? Apply the one sample binomial test. (See text above for fuller description) 

Passed the test for the normal approximation 
Using the normal approximation for the 1-sample binomial, z=0.8980 and 2-tailed p=0.3692 
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Using the binomial pdf for the 1-sample binomial, 2-tailed p=0.4191 
Using the binomial pdf for the 1-sample binomial, 1-tailed p=0.2095 

% LMcs060301_4th.m 
% Larsen & Marx Case Study 6.3.1 (2006, p. 441) 
% Point Spread example 
% Point spreads are set so 50% of teams beat the spread 
% During one period 67 of 124 teams beat the spread 
% What is the probability that 67/124 could have been 
% observed by chance if the true p of beating the spread 
% is 0.5? 
X=67; 
n=124; 
p=0.5; 
% Check Demoivre-Laplace rule, Larsen & Marx (2006, Equation 6.3.1) 
OUT=demoivre(124,p); 
if OUT==1
    fprintf('The DeMoivre-Laplace rule is met, Normal approximation probably ok\n'); 
else
    fprintf('The DeMoivre-Laplace rule not met, Normal approximation not ok\n'); 
end 
usebinomial=0;  % Will perform the approximate test 
[p2tailed,exact,zval]=onesamplebinom(n,X,p,usebinomial); 
fprintf(...

 'Using the normal approximation for the 1-sample binomial, z=%6.4f and 2-tailed 
p=%6.4f\n',...
    zval,p2tailed); 
usebinomial=1; 
[p2tailed,exact]=onesamplebinom(n,X,p,usebinomial); 
fprintf(...

 'Using the binomial pdf for the 1-sample binomial, 2-tailed p=%6.4f\n',...
    p2tailed); 
UpperTailp=binomutp(n,X,p); 
fprintf(...

 'Using the binomial pdf for the 1-sample binomial, 1-tailed p=%6.4f\n',...
    UpperTailp); 
function [p2tailed,exact,zval]=onesamplebinom(n,k,po,usebinomial); 
% format[pvalue,exact,zval]=onesamplebinom(n,k,po,usebinomial); 
% Input n=number of cases 
% k=number of successes 
% po=expected proportion 
% usebinomial=1 for exact test [optional] 
% Output: p2tailed  2-tailed p value 
% exact  1 if Exact binomial test used 
% zval = z statistic 
% calls demoivre.m 
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% Reference: Larsen & Marx (2006, p. 440) Theorem 6.3.1 
% Uses bernoull.m 
if nargin<4 | usebinomial==0
    usebernoull=logical(0); 
else
    usebernoull=logical(1);
    exact=1; 
end 
if ~usebernoull
    % Equation 6.3.1 in L&M 4th edition p. 631
   if 0 < n*po-3*sqrt(n*po*(1-po)) & n*po-3*sqrt(n*po*(1-po)) < ...
    n*po +3*sqrt(n*po*(1-po)) & n*po +3*sqrt(n*po*(1-po)) < n;  
        fprintf('Passed the test for the normal approximation\n')
        exact=logical(0); 

else
        fprintf('Failed test for normal approximation, Must use the binomial test\n')
        exact=logical(1);

 end 
end 
Expected=n*po; 
Varpo=po*(1-po); 
zval=(k-Expected)/sqrt(n*Varpo); 
if exact
    Expectedk=n*po;
    dev=abs(Expectedk-k);
    if Expectedk>=k
        i=0:k;
        lowertailp=sum(binopdf(i,n,po));
        i=ceil(Expectedk+dev):n;
        uppertailp=sum(binopdf(i,n,po));
        p2tailed=lowertailp+uppertailp;

 else
        i=k:n;
        uppertailp=sum(binopdf(i,n,po));
        i=0:floor(Expectedk-dev);
        lowertailp=sum(binopdf(i,n,po));
        p2tailed=lowertailp+uppertailp;

