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" Read All of Chapter 7
 
" Read 14.1 (p. 802-807)
 
" Read 14.3 (p. 810-820)
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Understanding by Design Templates 

Understanding By Design Stage I — Desired Results Week 7 (7/12-7/18) 
LM Chapter 7 The Normal Distribution 

G Established Goals 
•	 Become proficient in calculating and interpreting confidence intervals 
•	 Recognize whether and how to apply one-sample tests 
U Understand 
•	 The Student T distribution converges to the normal distribution 
•	 The probability that a 95% confidence interval contains the true value of a parameter 

is never 95%. 
•	 The expected value for the F distribution is 1 and the chi square distribution it is the 

degrees of freedom 
Q Essential Questions 
•	 Do (1-α)% confidence intervals contain the true value of the parameter (1-α)% of the 

time? 
•	 What are degrees of freedom and how are they determined? 
•	 What are three common ways of presenting the precision of an estimate? 
K Students will know how to define (in words or equations) 
•	 Bonferroni adjustment, chi-square distribution, F distribution, Fisher’s sign test, 

normal distribution, one-sample t test, sampling distributions, Student t 
distribution, Wilcoxon’s sign rank test 

S Students will be able to 
•	 Calculate confidence intervals for µ and σ2 using the Student t and chi-square 

distributions, respectively 
•	 Apply the one-sample t test, Sign test and Wilcoxon one-sample sign rank test to data 

and interpret the decision rules and p-values 
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Understanding by Design Stage II — Assessment Evidence Week 7 (7/12-7/18 M) 
Chapter 7 

•	 Post one comment and one reply in the discussion section by 7/20/11 W 10 PM 
• Why do we estimate a 95% confidence limit for µ and σ2 instead of a 95% 

2confidence limit for  and s , respectively?

•	 HW 6 Problems due Wednesday 7/13/11 W 10 PM 
•	 Basic problems (4 problems 10 points) 

•	 Problem 7.4.16 (p. 489) hint: use LMex070401_4th.m to check the 
assumptions of the one-sample Student T test. 

•	 Problem 7.4.18 Use LMex070403_4th.m as a model. Use a boxplot or 
histogram to assess whether the t-based CI can be used 

•	 Problem 7.5.14 Use data from Case Study 7.5.1 and program from Case 
Study 7.5.2. Use a left-tailed test. 

•	 Problem 14.2.6 (p 810, data from case study 1.2) Use case study 14.2.2 as 
a model 

•	 Advanced problems (2.5 points each) 
•	 Problem 7.5.6 Use LMex070501_4th.m as a model 
•	 Problem 7.5.16 

•	 Master problems (1 only, 5 points) 7.5.4 Hint: use fsolve, chi2cdf and 
LMex070501_4th.m 

Introduction 

Synopsis 

This handout will cover the following topics 
! Definitions and theorems from the chapter 
! Statistical tests 

" oOne sample t test: known µ , variance estimated from the sample 
" One sample variance test 
" Fisher’s sign test 
" Wilcoxon signed rank test 

! Examples & Case Studies from Chapter 7 applying these concepts. 
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Introduction 

Definitions, Tests and Theorems 

Testing = , (  known) 

In the previous chapter Theorem 6.2.1 (Larsen & Marx, 2006, p. 435) introduced the 1-sample 
Z test. 
Theorem 6.2.1 Let Y1, Y2, … Y  be a random sample of size n from a normal distribution where σn 

is known. Let . 

" To test H : µ = µ  versus H : µ > µ  at the α level of significance, reject H  if o o 1 o o 

z ; zα. 
" To test H : µ = µ  versus H : µ < µ  at the α level of significance, reject H  if o o 1 o o 

z � -zα. 
" To test H : µ = µ  versus H : µ * µ  at the α level of significance, reject H  if z iso o 1 o o 

either (1)  � -zα/2 or (2) ; zα/2 

In most statistical testing, σ is not known and must be estimated from the sample or samples. In 
that case, the standard normal, or z, distribution is not appropriate. The usual distribution that is 
used to account for the reduced precision when σ must be estimated from a sample is Student’s t 
distribution, invented by William S. Gossett of the Guinness Brewing Company, who published 

his famous t ratio under the pseudonym ‘Student:’ . Larsen & Marx (2006) 

introduce the use of Student’s t distribution, introduced in Theorem 7.3.5,  with their Theorem 
7.4.3. 

Theorem 7.3.5 Let Y1, Y2 , … , Y  be a random sample from a normal distribution with mean µn 

and standard deviation σ. Then 

has a Student t distribution with n-1 degrees of freedom. 

The name ‘degrees of freedom’ was one of R.A. Fisher’s many contributions to statistics. It 
arose in a heated debate with Karl Pearson (father of Egon Pearson of Neyman-Pearson, the 
inventors of critical values and confidence limits) over the appropriate chi-square distribution to 
use for testing contingency tables. Fisher proposed a geometric explanation, describing the 
degrees of freedom of spread of variation in a space describing a distribution. (Fisher won the 
battle with Pearson, showing that the appropriate d.f. was (r-1)*(c-1), where r and c are the 
number of rows and columns in a contingency table.) We’ve already used d.f. in conjunction 
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with fitting the chi-square distribution to Prussian horsemen deaths and Iraqi casualties. In those 
cases, one parameter, the Poisson parameter λ, was estimated from the data so the tests are 
performed using a χ2  distribution with n-1 df, where n is the number of observations and the lost 
d.f. is due to the estimation of λ. 

Current definitions of degrees of freedom rarely mention the geometric aspects. Legendre & 
Legendre (1998) have an apt discussion of the concept of degrees of freedom, shown below: 
On confidence limits & Neyman-Pearson theory 

Figure 1. Degrees of Freedom discussed by Legendre & Legendre’s (1998) Numerical 
Ecology. 

Larsen & Marx (2006) is written firmly in the school of statistics proposed by Neyman & 
Pearson. In this approach to hypothesis testing, an α level is established in advance of 
performing the statistical test or even before the experiment or survey is undertaken, usually 
α=0.05. This α is the probability of Type I error (Type I and Type II errors were Neyman-Pearson 
innovations), the probability of rejecting a true null hypothesis by chance. After analyzing the 
data, the test statistic is compared to the critical value and critical regions for the test statistic. If 
the test statistic, say Student’s t, is in the critical region beyond the appropriate critical value, 
then the test was judged as providing significant evidence that the null hypothesis was false. The 
results would be reported as, “I rejected the null hypothesis that µ1 = µ2  at the 5% α-level.”  This 
approach to hypothesis testing made a great deal of sense when calculations had to be done by 
hand. A test could be performed and compared to tabulated values of the critical values of test 
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statistics at say the α=0.1, 0.05, and 0.001 levels of significance. Now, however, most reputable 
journals insist that the actual p values for the test be included. Matlab, for example, will 
calculate the p values for all of the major test statistics, moreover, Matlab can perform the exact 
probability analysis for many of the major statistical tests and can perform randomization tests to 
produce p values to most desired levels of accuracy. 

Ronald Fisher never accepted the Neyman-Pearson approach to hypothesis testing with critical 
values, insisting that the p values should be reported. Recall that the p-value associated with an 
observed test statistic is the probability of getting a value for that test statistic as extreme or 
more extreme than what was actually observed (relative to H ) given that H  is true. Indeed, 1 o 

Mayo’s (1996) synthesis of frequentist hypothesis testing points out that Egon Pearson was less 
than enthused about the black-white, significant-nonsignificant dichotomy that the Neyman-
Pearson approach entailed. Mayo (1996) argues that Neyman & Pearson’s most influential 
contribution to scientific advance was the introduction of the Type II error and confidence 
intervals. Fisher’s signficance levels could be used to reject null hypotheses, but Type II errors 
forced the investigator to specify alternate hypotheses. Confidence intervals, especially the 95% 
confidence intervals, allow an investigator to report the effect size and provide an estimate of the 
uncertainty of the effect size that allows a quick assessment of alternative hypotheses. 

Confidence limits usually have the 
following form: Effect size ± {Z, t 
[more rarely χ2 or F}* Standard 
Error. There is some confusion 
among practicing scientists about the 
difference between the standard 
deviation and the standard error. 
Part of that confusion is that there 
are many standard errors, the most 
common being ‘the standard error 
of the mean,’ which is the 
conventional {standard deviation of 
the sample}/�n. As Larsen & Marx 
(2006, Section 4.3, pp. 292-299) 
discuss and demonstrate with 
Example 4.3.2, the underlying 
population distribution may take a 
variety of forms —  including 
uniform, Poisson, binomial, 
geometric —  but as sample size 
increases, test statistics such as the 
sample mean and the difference in 
mean will tend towards the normal 
distribution. Ramsey & Schafer (2002) present a nice graphic (shown at right) showing this 
effect for a 2-sample t test for the difference in means between a pair of populations. The 
underlying distributions are non-normal, but the difference inmeans has a distribution that is 

Figure 2. Demonstration of the effect of the central limit 
theorem on the distribution of differences in means from 
Ramsey & Schafer’s Statistical Sleuth 
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more nearly normal. The standard deviation of the difference in means is also called the 
‘standard error’ of the difference in means. It can be calculated from the standard deviations of 
the individual samples as shown in �. Since the standard deviations are estimated from the 
samples, the appropriate multiplier for the 95% confidence interval around the observed 
difference in means would be the Student’s t statistic with d.f. equal to n+m - 2, since two 
standard deviations are being estimated from the data. 