 end 
else
    if zval<0
         p2tailed=2*(normcdf(zval));
    elseif zval>=0
        p2tailed=2*(1-normcdf(zval));

 end 
end 
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function UpperTailP=binomutp(n,k,p); 
% format UpperTailp=binomutp(n,k,p); 
% Input n=number of cases 
% k=number of successes 
% p=expected proportion 
% Output: UpperTailP Upper-Tail probabilities. 
% Reference: Hollander & Wolfe p. 567. 
% written by Eugene.Gallagher@umb.edu 
if k>n
    error('k must be <= n'); 
end 
i=k:n; 
UpperTailP=sum(binopdf(i,n,p)); 

Case Study 6.3.2 Deaths after birthdays 
6.3.2 A small sample test for the binomial parameter p 

Example 6.3.1 
% LMex060301_4th.m 
% page 444-445 in 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% Written by Eugene.Gallagher@umb.edu, 2003, revised 3/8/11 
p=0.85; 
n=19; 
Expected=p*n 
k=0:19; 
pdf=binopdf(k,n,p); 
i=find(k<Expected); 
alpha=0.1; 
fprintf(...

 'Goal is to find 2-tailed critical values for alpha=%4.2f\n',...
    alpha); 
cpdf=cumsum(pdf(i)); 
disp(['k  ';'pdf  ';'cumulative pdf']) 
disp([k(i);pdf(i);cpdf]); 
j=max(find(cpdf<=alpha/2)); 
if cpdf(j)~=alpha/2

 j=j+1; 
end 
fprintf('The lower critical value is %d with cumulative pdf of %6.4f\n',...
    k(i(j)),cpdf(j)); 
fprintf('Find the upper critical value\n') 
i=find(k>Expected); 
ucpdf=fliplr(cumsum(fliplr(pdf(i)))); 
disp([k(i);pdf(i);ucpdf]); 
m=min(find(ucpdf<=alpha/2)); 
% By inspecting the cumulative pdf, the goal of attaining a nearly 

mailto:Eugene.Gallagher@umb.edu
mailto:Eugene.Gallagher@umb.edu
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% symmetric set of critical values around the expected values is 
% met by setting the upper critical value at 19 
fprintf('The upper critical value is %d with cumulative pdf of %6.4f\n',...
    k(i(m)),ucpdf(m)); 
fprintf('With these critical values & Ho: p=%4.2f, P(Type I error)=alpha=%6.4f\n',...

 p,ucpdf(m)+cpdf(j)) 

Questions p 445-446 
6.4 TYPE I AND TYPE II ERROR 

Type I and Type II error There are two kinds of errors that can be committed in the process of 
hypothesis testing. They are shown in the following table. Type I error is the probability of 
rejecting the null hypothesis H  when H  is true; Type II error is the probability of failing to o o

rject the null hypothesis H  when H  is false. o o

Table 2. Hypothesis testing decision tree, 
Type I and Type II errors. Larsen & Marx 
(2006, p 447). 

True State of Nature 

H  is true H  is true o 1 

Fail to 
Our reject H 

Decisio 
o

Reject n 
Ho

Correct Type II 
Decision error 

Type I Correct 
error Decision 

6.4.1 Computing the Probability of Committing a Type I Error 
Recall the fuel additive example in Section 6.2. With µ=25 & σ=2.4, the decision rule stated 
that H  should be rejected at an α-level of 0.05 if  equaled or exceeded 25.7207 (25.781 due to o

rounding in the text. The probability of committing Type I error is set by the decision rule at 
0.05: 

P(Type I error) = P (reject H  | H  is true) o o

= P ( ; 25.7207 | µ = 25 & σ = 2.4) 

P(Z ; 1.64) = 0.05 
The probability of committing a Type I error is a test’s level of significance (recall Definition 
6.2.2). “The concept is a crucial one: The level of significance is a single number summary of 
the “rules” by which the decision process is being conducted. In essence α reflects the amount of 
evidence the experimenter is demanding to see before abandoning the null hypothesis.” p. 448 

6.4.2 Computing the Probability of Committing a Type II Error 
6.4.2.1 Type II error probabilities are not explicitly set by the 

experimenter 
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6.4.2.2 Each hypothesis has an infinite number of Type II probabilities, 
one for each parameter admissable under H . 1

For example, what is the probability of committing a Type II error in the gasoline experiment if 
µ  were 25 mpg, but the true µ (with the additive) were 25.750. By definition, o

P(Type II error | µ = 25.750) = P (fail to reject H  | µ = 25.750 & σ = 2.4)o 

= P (  < 25.781 | µ = 25.750 & σ = 2.4) 

P(Z < -0.07) = 0.4721 
So, even if the fuel additive increased gas mileage to 25.75 mpg, our decision rule would be 
tricked 47.21% of the time, telling us not to reject H . The symbol for the probability of o

committing type II error is β. 

Figure 23 shows the sampling distribution of  when µ = 25 & σ = 
2.4 and when µ = 25.75 & σ = 2.4 (H  is true). 1 

% LMFig060402_4th.m 
See LMFig060203a_4th.m 

Figure 24 shows the probability of Type II error if µ = 26.8 mpg. 
See LMFig060203a_4th.m for program. Figure 23. If µ=25.75, a 

decision rule based on H : o

6.4.3 Power Curves µ=25.0, σ=2.4 & n=30 (i.e., 

“If β is the probability that we fail to reject H  when H  is true, critical value =25.2707= 
o 1 

then 1 - β is the probability of the complement, that we reject H norminv(.95,25,2.4/sqrt(30))) 

when H  is true. We call 1 - β the power of the test; it represents 
o 

would have a P (Type II 
1

the ability of the decision rule  to “recognize” (correctly) that H  is error) = β = 0.4734 = 

false.” A power curve is a graph of 1 - β versus the set of all 
o

normcdf(norminv(.95,25,2.4/ 
sqrt(30)),25.75,2.4/sqrt(30)) possible parameter values. 

Figure 24. If µ=26.8, a 
decision rule based on H : o

µ=25.0, σ=2.4 & n=30 (i.e., 
critical value =25.2707= 
norminv(.95,25,2.4/sqrt(30))) 
would have a P (Type II 
error) = β = 0.0069 = 
normcdf(norminv(.95,25,2.4/ 
sqrt(30)),26.8,2.4/sqrt(30)) 
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Figure 25 shows the power curve for testing H : µ = 25.0 & σ = 2.4o

vs. H : µ > 25.0 & σ = 2.4. 

% LMFig060404_4th.m
 
% Using as a model %LMcs030201_4th.m, page 450 in
 
% Larsen & Marx (2006) Introduction to Mathematical Statistics,
 
4th edition
 
% Written 3/10/11 (11:22 -)
 
% Eugene.Gallagher@umb.edu for EEOS601 UMASS/Boston
 
CritVal=norminv(.95,25,2.4/sqrt(30));
 
xmin=25;xmax=27.1;
 
X=xmin:0.005:xmax;
 
sigmaj=2.4;n=30;
 
Power=1-normcdf(CritVal,X,sigmaj/sqrt(n));
 
x=[25.75 26.8]; Pow=1-normcdf(CritVal,x,sigmaj/sqrt(n));
 
plot(X,Power,':k','LineWidth',3)
 
axis([xmin xmax 0, 1.1])
 
hold on
 
set(gca,'Xtick',[25 25.5 x(1) 26 26.5 x(2) 27],'Ytick',[0:.25:1],'FontSize',18) 
% This plots horizontal and vertical lines on the graph 
plot([x(1) x(1);xmin x(1);x(2) x(2);xmin x(2)]',[0 Pow(1);...
    Pow(1) Pow(1);0 Pow(2);Pow(2) Pow(2)]','--m','LineWidth',3); 
ylabel ('Power = 1 - Beta','FontSize',20); 
xlabel('Presumed value for mu','FontSize',20) 
title('Figure 6.4.4','FontSize',22) 
t1=sprintf('Power = %6.4f',Pow(1)); 
t2=sprintf('Power = %6.4f',Pow(2)); 
text(xmin+0.2,0.55,t1,'FontSize',18); 
text(xmin+0.2,1.02,t2,'FontSize',18); 
figure(gcf) 
pause 
hold off 