The variance of the test statistic, such as the 
difference in means shown in Figure 2 will 
decrease, proportionate to �n. So, when 
reporting a test statistic, such as the 
observed difference in means, the 
appropriate measure of precision is either 
the standard error or the 95% confidence 
interval. In scientific meetings, it is not 
unusual to see the estimates of precision, or 
error, represented as ± 1 standard error. 
Indeed, that is how the MA Dept of Figure 3. Effects of d.f. on the magnitude of 
Education reports the variability on MCAS Student’s t statistic used to construct 95% 
scores. If the variance is known from theory, confidence intervals. The Matlab program to 
one can immediately recognize that the calculate this (without labels), 
standard error must be multiplied by the df=1:12;alpha=.05;p=1-alpha/2;fyt = 
critical value of the z statistic associated tinv(p,df);bar(df,fyt);grid 
with the 97.5th percentile, or 1.96, to obtain 
95% confidence intervals [I’ve often seen error bars on plots based on means with just 3 
replicates. The appropriate multiplier is then not Z0.975 or 1.96, but t0.975, 2 df or 4.3!  That could 
make a huge difference in determining whether the results might be due to chance alone. Figure 
3 shows the effect of sample size, d.f., on Student’s t statistic. An investigator showing error bars 
for means based on 2 replicates, with no indication that n=2, may be trying to deceive his 
audience, since those error bars would have to use a Student’s t statistic of 12.7 to convert to 
95% confidence intervals. 

Interpreting confidence intervals 

Ramsey & Schafer (2002) provide a superb graphic, Figure 4 below, showing how to interpret 
the error bars, presented as 95% confidence intervals in presentations. 
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Figure 4. A rough guide to interpreting 
overlap in 95% confidence intervals, using 
the guidance that a p-value less than 0.05 is 
regarded as moderate to strong evidence of a 
difference. Note especially in Case 2 that 
the confidence limits can overlap and still 
produce a difference in sample statistics 
with p values less than 0.05. This 
interpretation of ‘error bars’ is not possible 
with standard errors if the sample sizes are 
not provided (and even with sample sizes 
provided, one would have to have a good 
memory of Student’s t statistics for n<6-10.) 
[This is display 5.19 in the 2nd edition of 
Sleuth] 

Confidence intervals, Standard Errors and Significant Figures for reporting results 

Bevington & Robinson (1992) and Taylor (1997) are the two 
excellent ‘how-to’ guides on how to propagate errors and report 
errors in publications. Of the two, I prefer the more rigorous 
Bevington & Robinson, especially because it stresses Monte Carlo 
simulation, but Taylor may have the best cover photo of any recent 
book in statistics (see Figure 5). Neither book is in accord with 
current editorial practice in ecological, psychological or 
medication journals, because these authors recommend reporting 
standard errors, rather than 95% confidence intervals, in reporting 
results. 

Both books argue that investigators should let the standard error 
(or confidence interval) dictate the level of precision reported for 
results. It is a sign of statistical ignorance to report a result as 
7.51478 ± 0.5672. Note, in reporting results you should always 
state whether that estimate of error to the right of the ± is a 

Figure 5. Taylor (1997) on 
error analysis. 
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standard deviation (a poor choice), a standard error (the most common in the physical sciences) 
or a half-95% confidence interval (the best choice in my opinion). This result could be reported 
as 7.5 ± 0.6. Bevington & Robinson argue that standard errors should be reported to 1 significant 
figure only, but I’ll argue shortly that there are reasons for reporting 2 significant figures. As a 
follow-up recommendation, there are reasons for reporting 1 additional significant figure than 
can be justified by the data. 

One of the most persuasive arguments for retaining 1 more significant figure than warranted by 
the data is revealed by the answer to the following question, “What is the normal human body 
temperature?”  Of course, the answer is 98.6ºF, but that answer is wrong. John Alan Paulos, in 
his book, “A mathematician reads the newspaper” recounts the story of Wunderlich who carried 
out the most comprehensive survey of human temperatures. They are highly variable. I wish I 
could report his actual results, but I have been unable to find an appropriate citation, and Paulos 
doesn’t provide citations for his story. Paulos reports that the actual data were reported to just 
two significant figures, say 37ºC ± 0.8. To Wunderlich, there was no reason to add a 3rd 

significant figure to his data. However, when people converted his 37ºC to Fahrenheit, they 
produced the now highly precise 98.6º F. According to Paulos, a report that I haven’t been able 
to confirm, the best estimate of normal human temperature is 98.2º F. The conversion to 
Fahrenheit has given normal human temperature a diagnosis of a mild fever. Had Wunderlich 
presented that single extra, non-significant at α=0.05, digit, the conversion to Fahrenheit would 
have been more accurate. 

One sample t-test 

Larsen & Marx (2006, p. 489-493)  cover the one-sample Student’s t test to test H :  on µ= µ .o o

Theorem 7.4.2 Let y , y , ..., y  be a random sample of size n from a normal distribution where σ1 2 n 

is unknown. Let 

a. To test H : µ = µ  versus H : µ > µ  at the α level of significance, reject H o o 1 o o 

if t ; tα,n-1 . 
b. To test H : µ = µ  versus H : µ < µ  at the α level of significance, reject H o o 1 o o 

if t t .α,n-1 

c. To test H : µ = µ  versus H : µ * µ  at the α level of significance, reject H  if t iso o 1 o o 

either (1)  -tα/2,n-1 or; t1-α/2,n-1 .

 For most common statistical procedures there will be several classes of statistical tests to test 
hypotheses: 
! The parametric test. In this case, the one-sample Student’s t test 

" It is available in Matlab’s statistics toolbox as ttest.m
 
" I have programmed this test as Stud1sample.m.
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!	 The randomization test. There is a simple randomization test for the one-sample t test, 
invented by Fisher & discussed in Manly (1991) . In brief, Fisher calculated -µ  for theo 

n data in the sample. Under the null hypothesis that µ=µ , the sum of positive and o 

negative deviations should have an expected value of zero. Fisher randomized by 
randomly assigning the appropriate number of +’s and -‘s to the observed deviations and 
determined how many sums of the deviations were equal to or more extreme than those 
observed. 

! Distribution-free tests. 
" All statistical tests have assumptions. Parametric tests, like the Student’s t test, 

assume a parametric distribution for the errors. Student’s one-sample and two-
sample tests assume that the errors are independently and identically normally 
distributed. Now, I’d warrant that this is not strictly true for most applications of 
Student’s t test. There are some assumptions that really matter and others that 
don’t. If the p-value produced by a test if the assumptions are violated is about 
equal to the p-value if the assumption were met, we say that the test is robust to 
violations of that assumption. As noted by Larsen & Marx (2006, p. 497), 
Student’s t tests are remarkably robust to violations of the normality assumption. 
There are other assumptions of the t test that are more important than normality. 

" Nonparametric tests do not assume an underlying parametric distribution, like the 
normal or Student’s t distributions, in deriving the p values. They are more 
properly named distribution-free tests. They do have assumptions though, as we’ll 
see in the discussion of the two-sample t test in a few weeks. 
- There are a variety of 1-sample nonparametric procedures 

# The most widely used is the Wilcoxon signed rank test 
* Available as Matlab’s signrank.m 

# Fisher’s sign test, Matlab’s signtest.m 

For a 1-sample test using only n, the mean and standard deviation, I wrote student1group.m 

Student1group.m 
function [D,t,df,pvalue,CI]=student1group(Xn,Xmean, Xstd, M, alpha) 
% Student't 1-sample t test with grouped data 
% [D,t,df,pvalue,CI]=student1group(Xn,Xmean,Xstd,alpha) 
% Input: Xn = Size of group = number of cases 
% Xmean = mean for groups 
% Xstd, Ystd= standard deviations for 2 groups 
% M=expected mean, 0 if not provided 
% alpha level for CI, optional, 95% if not specified 
% Output: D=Xmean-M or Xmean-0; 
% t=Student's t statistic 
% df=degrees of freedom for t statistic 
% p value, 2-sided, for t Statisitc, with df degrees of freedom 
% CI for 1-alpha CI, [L U];95% CI if alpha not specified. 
% Based on Theorem 7.4.2, page 490 in Larsen & Marx (2006) 
% Introduction to Mathematical Statistics, 4th edition. 
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% uses Statistics toolbox 
% Written by Eugene.Gallagher@umb.edu, Revised 11/14/10 
% see also stud1sample, binom2sample, student2group, stud2sample 
if nargin<4
    M=0;
    alpha=0.05; 
elseif nargin <5
    alpha=0.05; 
end 
D=Xmean-M; 
% Calculate sample standard deviation 
t=D/(Xstd/sqrt(Xn)); 
% Use stixbox's pt.m for significance of t. 
df=Xn-1; 
if t>=0
    pvalue=2*(1-tcdf(t,df)); 
else
    pvalue=2*tcdf(t,df); 
end 
HalfCI=tinv(1-alpha/2,df)*Xstd*sqrt(1/Xn); 
CI=[D-HalfCI D+HalfCI]; 

Parametric Examples & Case Studies 

Larsen & Marx (2006, pp. 490-492) provide two examples of Student’s one-sample t-test, 
Examples 7.4.2 and 7.4.3. Both can be solved directly in a pair of equations using Theorem 
7.4.2. 

Case Study 7.4.1 

What is the effective range of a bat’s echolocation system?
 
Construct a 95% CI for the 11 observations in the table shown in
 
Figure 6.
 

This is a simple call to Matlab’s normfit or ttest. TTEST will
 
perform a one sample t test on the data too (with zero as the
 
default µ), but I just want to get access to the confidence intervals.
 
X=[62 52 68 23 34 45 27 42 83 56 40];
 
fprintf('The mean reaction distance is %4.2f cm\n',mean(X));
 
[H,P,CI,STATS]=ttest(X);
 
fprintf('The 95%% confidence interval is (%4.2f cm %4.2f
 
cm)5\n',CI) 

% or call normfit
 
[MUHAT,SIGMAHAT,MUCI,SIGMACI] = normfit(X,alpha)
 

Figure 6. Table 7.4.1 Bat 
detection distances 

http:alpha=0.05
http:alpha=0.05
mailto:Eugene.Gallagher@umb.edu
IT
Stamp
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fprintf('The 95%% confidence interval is (%6.4f cm %6.4f cm)\n',MUCI) 

The mean reaction distance is 48.3 cm. The 95% confidence interval is (36.2 cm to 60.5 cm) 

Example 7.41 

The data in the following table have mean 2.6 and s 3.6. Is it appropriate to say the 95% CI for 
the sample mean is 0.9 and 4.3? 

No it isn’t because the sample deviates greatly from a normal 
population. The book uses a simple histogram to show that the 
data are not normally distributed. Figure 7 shows Matlab’s version 
of that histogram. Clearly the sample distribution is strongly 
postively skewed. 

Figure 7. Histogram of the 
The boxplot is a very nice method for assessing whether the t tools 
can be used. The term t tools was coined by Ramsey & Schafer 
(2002) to describe the set of statistical procedures that rely on the t 
distribution, including the creation of confidence limits and one-
sample, two-sample and paired t tests. The boxplot of the 
Example 7.4.1 data is shown in Figure 8.  There are four extreme Figure 8. Boxplot of the 
outliers that could strongly affect the 95% confidence interval by Example 7.4.1 data with 4 
greatly increasing the standard error  of the sample. outliers. 

Matlab has a useful diagnostic function called normplot for plotting a sample vs. a normal 
cumulative frequency distribution given the samples mean and standard deviation. Figure 9 
shows the normplot for the Example 7.4.1 data.  When plotted on a normal probability scale, the 
observed data, converted to z scores, 
should fall along a straight line and 
Matlab’s function provides that 
expected line. The observed data for 
Example 7.4.1 depart radically from 
a straight line, invalidating the use of 
the t tools for calculating a 95% 
confidence limit. The t tools are 
robust to normality, so the departures 
from linearity would have to be 
severe to invalidate the use of the t 
tools for calculating 95% confidence 
intervals. 

Figure 9. Normplot of the Example 7.4.1 data with the 4 
outliers. 
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Environmental scientists often 
encounter data that don’t meet the 
assumptions of the Student t test. 
The usual approach is to transform 
the data, a subject not covered in 
Larsen & Marx (2006). For 
positively skewed data such as these, 
the log transform often works 
remarkably well. Figure 10 is the 
normal probability plot for the log-
transformed data. Although a few 
data at the ends fall away from the 
line, there would be no problem 
applying the t tools to the log-transformed data. While it would be inappropriate to calculate the 
95% confidence interval based on the t tools in the natural scale, it is appropriate to calculate the 
mean and 95% confidence intervals of the log-transformed data. The mean and confidence limits 
can than be back transformed to the natural scale using antilogarithms to produce an estimate of 
the geometric mean and its 95% confidence interval. The geometric mean is 0.90 with 95% 
confidence intervals of (0.42 1.90). Because of the positive skew in the data, the geometric mean 
and its confidence interval is quite different from the arithmetic mean for these data and its 
confidence interval. The sample arithmetic mean is 2.61with calculated confidence interval of 
0.92 and 4.30. Again, as noted in the text, the arithmetic mean and its confidence interval would 
be inappropriate for these data.  As described below, the CDC routinely log transforms all 
pollutant data in its annual reports on the state of the nation’s health and reports its results as 
back-transformed geometric means with appropriate confidence limits. 

Example 7.4.2 

Twelve students enrolled in a nursery had their blood lead levels measured. The average and 
standard deviation were 18.65 and 5.049 respectively. The expected lead level was 16 mg/l. 
Can\n it be concluded that children at this particular facility tend to have higher lead levels? At 
the α = 0.05 level, is the increase from 16.0 to 18.65 statistically significant? 

Results of analysis of LMex070402_4th.m 

Matlab doesn’t have a built-in function to perform the 1-sample t test using just a mean and 
standard deviation, but Gallagher wrote student1sample.m for that purpose. It produces the 
following results: 
The 1-tailed p value = 0.04817 for t=1.8182 
The blood lead difference of 2.65 mg/l had 95% CI =[-0.56 5.86] 
Reject Ho: Evidence that children had lead levels higher than 16.00 
The difference from 'normal (=16 mg/l)' was 2.6 mg/l +/- 3.2 mg/l 

Following the Neyman-Pearson model, Larsen & Marx (2006, p. 490 bottom) conclude, “It 
would be correct to claim, then, that the  of 18.65 does represent a statistically significant 

Figure 10. Normplot of the Example 7.4.1 data after log 
transformation. No evident problem with fit. 
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increase in blood levels.”  Figure 11 
shows how close the one-tailed t 
statistic is to the critical value of 
1.7959. They plot almost on top of 
each other. 

Note that the 95% CI does include 
zero. The program calculates this 
95% CI in the conventional way with 
the 2-tailed critical value of the t 
distribution. The 1-tailed p value is Figure 11. The Student t distribution for 11 df. Shown are 
less than 0.05 even though the two- is the 1-tailed upper 95% critical value of 1.7959. The test 
tailed confidence interval includes statistic of 1.82 is just to the right of this critical value, 
the null hypothesis expectation of 0 allowing Larsen & Marx (2006) to conclude that the results 
difference in blood lead level.  The are statistically significant. 
difference in lead level in this 
sample of 12 from the expected value is calculated by Gallagher’s program as 2.6 mg/l +/- 3.2 
mg/l. This indicates no significant difference from the expected 16 mg/l IF the test was 
performed two-tailed, but the test was performed 1-tailed. But, can we really conclude that these 
data constitute a significant difference from the 16 mg/l ‘normal’ concentration. No. 
Critique of Larsen & Marx’s interpretation of Example 7.5.2 

On the plus side, Larsen & Marx (2006) did mention, ‘a random sample of 12 children.’ 
Without mentioning random sampling, NO valid inferences to the larger population of ‘children 
at Mighty Bear’ could be made. A statistical test, like the one-sample t test, tells you only 
whether the results observed could have occurred by chance. The inference to a larger 
population from the 12 students sampled to the larger population of students, requires that a 
valid sampling procedure from the larger population be used. Fisher advocated simple random 
sampling. For example, use a random number generator, like Matlab’s randperm, and if there are 
50 students use the following procedure to select 12 for sampling: 

i=randperm(50); % shuffles the integers 1 to 50;
 
Myrandomsample=i(1:12) % the SIMPLE RANDOM SAMPLE is the first 50.
 

Once the names associated with those 12 random numbers are selected, it is vital that they be 
sampled. If a student doesn’t show up, you can’t go to the next name on the list without 
introducing a potential bias in the sampling procedure. By bias, I mean that the estimate from 
the sample average of 12 may not estimate the true population mean. If students who don’t show 
up routinely have higher (or lower) lead levels, say due to socioeconomic background and a 
potential increased chance of living in houses with lead paint, then the sample average will 
underestimate the true population mean. There is a distinct possibility that the estimator will be 
biased. Larsen & Marx (2006, p. 381-385) define & discuss ‘unbiasedness.’  In sampling from 
a population, a simple random sample will produce an unbiased estimate of µ, the population 
mean. 
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Now, one could think that you could do BETTER than simple random sampling, and indeed you 
can, but only with GREAT care in selecting an alternative to simple random sampling. One can 
produce a more efficient estimator, meaning an estimator with a lower standard error (Larsen & 
Marx, 2006 p 396). However, this requires a fair amount of prior information about the 
population, and adjustments for the sample average AFTER it is calculated. In stratified random 
sampling, the population is divided into ‘strata’ or groups which are strongly suspected to differ 
with respect to the response variable, such as lead concentration. Usually, samples are allocated 
proportionately to the strata with the highest variance. Don’t use stratified random sampling 
unless you have clearly stated the statistical model that you are using, including preliminary 
information on the variances among strata, and you have a well-defined statistical model for 
calculating the expected values and means after you’ve collected the samples.  Improper 
stratification and improper analysis of the data can lead to greatly biased estimates of population 
means and variances. Fisher argued strongly in favor of simple random sampling. If you were to 
stratify the sampling, such that the 3 major socioeconomic groups were sampled: African-
Americans, Hispanic & White, with 4 blood samples each, you COULD NOT calculate the 
sample average and variance as if samples were taken using simple random sampling. One 
would have to analyze the groups separately, and the averages would have to be weighted by the 
relative proportions of students in each group. Calculating the variances of stratified samples is 
beyond the scope of EEOS601. 

Ramsey & Schafer’s 
(2002) Statistical 
Sleuth presents a 
simple BUT VERY 
IMPORTANT 
graphic showing the 
importance of random 
sampling, shown as 
Figure 12. The study 
design used in Larsen 
& Marx’s Example 
7.5.2 would be an 
example of the upper 
right box “Random 
samples are selected 
from existing distinct 
populations” Since 
the selection of units, 
12 students in this 
case, was random, 
“Inferences to the population can be drawn” If Larsen & Marx (2006, p 490) had not included 
that 1 phrase about random sampling, one could only conclude that the average lead content of 
these 12 students is higher than 16 mg/l, but you didn’t need statistics to determine that. 

Presentation of the results 

Figure 12. Ramsey & Schafer (2002) on statistical inferences allowed by 
statistical tests. 
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In current practice, this result could be reported as offering moderate evidence in favor of an 
elevated lead level. One could report the 1-tailed (1-sided) p value as 0.048. Note that one has to 
present 3 significant figures to get the p value under that somewhat arbitrary, but conventional, 
α=0.05. In this case, it would be misleading to present the results as merely, “This study showed 
a significantly enhanced lead level.”  The p value indicates that the lead level offers only 
moderate (some would say weak) evidence that the lead levels were higher than 16 mg/l. Now, 
this test was performed 1-tailed. If the investigator had no prior information about expected lead 
levels BEFORE CALCULATING THE AVERAGE, the result should have been reported with 
the two-tailed test, with a p value of 0.096. This would pose no difficulties for the current 
approach of reporting the p values, but would have changed the whole interpretation of the 
results using the Neyman-Pearson hypothesis testing using the decision rule at an α level of 0.05. 
This example provides a striking example of why journal editors and reviewers now insist on 
seeing p values and effect sizes. 