Figure 26 shows the power curves for the gas mileage experiment 
comparing a 60-car and 30-car experiment. The power curves are 
shown for a 2-tailed test. 

Figure 25. Power curve for 
H  = 25, σ = 2.4 & n=30.o

Also shown are the estimated 
power of the test against 
alternative hypotheses µ = 
25.75 and µ = 26.8 

Figure 26. Two-tailed power 
curves for H  = 25, σ = 2.4 &o

n=30 (black) and n=60 (red 
dashed lines). Also shown are 
the estimated power of each 
test against alternative 
hypotheses µ = 25.75 and µ = 
26.8. With n=30, the power 
of the test against H : 1

µ=25.75 is 0.4019, but with 
n=60, the power increases to 
0.6775. The power also 
increases versus H : µ=26.81

from 0.9841 to 0.9989. The 
previous figure was the 
power curve for the 1-tailed 
test, which is more powerful 
than the 2-tailed test for 
equal sample size. 

http:x=[25.75
mailto:Eugene.Gallagher@umb.edu
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6.4.4 Factors That Influence the Power of a Test 
6.4.4.1 The effect of α on 1 - β 

Figure 27 shows what happens to 1-β (when µ = 25.75) if σ, n, and 
µ are held constant but α is increased to 0.10 instead of 0.05.

 Figure 6.4.6 
6.4.5 The effects of σ and n on 1- β 

Figure 28 reveals the strong effects of reducing σ on the power of a Figure 27. Increasing α from 
test. 0.05 to 0.10 decreases β from 
Example 6.4.1 0.4734 (see Figure 6.4.2) to 
% LMEx060401_4th.m 0.336, thus increasing power 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, from 53% to 67%. 
4th ed 
% Written by Eugene.Gallagher@umb.edu, 3/10/11 revised 3/10/11 
muo=100;sigma=14;Power=.6;muh1=103;alpha=0.05 
N = sampsizepwr('z',[muo 
sigma],muh1,Power,[],'alpha',alpha,'tail','right'); 
fprintf('%2.0f samples must be taken to achieve 
power=%2.0f%%\n',N,Power*100); 
% Optional, just checking why L&M said 78 was adequate 

Figure 28. Decreasing σ% What is th exact value of n needed; use an anonymous function 
from 2.4 to 1.2 decreases βto solve n 
from 0.4734 (see Figure initialguess=75 
6.4.2) to 0.0377, thusx=fsolve(@(n) 
increasing power from 53% 100+norminv(0.95)*14/sqrt(n)-(103-0.25*14/sqrt(n)),...
to 96%.    initialguess,optimset('Display','off')); 

fprintf('The exact sample size required is %6.4f\n',x); 
% Larsen & Marx report 78 so check the power with 78. 
n=78; 
Power = sampsizepwr('z',[muo sigma],muh1,[],n,'alpha',alpha,'tail','right'); 
fprintf('One-tailed test: the power with n=%2.0f is %5.2f%%.\n',n,Power*100) 
% Another way to calculate power, should be identical 
CriticalValue=norminv(1-alpha,muo,sigma/sqrt(n)); 
Power2=1-normcdf(CriticalValue,muh1,sigma/sqrt(n)); 
fprintf('One-tailed test: the power with n=%2.0f is %5.2f%%.\n',n,Power2*100) 
% note that if the test were two-tailed, here is how these functions would 
% be called: 
Power = sampsizepwr('z',[muo sigma],muh1,[],n,'alpha',alpha,'tail','both'); 
fprintf('Two-tailed test: the power with n=%2.0f is %5.2f%%.\n',n,Power*100); 
CriticalValue2=norminv(1-alpha/2,muo,sigma/sqrt(n)); 
Power2=1-normcdf(CriticalValue2,muh1,sigma/sqrt(n)); 
fprintf('Two-tailed test: the power with n=%2.0f is %5.2f%%.\n',n,Power2*100) 