What is the effect size for this study?  Even if the test is performed 1-tailed (i.e., the alternate 
hypothesis is that lead levels are HIGHER than 16 mg/l), the confidence limits are almost always 
reported using CI’s calculated with t statistics for the two-tailed test. The effect size (the 
difference from 16 mg/l) would be reported as: 

Difference from 16 mg/l = 2.6 mg/l  ± 3.2 mg/l 

This reported effect size offers little convincing evidence for elevated lead concentrations, and, 
of course, the 95% CI for the difference includes 0, as it must since the p value for the 2-sided 
test was p=0.096 (far higher than 0.05). If the investigator did not have valid a priori 
justification for suspecting enhanced lead levels in this nursery, he should not have used the 1
tailed test. Simply finding the mean is greater than expected is not a proper reason for using the 
1-tailed test. 

Was the correct statistical test used? 

Much of the controversy in statistical analysis involves the extent to which inferences can be 
made to larger populations. However, occasionally one finds that the wrong test was used. Such 
is the case with Larsen & Marx’s example 7.4.2. The one sample t-test, described in Section 7.4 
assumes that µ , the population mean is a known parameter. Unfortunately, the normal lead o 

concentration is not a known parameter in the human population. There are published averages 
and associated confidence limits, but it is not a known parameter and can’t be treated as such. 
Larsen & Marx (2006) should NOT have used a 1-sample t test for these data. They should 
have saved this example for the two-sample t test in the next chapter. 

The Center for Disease Control (CDC) has just published the results of the fourth national report 
of human exposure to environmental chemicals. These analyses are online at: 
http://www.cdc.gov/exposurereport/pdf/FourthReport.pdf 

Larsen & Marx (2006, p. 490) report, “Among children between the ages of 6 months and 5 
years, blood levels of 16.0 mg/l are considered ‘normal.’” They apply the 1-sample t test as if 

http://www.cdc.gov/nceh/dls/report/results/Lead.htm
?http://www.cdc.gov/exposurereport/pdf/FourthReport.pdf
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the 16 mg/l (identical to 1.6 µg/deciliter as the CDC reports their results) was measured without 
error, or is a known parameter. It isn’t. The following table, Figure 13, shows the estimated 
values for lead in the US population.  In 1999 the geometric mean concentration was 1.66 with a 
95% confidence interval of 1.6 to 1.72 µg/dl based on 7970 individuals. One can forgive Larsen 
& Marx for using 16 mg/l, since that may have been an old lead value, but it isn’t appropriate to 
treat the 16 mg/l as if it were measured without error. Recall that the observed average 
concentration for the 12 students was 1.865 ± 0.321 mg/dl. Using Figure 11 from Ramsey & 
Schafer above, the reported confidence limits offers only inconclusive evidence for elevated lead 
concentration (The 18.65 is beyond the upper confidence limit of 1.8 from the national survey, 
but the lower CI for the sample of 12  extends to 1.54 mg/dl, far below the 1.66 mg/l standard. 
There are insufficient data provided to do a formal 2-sample t test, but it is a certainty that the 2
sample test would reveal no differences (since the 1 sample test assuming 1.6 mg/dl had a 2
tailed pvalue=0.096). It is also certain that the two-sample t test, which included the standard 
error of the 1.6 mg/dl, would show a p value >0.05 since the 1-sample t test had a p value of 
0.048 and that assumed that the 1.6 mg/dl had no error. As the statistician W. Edwards Deming 
emphasized, natural processes are often associated with variability. Only a small part of the error 
in blood lead levels is due to measurement error. Almost all is due to differences among 
individuals. The tables, most not shown below, also reveals striking differences in lead 
concentration within age, gender and ethnic groups. 

Figure 13. Just part of a table from the CDC’s updated tables for the fourth report on exposure 
to chemicals in the environment. 
http://www.cdc.gov/exposurereport/pdf/Update_Tables.pdf 

Example 7.4.2 is probably composed of ‘made-up’ data, but it is interesting to note that the 
geometric mean lead concentration in the US for children 1-5 years in 1999-2000 was 2.23 

http://www.cdc.gov/exposurereport/pdf/Update_Tables.pdf
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µg/dl, with a 95% CI for the mean of 1.96 to 2.53 µg/dl. Given these data, a statistician would be 
making TWO errors in applying a 1-sample t test to test whether the observed 1.865 mg/dl lead 
was less than the national average (a 2-sample test could be used). Moreover, one should decide 
in advance whether the hypothesis should be performed 1-tailed or 2-tailed. If one calculates the 
average and then automatically sets the alternative hypothesis to minimize the p value (by 
choosing the appropriate alternative hypothesis) one will be doubling the chance of committing 
a Type I error. 

What are geometric means? 

The CDC reports lead concentrations as geometric means, which is a common way of reporting 
data that have been log transformed. Larsen & Marx (2006, p. 385-386) provide a definition of 
geometric mean that only a mathematician could appreciate. For the non-mathematician, when 
you calculate the average of log-transformed data and thenn back transform with the antilog, you 

get the geometric mean. If natural logs were used   is the geometric mean, of log10  (x) was 

used then  is the geometric mean. 

Geometric means are widely used, and the reasons for their use have direct relevance to the use 
of Student’s t tests. Student’s t tests, least-squares regression, and parametric ANOVA all 
assume that the errors are 1) identically, 2) independently, and 3) normally distributed. The 
underlying data don’t have to be normally distributed – indeed they rarely are. However, after a 
model is fit, even a model as simple as fitting an average to the data, the deviations from the 
model, the errors, should be independently, identically, normally distributed. In the older 
statistical literature, there were tests for normality proposed, but it is now known that the 
Student’s t test is remarkably robust to violations of normality. By robust, I mean that the p 
values are not affected much by deviations from normality. Many of the tests are affected by the 
shape of the distribution. The normal distribution is symmetric, while many population 
parameters have a skewed distribution (defined on 
p. 200 in Larsen & Marx (2006)). Many statistics 
in nature have a right-skewed distribution, like the 
lognormal distribution. Pollutant concentrations in 
humans tend to be right or positively skewed, often 
following the log-normal distribution. 

Figure 14 shows one of many right-skewed 
distributions that have a mean of 18.6 with standard 
deviation 5, similar to Larsen & Marx’s Example 
7.4.2. 

Figure 14. An example of a lognormal 
distribution with mean 18.6 and standard 
deviation 5. 1000 cases were randomly 
generated by a Matlab m.file that generates 
lognormally distributed samples. 
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Twelve samples were drawn randomly from this
 
distribution producing Figure 15.  The single sample with 30 mg/l lead appears to be an outlier.
 

The boxplot for these positively skewed data is 
shown in Figure 16. 

Figure 15. An example of a lognormal 
distribution with mean 18.6 and standard 
deviation 5. Only 12 cases were randomly 
generated from this distribution, the same 
distribution used to generate the 1000 cases 
in Figure 14. 

Figure 16. A Tukey boxplot of the 12 
simulated lead data from the previous 
figure. The red centerline represents the 
median. The left & right box border are 
Tukey hinges, designed to contain 50% of 
the data. The width of the box is called the 
interhinge length. The whiskers —| extend 
to no more than 1.5 times the interhinge 
length (=the interquartile rang) and end with 
an observed datum. The values outside the 
whiskers but less than 3 interhinge lengths 
from the box are called outside values 
(sometimes called outliers). The data more 
than 3 interhinge lengths from the hinge are 
called extreme values (sometimes extreme 
outliers). These data had 1 extreme value at 
31. The median was 16.5 and the lower 
hinge and upper hinges were at 14.9 and 
20.6. The hinges approximate the lower and 
upper quartiles of a dataset. 
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Now, one unfamiliar with statistics might think that a single case in Figure 17 with a blood level 
of 30 was an outlier. It would be a grave mistake to automatically delete points such apparent 
outliers as these without a thorough review of the data. 

When data appear skewed like Figure 17, the 
standard procedure is to log transform the data. 
If there are zeros in the data, then a log(X+1) 
transform can be used. The data shown in Figure 
16 were log transformed producing the boxplot 
shown in Figure 17. Several features are obvious. 
While the distribution is still skewed to the right 
somewhat, the single datum at 31 mg Pb/ml is 
no longer an extreme value. On the 
untransformed scale, that single datum could 
drastically affect both the mean and the standard 
deviation of the distribution. A log transform 
would be the appropriate transformation to 
perform on these data, prior to performing either 
a one-sample or two-sample Student’s t test. 

Geometric means Statistical tests are 
performed on the log transformed data when 
appropriate. The means and standard deviations are performed on the log transformed data. Any 
base logarithm could be used, natural logarithms (log(x) in Matlab) or log base 10 (log10(x)) are 
both used, producing identical results on the statistical tests. In reporting the results of these 
tests, report the p values AND report the back transformed mean. if = mean(log(X)), then 

report the results as the back-transformed mean, , also known as the geometric mean [if y was 

the column of untransformed data, then exp(mean(log(y))) would find the geometric mean in 
Matlab]. The upper and lower 95% confidence intervals for the mean should be calculated on 
the transformed data and these confidence limits should be suitably back transformed, 

Figure 17. A Tukey boxplot of the 12 
simulated lead data from the previous 2 figures 
after log transform 

. That is how the CDC has reported the geometric mean value and 95% 

confidence limits for each of the environmental chemicals measured in human blood (see Figure 
7 above). 

It may seem odd working on log-transformed data, but most of the data and analyses that I work 
with require some sort of transformation. The log transform is the most common. The boxplot is 
THE workhorse tool to judge the adequacy of the transformation, although there are more formal 
tests that could be used. The Student t tests are robust to small violations of normality, and a 
transformation that produces a more symmetric distribution is generally adequate for the t tests. 
Outlier detection and evaluation is a BIG issue. One should NOT delete outliers routinely. 

Other common transformations used for data include the square root transform (often 
appropriate for Poisson distributed data, and the logit transform (log (p/(1-p)) for frequency data. 
In a famous paper, G.E.P. Box, son-in-law of Fisher, and Cox developed a method for analyzing 
a whole family of transforms, including the square root transform and log transform to 
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determine which is the best for producing a symmetric distribution of errors. R. E. Strauss
 
distributes a free program called boxcox.m which will apply the boxcox transform on a set of
 
data. His library of statistics m.files can be accessed at his Texas Tech web site:
 
http://www.biol.ttu.edu/Strauss/Matlab/Matlab.htm
 
The best description of the Box-Cox transform’s use that I’ve seen is in Draper & Smith (1998,
 
p. 280-289), but one should be wary. With the very small sample size of 12 shown in the above 
figures, the Box-Cox method indicates that a very odd transform of 1/sqrt(y) is the most 
appropriate transform to produce symmetry. 

Example 7.4.3, Page 491, an application of the 1-sample t test. 

Twelve banks are surveyed to determine whether they are discriminating against inner city 
neighborhoods. The approval rate for rural residents is 62%. The percentage approval for inner 
city applicants is provided for three banks. LMex070403_4th.m produces the analyses reported 
in the book. 

Comments on example 7.4.3 

Wow, where should I begin in pointing out the problems with Example 7.4.3. First, and most 
important, a one-sample t-test is inappropriate here!  One can not assume that the 62% approval 
rate for rural applicants is measured without error. One should have performed a test for a 
difference in proportions or a two-sample t test. The binomial test, described in Section 6.3, 
would have been a more appropriate test. The 62% approval rate for rural residence has a 
variance of n*p*(1-p), and this variance must be taken into account in assessing whether these 
12 banks have proportional acceptance rates for inner city residents that differs from that of rural 
residents. Since the p value for the inappropriate 1-sample t test, which assumes that 62% 
approval for rural residents is a parameter, µ , with no associated error, was greater than 0.05, it o 

is virtually a certainty that the p value for the binomial test, which assumes that p is estimated, 
not known, would be greater than 0.05. Larsen & Marx (2006), in their example, do not 
provide the sample sizes for the binomial proportions for each bank, so it is impossible to do the 
binomial test for these data. 

After testing all 12 banks, drawn from 3 affiliates, Larsen & Marx (2006) fail to reject the null 
hypothesis, reporting the t statistic and critical values in Table 7.4.3. It would have been clearer 
if they had adopted modern convention and reported the p value of 0.125. However, they state, 
“The overall analysis of Table 7.5.3, though, may be too simplistic. Common sense would tell us 
to look at the three banks separately. What emerges then is an entirely different picture ...” 

If the statistical analyst only decided to test the three separate bank types AFTER beginning the 
analysis of the data, then one CAN NOT use α=0.05 as the estimate of Type I error. We can use 
basic probability concepts to calculate the effects of testing 3 separate bank types, AFTER THE 
FACT, with each test being performed at alpha=0.05. What is the probability of seeing AT 
LEAST ONE significant result at α=0.05, if there were no true differences between any of the 
banks at the true proportion of 62%? It is: 

1- (1-alpha)* (1-alpha)*(1-alpha)=1-(1-alpha)^3=1-(1-alpha)^{Number of Tests} 

http://www.biol.ttu.edu/Strauss/Matlab/Matlab.htm
http:alpha=0.05
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The probability of Type I error is no longer 5%, but 14.2% (1-(1-0.05)^3).  If there were 10 types 
of banks being tested, after the fact, the Probability of Type I error would rise to 40%! One can 
also solve this problem using the binomial pdf: 

>> 1-binopdf(0,10,0.05)% 1-Prob of 0 successes in 10 trials with p=0.05 
ans =  0.4013 % or a 40% chance of declaring at least 1 test significant, 

% if none were truly different 
In order to maintain a proper experiment-wise alpha level, or probability of Type I error, one 
must adjust the α level for the number of tests performed. The most widely used correction is the 
Bonferroni correction (not mentioned in Larsen & Marx). If you are performing tests that were 
not planned in advance, so called a posteriori tests, then alpha must be adjusted for the number 
of comparisons: α level for tests = {overall α level (usually 0.05)}/{Number of tests}. This 
approximation works well, but it is just a shortcut for the following identity, solved for in 
LMex070403_4th. 

alpha=0.05;ntests=3;alphatest=1-exp(log(1-alpha)/ntests) 
This indicates that each of the 3 tests in Larsen and Marx’s (2006) Example 7.4.3 would have to 
be performed at an alpha level of 0.017 (slightly higher than 0.05/3) to ensure that P(TypeI 

3error)=1-(1-alpha_test) , is indeed 0.05. The results of performing the 3 tests with the
appropriate corrections are shown below, printed directly from the output of 
LMex070403_4th.m: 

The Bank being analyzed is  AU 
The mean Percentage approved is 52.25% vs. 62.00% expected 
For Bank AU, the difference is -9.75%, with 2-tailed p value=0.036 
For bank AU, reject the null hypothesis at alpha=0.050 
The 2 tailed critical values for the t statistic=4.33 and alpha=0.050, are -3.18 and 3.18 

The Bank being analyzed is  FT 
The mean Percentage approved is 58.80% vs. 62.00% expected 
For Bank FT, the difference is -3.20%, with 2-tailed p value=0.145 
For bank FT, fail to reject the null hypothesis at alpha=0.050 
The 2 tailed critical values for the t statistic=4.33 and alpha=0.050, are -2.78 and 2.78 

The Bank being analyzed is  TU 
The mean Percentage approved is 67.00% vs. 62.00% expected 
For Bank TU, the difference is  5.00%, with 2-tailed p value=0.049 
For bank TU, reject the null hypothesis at alpha=0.050 
The 2 tailed critical values for the t statistic=4.33 and alpha=0.050, are -4.30 and 4.30 

Analyses using Bonferroni adjustment based on number of tests (3) 
The Bonferroni adjusted alpha, based on 3 tests is 0.017. 

The Bank being analyzed is  AU 
The mean Percentage approved is 52.25% vs. 62.00% expected 
For Bank AU, the difference is -9.75%, with 2-tailed p value=0.036 

http:statistic=4.33
http:statistic=4.33
http:statistic=4.33
http:1-binopdf(0,10,0.05
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For bank AU, fail to reject the null hypothesis at Bonferroni-adjusted alpha=0.017 
The 2 tailed critical values for the t statistic=4.33 and alpha=0.017, are -4.83 and 4.83 

The Bank being analyzed is  FT 
The mean Percentage approved is 58.80% vs. 62.00% expected 
For Bank FT, the difference is -3.20%, with 2-tailed p value=0.145 
For bank FT, fail to reject the null hypothesis at Bonferroni-adjusted alpha=0.017 
The 2 tailed critical values for the t statistic=4.33 and alpha=0.017, are -3.94 and 3.94 

The Bank being analyzed is  TU 
The mean Percentage approved is 67.00% vs. 62.00% expected 
For Bank TU, the difference is  5.00%, with 2-tailed p value=0.049 
For bank TU, fail to reject the null hypothesis at Bonferroni-adjusted alpha=0.017 
The 2 tailed critical values for the t statistic=4.33 and alpha=0.017, are -7.58 and 7.58 

Conclusion on LMex070403 

Larsen & Marx used the wrong test, choosing a one-sample t test when a two-sample binomial 
test (or similar test for the same proportions) should have been used. Moreover, they failed to 
adjust the alpha level for the number of tests performed, AFTER the FACT, or a posteriori. 
When the alpha level for these tests is adjusted to maintain the overall probability of Type I error 
at 0.05, by using alpha_test=0.017, none of the three separate tests provide even moderate 
evidence for rejecting the null hypothesis that the proportion of loans approved was 62%. In 
Larsen & Marx’s analysis, without an adjustment of the α levels, 2 of the 3 a posteriori or 
unplanned comparisons were significant. 

Case Study 7.5.1 

K-Ar dating was performed on 19 rocks believed to be at 
the same age. Assume that the procedure’s estimated ages 
are normally distributed with (unknown) mean µ and 
(unknown) variance σ2. Construct a 95% confidence 
interval for σ. 

Now the easiest way to find the solution to this is to use 
Matlab’s NORMFIT, which finds the maximum 
likelihood estimators for µ, and σ and their 95% confidence 
limits. 
[MUHAT,SIGMAHAT,MUCI,SIGMACI] = normfit(X) 

The function produces the following output: 
MUHAT =  276.8947; SIGMAHAT =27.0820 
MUCI =  263.8416 289.9478 
SIGMACI = 20.4635 40.0495 Figure 18. K-Ar Ages of 19 rocks 

believed to be the same age. 

http:statistic=4.33
http:statistic=4.33
http:statistic=4.33
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In my Matlab script m.file LMcs070501_4th.m, I find the 95% CI using Theorem 7.5.1, which 
produces an identical result. So, the 95% confidence interval for sigma is 20.4 to 40.1 million 
years. I’m rounding up slightly to ensure that the reported 95% CI includes the computed 
confidence limites 

Example 7.5.1 

What is the minimum sample size such that the width of the 95% confidence interval for the 
variance is equal to or less than the variance? This is a straightforward application of Theorem 
7.5.1 and can be solved in three lines in Matlab with Matlab’s numeric equation solver fsolve: 
alpha=0.05;
 
x = fsolve(@(n) (n-1)*(1/chi2inv(alpha/2,n-1)-1/chi2inv(1-alpha/2,n-1))-1,30)
 
fprintf(...
 