6.4.6 Decision Rules for Nonnormal data 
Example 6.4.2 Skipped, life’s too short 

http:fprintf('%2.0f
http:muo=100;sigma=14;Power=.6;muh1=103;alpha=0.05
mailto:Eugene.Gallagher@umb.edu
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Example 6.4.3 Not programmed but doable 
Four measurements — k1, k2, k3 & k4 — are taken on a Poisson random variable, X for the 
purpose of testing H : λ=0.8 vs. λ > 0.8 What is the decision rule if the level of significance is to o

be 0.10 and what will the power of the test be when λ = 1.2?
 
% LMex060403_4th.m
 
% Page 457-458 in
 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
 
% Application of poisspdf
 
% Four measurements — k1, k2, k3 & k4 — are taken on a Poisson random 

% variable, X for the purpose of testing Ho: ?=0.8 vs. ? > 0.8
 
% A) What is the decision rule if the level of significance is to be 0.10?
 
% B) What will the power of the test be when ? = 1.2?
 
% For A, the expected value of 4 observations is 4*lambda (Example 31210),
 
% So analyze the pdf for lambda=4*0.8
 
% Written in 2003 by Eugene.Gallagher@umb.edu, revised 3/11/2011
 
lambda=4*0.8;alpha=0.1;
 
% Right tailed test
 
X=0:20;
 
% for a right-tailed test:
 
testcdf=1-poisscdf(X,lambda);
 
% for a left tailed test use: testcdf=poisscdf(X,lambda);
 
i=min(find(testcdf<alpha));
 
fprintf('The critical value for alpha=%3.1f is %2.0f\n',alpha,X(i));
 
fprintf('With crtical value = %2.0f, the alpha level is %6.4f\n',...

    X(i),testcdf(i)) 
% B) What is the power of the test if lambda= 1.2? 
lambdah1=1.2; 
% Right tailed test, appropriate for this problem: 
PTypeII=poisscdf(X(i-1),lambdah1*4); 
% Left tailed test: %PTypeII=1-poisscdf(X(i-1),lambdah1*4) 
Power=1-PTypeII; 
fprintf('With critical value=%2.0f & lambda=%3.1f, P(Type II error)=%6.4f, and the power of 
the test is %5.2f%%\n',...
    X(i),lambdah1,PTypeII,Power*100) 
% Power is 0.349 

Example 6.4.4 Not programmed but doable 
Questions 

6.5	 A NOTION OF OPTIMALITY: THE GENERALIZED LIKELIHOOD 
RATIO [Summer 2011 students can skip this section] 

Generalized likelihood ratio 
Definition 6.5.1 
Definition 6.5.2 
Questions p. 465­

6.6	 TAKING A SECOND LOOK AT STATISTICS (STATISTICAL 
SIGNIFICANCE VERSUS “PRACTICAL” SIGNIFICANCE) 

http:error)=%6.4f
http:lambda=%3.1f
http:value=%2.0f
http:alpha=%3.1f
mailto:Eugene.Gallagher@umb.edu
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Figure 29 shows the 1-tailed power curve for the gasoline additive da 

Figure 30 shows the 1-tailed power curves for the gasoline additive 
data for sample sizes of 30, 60 and 900. 