'The min n such that the %4.1f%% CI width for sigma^2 < sigma^2 is %2.0f\n',...
 
100*(1-alpha),ceil(x));;
 

FSOLVE is one of several Matlab equation solvers. It will find an estimate of a parameter or
 
parameters needed to solve an equation. The equation or function should be written such that the
 
solution is 0. Matlab iteratively searches parameter space near starting values that you provide.
 
The above implementation of fsolve I’ve used what Matlab calls ‘an anonymous function’ by
 
including the function to be solved in the same statement as the call to fsolve. The ‘30' in the call
 
is an initial guess of n. With default parameters, fsolve will find the solution with any initial
 
guess greater than 1 and about 200. For values much above 200, Matlab can’t find a solution
 
with its default number of iterations.
 

The solution to the problem is that n is 38.5622, but only integers are solutions, so a sample size
 
of 39 is the minimum such that the width of the 95% confidence interval for σ2 will be equal to
 
or less than σ2.
 

Case Study 7.5.2 

During the first quarter of 1994, Tennessee lenders were charging 
an average rate of 8.84% for a 30-year fixed mortgage. The 
standard deviation was 0.1%.  Figure 19 shows the interest rates 
from 9 lenders on 1-year adjustable rates. Are these interest rates 
more variable than 30-year fixed rates? 

Figure 19. Interest rates on 
This is Matlab 3-liner: 1-year adjustables. Are they 
X=[6.38;6.63;6.88;6.75;6.13;6.50;6.63;6.38;6.50];n=length(X);df= more variable than 30-year 
n-1; mortgages? 
sd=.1;alpha=0.05; 
[H,P,CI,STATS] = vartest(X,sd^2,alpha,'both') 

Programming Theorem 7.5.2 just takes 3 additional lines: 

http:sd=.1;alpha=0.05
http:alpha=0.05
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Stamp



  

  

EEOS 601 
Prob. & Applied Statistics 
Week 7, P. 28 of 72 

chi2=df*var(X)/sd^2 
pvalue=(1-chi2cdf(chi2,df))*2 
fprintf('The p-value for chi2 = %6.2f & %1.0f df is %5.2e\n',chi2,df,pvalue) 

The variance for 30-y fixed mortgages is 0.01% and 1-year adjustable mortgages is 0.05%. 
Testing the hypothesis that the variances are equal, the p-value for observing a chi-squared 
statistic of  39.77 or more extreme if the null hypothesis is true with 8 df is 7.07 x 10 -6 . 

Nonparametric 1-sample tests 

Fisher’s Sign Test 

Fisher invented the deceptively simple but very powerful sign test to test one-sample problems. 
It is available as Matlab’s signtest, but it is easy enough to calculate using principles from early 
in the course. I’ll use the data from example 7.4.3 to describe the test, which is described in the 
text in Section 14.2. If the true proportion is 62% then subtract this expected proportion from the 
observed proportion. The expected number of differences with positive signs should equal the 
expected differences with negative signs. This can be tested exactly with the binomial 
probability density function. Of the 12 banks surveyed, only 4 of the 12 had approval rates 
greater than 62%. What is the probability of observing that result, OR ONE MORE EXTREME, 
by chance. Using Matlab’s binopdf.m, that is easy to calculate. One has to calculate the binomial 
pdf for 0, 1, 2, 3 and 4, given the null hypothesis that states that the probability of negative and 
positive deviations from the expected values should be 0.5 (equal likelihood of positive and 
negative deviations): 

k=0:4;p1tailed=sum(binopdf(k,12,0.5)) 
p1tailed =  0.1938 

In this case, the 2-tailed p value is exactly twice the one-tailed p value and is 0.3877.  This could 
also be obtained by finding the probabilities of those values as or more extreme than 3 on both 
sides of the expected value. A simple Matlab program to do this is: 
Expected=0.5*12; Observed=4; EO=Expected-Observed; 
k=0:12;i=find(abs(Expected-k)>=EO);p2tailed=sum(binopdf(k(i),12,0.5)) 

The decision would be ‘fail to reject’ H  at the α level of 0.05.  The sign test offers no evidence o

to reject the null hypothesis that the true proportion is 62%.  This could be solved in one step
 
using the binomial cumulative distribution function as well:
 
p1tailed=binocdf(4,12,0.5).
 

Matlab has Fisher’s sign test as part of the statistics toolbox. It could be called using the
 
Example 7.4.3 data in one line:
 
[P,H,STATS] = signtest([59 65 69 53 60 53 58 64 46 67 51 59],62,’method’,’exact’)
 



                      

  
 

Figure 20. Power curves for two statistical tests, A & B. 
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This signtest will also perform the large sample normal approximation, but in most cases Matlab 
can calculate the exact solution. 

The sign test does not assume any 
underlying parametric distribution 
for the data, such as normally 
distributed errors. The relative 
efficiency of this test is 95% for n=6, 
declining to 63% for large n, IF THE 
ASSUMPTIONS OF THE T TEST 
ARE MET. The asymptotic relative 
efficiency of a statistic is a difficult 
concept, but there is a nice graphical 

Method B has the higher asymptotic relative efficiency. 
display in Figure 6.4.5 in Larsen & 

The probability of Type II error (β) is lower for B at most 
Marx (2006, p. 450), shown as 

values for the alternate hypothesis, and the power (1-β) is
Figure 20. If the assumptions of the 

higher for Method B. The asymptotic relative efficiency 
parametric test are not met, the 

reflects the reduction in sample size for the more powerful 
power efficiency of the 

method to achieve the same power as the less powerful 
nonparametric test can be MUCH 

method. A relative power efficiency of 0.5 of test A 
higher than the parametric test. 

relative to B, would mean that Method A would require 
twice as many samples to achieve the same power as 

One-sample Wilcoxon signed method B. 
rank test 

The sign test doesn’t take into account the magnitude of the deviations from the expected value.
 
There is a one-sample nonparametric test which DOES take into account the magnitude of the
 
differences from the expected value. In the case of Example 7.4.3, the expected value is 62. The
 
12 banks had observed proportions shown below:
 
X=  [ 59 65 69 53 60 53 58 64 46 67 51 59]
 

The Wilcoxon signed rank statistic subtracts the expected value from each observed value. It
 
then ranks the observations from smallest to largest, without respect to sign, and assigns ranks to
 
these values.
 

Observed differences:

 -3 3 7 -9 -2 -9 -4 2 -16 5 -11 -3 
Ranked by absolute value, there are 3 sets of tied ranks, and these are assigned average values. 

4 4 8 9.5 1.5 9.5 6.0 1.5 12 7 11 4 

Note, that there were 2 values tied with abs(obs-exp)=2,  assigned an average rank of 1.5, 3 
absolute differences of 3, assigned an average rank of 4 (=mean ([3 4 5]), and two differences of 
-9, assigned an average rank of 9.5. 
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The Wilcoxon signed rank statistic is the sum of positive ranks (could also be the sum of 
negative ranks too). I’ve programmed the test as Wilcoxsignrank, but Matlab has a nice version 
called signrank.m, called by: 
[P,H,STATS] = signrank(X,62,'method','exact') 
Matlab’s solution is: 
P =0.1577; H =0;STATS = signedrank: 20.5000 
The signed rank statistic 20.5 is the sum of positive ranks (4+8+1.5+7)
 
There is an exact test available for the Wilcoxon signed rank statistic (not to be confused with
 
the Wilcoxon rank sum statistic to be discussed in the 2-sample tests section). The approximate
 
test, is based on the normal distribution and produces a 2-tailed pvalue of  0.1458.
 

Note that the p values for the Student t 1-sample test was p=0.125, the sign test was p=0.3877
 
and the Wilcoxon signed rank test was p=0.1577 . This is not surprising as the power efficiency
 
of the nonparametric tests is often quite high compared to their parametric equivalents.
 

Nonparametric Case Studies 

Case Study 14.2.1 

Synovial fluid is the clear, viscid secretion that 
lubricates joints and tendons. Fourty-four patients 
with arthritis had the pH of they synovial fluid 
measured. In healthy patients the mean pH of 
synovial fluid is 7.39. At an α-level of 0.05, use an 
appropriate test to determine whether synovial pH 
can be used to test for the presence of arthritis. 

I saved the data in vector D and then plotted them 
using Matlab’s histc.  I examined Figure 22, a 
histogram of the data with a superimposed normal 
probability plot. The data are poorly fit by the 
normal distribution with outliers on both tails of the 
distribution, ruling out most standard 
variance-normalizing 
transformations like the log 
transform. A non-parametric test, 
either a sign test or Wilcoxon signed 
rank test would be appropriate for 
these data. 

Matlab’s sign test is called in one 
line: 
[p,h,stats] = 
signtest(D,7.39,0.05,'method','exact'); 

Figure 21. Synovial pH data from 44 

Figure 22. Synovial pH data from 44 patients with a 
superimposed fit to the normal distribution. I’ve also 
marked, pH 7.39, the pH of healthy patients. 
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Only 4 of the 44 pH measurements were less than 7.39 when the expected number would be 22 
if the median pH of arthritic patients was 7.39. The two-sided p value for observing that result is 
p=3.108x10-8 . 

With these data, it would also be possible to perform a Wilcoxon signed rank test. The test is 
called by: 
[P,H,STATS] = signrank(D,7.39,'alpha',0.05,'method','exact') 

The signed rank test The signed rank test exact p value of 2.207 x 10 -8 . The p-value for the one-
sample t test with these data produced a two-tailed p-value of  p=1.36 x 10-5 . While the power 
efficiency of the parametric one-sample t test is greater than that of the two non-parametric 
equivalents when the assumptions of the test are met, such is not always the case if the 
assumptions are violated. With the non-normal data of Case Study 14.2.1, both nonparametric 
tests produced much lower p values than the parametric 1-sample t test. 

Case Study 14.2.2 

There are two different processes, freeze-drying and 
spray-drying, for producing instant coffee. There is 
interest in whether the caffeine concentration 
differs between these two treatments. The median 
amount of caffeine left by the freeze-drying method 
is 3.55 g caffeine per 100 g of dry matter. Listed in 
Figure 24 are the caffeine residues for eight brands 
of coffee produced by the spray-dried method. 

Eight of the 7 coffees produced caffeine residues of Figure 23. Caffeine residues in 8 brands of 
3.55 g per 100 g residue. How likely is that to have spray-dried instant coffee. 
occurred by chance if the methods had similar 
amounts of caffeine per g of residue?  

There are three appropriate tests for the null 
hypothesis of no difference in caffeine 
concentration: the 1-sample t test, the Wilcoxon 
signed rank test and Fisher’s sign test. Figure 24 
shows the distribution of the 8 samples relative to a 
fitted normal curve. The data are too few to provide 
much power in ruling out the normal distribution. Figure 24. Caffeine residues in 8 brands of 
All three tests would be appropriate, and the one- spray-dried instant coffee. Also shown as a 
sample t test would probably have the highest vertical line is the freeze-dried coffee 
power. For pedagogical purposes only, I’ll run all caffeine concentration of 3.55 g per 100 g 
three tests. residue. 
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The mean caffeine = 4.03 (g/100g residue) with 95% CI: [3.57 4.48], which doesn’t include the 
3.55 g caffeine per 100 g residue concentration found for the freeze-dried method. The 
one-sample t test has a 2-tailed p value of 0.041.  The sign test statistic has an exact 2-tailed p 
value of  0.07031. he signed rank test statistic is 4.0 with exact 2-tailed p=0.05469.  Now, in the 
formal Neyman-Pearson hypothesis testing procedure, if an α level of 0.05 had been set in 
advance, then one could reject the null hypothesis if one had chosen the t test in advance. But, 
one could not reject the null hypothesis at an α-level of 0.05 if the Wilcoxon signed rank test or 
sign test were used. 

Case Study 14.3.1 

Swell sharks are found off the coast of California 
south of Monterey Bay. Shown in Figure 25 are 
measurements of the total length and height of the 
first dorsal fin for 10 sharks caught off Santa 
Catalina. “It has been estimated on the basis of past 
data that the true average TL/HDl ratio for male 
swell sharks caught off the coast is 14.6. Is that 
figure consistent with the data shown in the table? 

The first step in performing an analysis is to quickly Figure 25. Lengths of 10 swell sharks 
inspect the data to note any violation of caught off the coast of Santa Catalina 
assumptions. Figure 26 shows the distribution of Island. 
shark length ratios. There are too few data to assess 
whether there are violations of the normality 
assumption of the 1-sample t-test. It is surely ok, 
but for pedagogical reasons, I’ll analyze the data 
with all three one-sample tests. The one-sample t 
test, Fisher’s sign test and the Wilcoxon signed rank 
tests. I’ll use the exact versions of the latter two 
tests. Figure 26. Lengths of 10 swell sharks 

The one-sample t test is the most effective test for 
caught off the coast of Santa Catalina 
Island. 

analyzing data if its assumptions are met. In 
addition to being the most powerful test, it produces a direct way of reporting the effect size. 
The mean TL/HDl for Santa Catalina sharks is 13.74 with 95% CI: [13.06 14.42]. The 95% 
confidence interval does not include the mainland coastal value of 14.6. The one-sample t test 
has a 2-tailed p of 0.01889. The sign test statistic has an exact 2-tailed p value of 0.02148. The 
signed rank test statistic is  4.5 with exact 2-tailed p=0.01563. 

These data support would provide modest evidence for  the rejection of the null hypothesis that 
the Santa Catalina and coastal mainland sharks are members of the same population. 
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Case Study 14.3.2 

Cyclazocine is a drug used to treat heroin addicts. Fourteen males 
were given a test to measure their psychological dependence on 
heroin. Figure 27 shows their Q scores after treatment. The mean 
Q score for addicts not given cyclazocine is 28. Is there evidence 
that cyclazocine is an effective treatment? 

The normality assumption is not met for the data whose 
distribution is plotted in Figure 28. The distribution is platykurtic, 
but it is reasonably symmetric. The one-sample t test would 
probably be appropriate. Larsen & Marx (2006, p. 819) argue that 
it would be better to analyze the data with a Wilcoxon one-sample 
signed rank test, which assumes only symmetry and not normality. For pedagogical purposes, I’ll 
analyze the data with all three one-sample tests. 

The mean Q score was 39.9 and since the test was performed one 
tailed, only the lower 95% CI of 34.3 is calculated. This 
confidence interval does not contain the non-addict Q score of 28. 
The one-sample t test 1-tailed p value is 0.001255.  The Wilcoxon 
signed rank test statistic is 10.0 with exact 1-tailed p value of Figure 28. Distribution of 

0.002563. The signed rank test approximate 1-tailed p=0.003778 the Q scores for 14 heroin 

for z=-2.6713.  I’d never consider reporting the approximate p addicts. 

value if I’d calculated the exact p value, but I’m including it here because the text uses this case 
study as an example of the large sample normal approximation for the Wilcoxon signed rank 
test. The sign test statistic is  4.0 with exact 1-tailed p value of 0.08978.  There is quite a 
difference in p values between the three tests. Even though the data aren’t normally distributed, I 
would probably use the one-sample t test with these data because of the ease with which the 
effect size can be reported. 

Figure 27. Q scores for 14 
heroin addicts 
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Annotated outline (with Matlab scripts) for Larsen & Marx 
Chapter 7 

The Normal distribution 
Francis Galton quote 

7.1 INTRODUCTION 

Figure 29. The normal 
Normal distribution: distribution 

7.2 Comparing  and 

2 

Figure 30 (Figure 7.2.1a in the text) 
shows the normal distribution 
superimposed on 500 sample of size 
4, in which the z ratios were 
calculated from the known 
population σ (=1) 

σ  is seldom known; Are there probabilisitic differences between  and ?  Willam 

Sealey Gossett gets credit for discovering the difference. 

Figure 30. Normal distributrion plotted with the histogram 
of 500 z ratios calculated with known σ (=1) from 500 
samples of size 4. 
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Figure 31 (Figure 7.2.1b in the text) 
shows the normal distribution 
superimposed on 500 samples of size 
4, in which the z ratios were 
calculated from s estimated from 

Figure 31. Normal distribution plotted with the histogram 
of 500 z ratios calculated with known σ (=1) from 500 
samples of size 4. The histogram is poorly modeled by the 
normal distribution in the tails (the histogram is platykurtic 
relative to the normal) 

each sample. 
% LMFig070201_4th.m 
% Use as a model 
LMFig040301_4th.m 
% Page 471-472 in 
% Larsen & Marx (2006) 
Introduction to Mathematical 
Statistics, 4th edition 
% written by 
Eugene.Gallagher@umb.edu, 
3/12/11 6:50, revised 3/12/11 
% Generate 400 samples from a standard normal distribution, size 4 
clf;cla;hold off 
K=menu('Choose an Option','Figure 7.2.1a','Figure7.2.1b') 
Binsize=.5; 
n=4;N=500; 
if K==1
    R1 = normrnd(0,1,n,N);

    Z1=(mean(R1)-0)./(1./sqrt(n));

    tl='Figure 7.2.1a';
 
else
    R2 = normrnd(0,1,n,N);
    Z1=(mean(R2)-0)./(std(R2)./sqrt(n));
    tl='Figure 7.2.1b'; 
end
 
edges=-4:Binsize:4;
 
[N1,BIN1] = histc(Z1,edges);
 
bar(edges,N1/N,'histc');
 
axis([-4.2 4.2 0 0.25]);
 
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
 
ylabel('Density','FontSize',20);
 
ax1=gca;set(ax1,'xtick',-4:4,'FontSize',20);
 
set(ax1,'ytick',[0.1 0.2],'FontSize',20)
 
figure(gcf);pause
 
% Superimpose the normal probability pdf:
 
% The more general equation(Legendre & Legendre, 1998 p. 147, 

% or LM eq 7.1.1 is:
 
% f(y_j)=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)/sigma_j)^2)
 
mu_j=0;
 
sigma_j=1; % sigmaj is the standard deviation
 

http:7.2.1a','Figure7.2.1b
mailto:Eugene.Gallagher@umb.edu
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y_j=-4:0.01:4;
 
%fy_j=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)./sigma_j).^2);
 
% or the identical function:
 
fy_j=normpdf(y_j,mu_j,sigma_j)*Binsize;
 
% fyj=1/(sqrt(2*pi)*sigmaj)*exp(-1/2*((y-muj)/sigmaj).^2); 

% Plot using ax1 handle, saved above,to save this graph
 
% on top of the previous graph.
 
h1=line(y_j,fy_j,'Color','r','Parent',ax1,'Linewidth',3);
 
set(h1,'linestyle','--','color','r','linewidth',3)
 
xlabel(''),ylabel('Density','FontSize',20)
 
title(tl,'FontSize',22)
 
figure(gcf);pause
 
hold off
 

7.3 DERIVING THE DISTRIBUTION OF 

Probability functions fall into two categories: those that model individual measurements (e.g., 
normal, binomial, Poisson, exponential, hypergeometric & uniform) and “There is a smaller set 
of probability distributions that model the behavior of functions based on a set of n random 
variables. These are called sampling distributions, and the functions they model are typically 
used for inference purposes.” The normal belongs to both categories. Others sampling 
distributions include Student t distribution, chi square distribution and the F distribution. The t 
distribution will be derived as a special case of the F distribution, which is derived as a ratio of 
chi-square distributions. 