%LMFig060601_4th.m 
% Also plots Figure 6.6.2 
% Based on LMFig060405_4th.m 
% LMFig060405_4th.m 
% Using as a model %LMcs030201_4th.m, page 450 in 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 
4th edition 
% Written 3/10/11 (11:22 -11:57 am, ) 
% Eugene.Gallagher@umb.edu for EEOS601 UMASS/Boston 
xmin=25;xmax=27.1;mu=25; 
X=mu:0.005:xmax; 
sigmaj=2.4;n=30;alpha=0.05; 
K = menu('Choose a graph','Figure 6.6.1','Figure 6.6.2') 
CritVal=norminv(1-alpha,mu,sigmaj/sqrt(n)); 
Power =1-normcdf(CritVal,X,sigmaj/sqrt(n)); 
x=[25.75 26.8]; 
Pow=1-normcdf(CritVal,x,sigmaj/sqrt(n)); 
plot(X,Power,'--k','LineWidth',3) 
axis([xmin xmax 0, 1.1]) 
ylabel ('Power = 1 - Beta','FontSize',20); 
xlabel('Presumed value for mu','FontSize',20) 
hold on 
if K==1
    % This plots horizontal and vertical lines on the graph
    plot([mu mu]',[0 1]','k','LineWidth',2)
    plot([x(1) x(1);mu x(1);x(2) x(2);mu x(2)]',[0 Pow(1);...
    Pow(1) Pow(1);0 Pow(2);Pow(2) Pow(2)]','--m','LineWidth',3);
    title('Figure 6.6.1','FontSize',22)
    t1=sprintf('Power = %6.4f',Pow(1));
    t2=sprintf('Power = %6.4f',Pow(2));
    text(mu+0.1,Pow(1)+.03,t1,'FontSize',18);
    text(mu+0.1,Pow(2)+.03,t2,'FontSize',18);

Figure 29. One-tailed power 
curve for H  = 25, σ = 2.4 &o

n=30. Also shown is the 
estimated power of the test 
against alternative 
hypotheses µ = 25.75 and µ = 
26.8. With n=30, the power 
of the 1-tailed test against H : 1

µ=25.75 is 0.5266. The two-
tailed test shown in a 
previous figure had a power 
of only 0.4019. The power of 
the 1 tailed test against H : 1

µ=26.8 is 99.31%, which is 
an increase from 98.41%. 
Tests against 1-tailed 
alternatives are more 
powerful than two-tailed 
tests. 

Figure 30. One-tailed power 
curves for H  = 25, σ = 2.4 &o

n=30, 60 and 900. 

    set(gca,'Xtick',[23:0.5:25.5 x(1) 26 26.5 x(2) 27],'Ytick',[0:.25:1],'FontSize',18) 
else

 n2=60;n3=900;
    CritVal2=norminv(1-alpha,mu,sigmaj/sqrt(n2));
    CritVal3=norminv(1-alpha,mu,sigmaj/sqrt(n3));
    Power2 =1-normcdf(CritVal2,X,sigmaj/sqrt(n2));
    Power3 =1-normcdf(CritVal3,X,sigmaj/sqrt(n3));
    Pow2=1-normcdf(CritVal2,x,sigmaj/sqrt(n2));
    Pow3=1-normcdf(CritVal3,x,sigmaj/sqrt(n3)); 

http:x=[25.75
http:sigmaj=2.4;n=30;alpha=0.05
mailto:Eugene.Gallagher@umb.edu
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    plot(X,Power2,'--m','LineWidth',3)

    plot(X,Power3,'--c','LineWidth',3)

    title('Figure 6.6.2')

    t1=sprintf('(n=%2.0f)',n);

    t2=sprintf('(n=%2.0f)',n2);

    t3=sprintf('(n=%3.0f)',n3)

    text(25.9,0.6,t1,'FontSize',18);

    text(25.5,0.7,t2,'FontSize',18);

    text(25.1,1.03,t3,'FontSize',18);

    set(gca,'Xtick',[23:0.25:27],'Ytick',[0:.25:1],'FontSize',18)

    grid
 
end 
figure(gcf) 
pause 
hold off 
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