Theorem 7.3.1 Let , where Z , Z , ..., Z  are independent standard normal random 1 2 m 

variables. Then U has a gamma distribution with r =  and λ = ½. That is, 

The distribution of the sum of squares of independent standard normal random variables is 
sufficiently important that it gets its own name, the chi square distribution, despite the fact that it 
is just a special case of the gamma distribution. 

Definition 7.3.1 The pdf of  where Z , Z , ..., Z  are independent standard normal 1 2 m 

random variables, is called the chi square distribution with m degrees of freedom. 

Theorem 7.3.2 Let Y1, Y2, ..., Yn be a random sample from a normal distribution with mean µ 
and variance σ2. Then 

2a. S  and  are independent 



n-1 dfb.
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 has a chi square distribution with 

Definition 7.3.2 Suppose that U and V are independent chi square random variables with n and 

m degrees of freedom respectively. A random variable of the form  is said to have an F 

distribution with m and n degrees of freedom. 
Theorem 7.3.3 pdf of the F distribution 

7.3.1 F tables The symbol F  will be used to denote the 100pth percentile of p,m n 

the F distribution with m and n degrees of freedom. 

Figure 32 shows the F distribution
 
for 3 and 5 df.
 
% LMFig070301_4th.m
 
xmax=6.5;
 
r=0:0.01:xmax;
 
y=fpdf(r,3,5);
 
r95=finv(0.95,3,5);
 
plot(r,y,'--r','LineWidth',3)
 
axis([0 xmax 0 0.71])
 
ax1=gca;
 
xlabel('r','FontSize',20),
 
ylabel('Probability
 
Density','FontSize',20);
 
set(ax1,'xtick',[0:5 r95
 
6],'FontSize',18);
 
set(ax1,'ytick',0:0.2:0.7,'FontSize',14)
 
hold on;
 
xf=r95:0.01:xmax;
 
yf=fpdf(xf,3,5);
 
fill([r95 xf xmax]',[0 yf 0]',[.8 .8 1])
 
text(r95+0.05,0.05,'Area=0.05','FontSize',18);
 
title('Figure 7.3.1','FontSize',22)
 
figure(gcf);pause
 
hold off;
 

Figure 32. F distribution with 3 and 5 df, the 95% critical 
value of 5.4095 is also shown. 

7.3.2 Using the F Distribution to Derive the pdf for t Ratios 
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Definition 7.3.3 Let Z be a standard norml random variable and let U be a chi square random 
variable independent of Z with n degrees of freedom. The Student t ratio with n degrees of 
freedom is denoted T , where n

Theorem 7.3.4 The pdf for a Student t random variable with n degrees of freedom is given by 

Theorem 7.3.5 Let Y , Y , ..., Y  be a random sample from a normal distribution with mean µ1 2 n 

and standard deviation σ. Then 

has a Student t distribution with n-1 degrees of freedom. 

f (t) and f  (Z): How the two pdf’s are related Tn Z

Figure 33 shows the relation between 
the normal and t distributions 
Student’s t curves are flatter. 
% LMFig070302_4th.m 
% Page 427 in Larsen & Marx, 2nd 
ed, page 479 in 4th edition 
% Larsen & Marx (2006) 
Introduction to Mathematical 
Statistics, 4th edition 
% Pots of the z & t distribution. 
% E. Gallagher, 
Eugene.Gallagher@umb.edu 
% Revised: 2/5/04 
% Plot the normal probability pdf: 
% The normal probability equation is provided on p. 264 & 402 in L&M 
clf 
muj=0; 
sigmaj=1; % sigmaj is the standard deviation; 1 for a standardnormal 
y=linspace(-4.2,4.2,100); 

Figure 33. Normal distribution and Student T distribution 
for 2 df (green) and 10 df (blue) 

mailto:Eugene.Gallagher@umb.edu
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% fyj=1/(sqrt(2*pi)*sigmaj)*exp(-1/2*((y-muj)/sigmaj).^2);
 
fyj=normpdf(y,muj,sigmaj);
 
% Plot using ax1 handle, saved above,to save this graph
 
% on top of the previous graph.
 
h1=line(y,fyj,'Color','r','Linewidth',3);
 
set(h1,'linestyle','--','color','r','linewidth',3)
 
axis([-4 4 0 0.41]);
 
ax1=gca;
 
set(ax1,'Ytick',[0:0.2:0.4],'YColor','b')
 
set(ax1,'Xtick',[-4:4],'YColor','b')
 
title( 'Figure 7.3.2','Fontsize',22);
 
% Now plot the t distribution with 10 df;
 
df=10;
 
%ftn=LMTheorem070402(df);  % find the pdf for t with 10 df.
 
ftn=tpdf(y,10);
 
h2=line(y,ftn,'Color','b');
 
set(h2,'linestyle','--','color','b','linewidth',3); 

df=2;
 
ftn=tpdf(y,2);
 
% ftn=LMTheorem070402(df);
 
h2=line(y,ftn,'Color','g');
 
set(h2,'linestyle','-.','color','g','linewidth',3);
 
% add labels
 
labs=['f_z(z)  ';


 'f_T_1_0(t)';
 'f_T_2(t) ']; 

text(0.9,0.37,labs(1,:),'Color','r','Fontsize',18); 
text(1.5,0.2,labs(2,:),'Color','b','Fontsize',18); 
text(3,0.05,labs(3,:),'Color','g','Fontsize',18); 
figure(gcf);pause 

Questions p. 479 {none appropriate for EEOS601} 
7.4 DRAWING INFERENCES ABOUT µ 

7.4.1 t Tables 
7.4.1.1 Use
 

the
 
symbol
 
t  to
α,n 

denote 
the 
100(1
α)th 
percent 
ile of 
f (t) Tn Figure 34. Student T distribution for 3 df and 95th % cutoff 

Figure 35 Student’s t distribution at 2.534 
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% LMFig070402_4th.m
 
% Page 427 in Larsen & Marx, 2nd ed, page 479 in 4th edition
 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
 
% Pots of the z & t distribution.
 
% E. Gallagher, Eugene.Gallagher@umb.edu
 
% Revised: 2/5/04
 
% Plot the normal probability pdf:
 
% The normal probability equation is provided on p. 264 & 402 in L&M
 
clf
 
muj=0;
 
sigmaj=1; % sigmaj is the standard deviation; 1 for a standardnormal
 
y=linspace(-4.2,4.2,100);
 
fyj=tpdf(y,3);
 
r95=tinv(0.95,3);
 
% Plot using ax1 handle, saved above,to save this graph
 
% on top of the previous graph.
 
h1=line(y,fyj,'Color','r','Linewidth',3);
 
set(h1,'linestyle','--','color','r','linewidth',3)
 
axis([-4 4 0 0.41]);
 
ax1=gca;
 
set(ax1,'Xtick',[0 r95],'XColor','k','FontSize',18);
 
set(ax1,'Ytick',0:.2:.4,'FontSize',18);
 
title('Figure 7.4.2','Fontsize',22);
 
hold on
 
% add labels
 
labs=['f_T_3(t)  '];
 
text(r95,0.075,'Area=alpha','Fontsize',18)
 
text(0.2,0.37,'f_T_3(t)','Fontsize',18)
 
xf=r95:0.01:xmax;
 
yf=tpdf(xf,3);
 
fill([r95 xf xmax]',[0 yf 0]',[.8 .8 1])
 
figure(gcf);pause
 
hold off;
 

7.4.2 Constructing a confidence interval for µ 
Theorem 7.4.1 Let y , y , ..., y  be a random sample of size n from a normal distribution with 1 2 n 

(unknown) mean µ. A 100(1-α)% confidence interval for µ is the set of values 

Case Study 9.4.1 
See above 

7.4.3 Fitting a normal distribution to data 

Case Study 7.4.1 
%LMcs070401_4th.m 
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% p 483-484 in
 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
 
% Written by Eugene.Gallagher@umb.edu 10/2010, revised 3/12/2011
 
X=[62 52 68 23 34 45 27 42 83 56 40];
 
fprintf('The mean reaction distance is %6.4f cm\n',mean(X));
 
alpha=0.05;
 
[H,P,CI,STATS]=ttest(X,0,alpha,'both');
 
fprintf('The 95%% confidence interval is (%6.4f cm %6.4f cm)\n',CI)
 
% or call normfit
 
[MUHAT,SIGMAHAT,MUCI,SIGMACI] = normfit(X,alpha)
 
fprintf('The 95%% confidence interval is (%6.4f cm %6.4f cm)\n',MUCI)
 

Example 7.4.1 
%LMex070401_4th.m 
X=[2.5 0.1 0.2 1.3

 3.2 0.1 0.1 1.4 
0.5 0.2 0.4 11.2
 
0.4 7.4 1.8 2.1
 
0.3 8.6 0.3 10.1]; X=X(:);
 
[H,P,CI,STATS]=ttest(X);
 
fprintf('The sample arithmetic mean is %6.4f\n',mean(X))
 
fprintf('The 95%% confidence interval is (%6.4f %6.4f)\n',CI)
 
Binsize=1;
 
edges=0:Binsize:ceil(max(X));
 
[N1,BIN1] = histc(X,edges);
 
bar(edges,N1,'histc');
 
axis([0 12.5 0 11]);
 
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
 
ylabel('Frequency','FontSize',20);
 
ax1=gca;set(ax1,'xtick',0:5:10,'FontSize',20);
 
set(ax1,'ytick',0:5:10,'FontSize',20)
 
title('Figure 7.4.3','FontSize',22)
 
figure(gcf);pause
 
% Matlab's boxplot and norm pdf are also very good at determining if
 
% samples have nonnormal distributions.
 
boxplot(X); pause
 
normplot(X);pause
 
% ---
% Optional. A log transform makes these data suitable for analysis with the
 
% t tools
 
lx=log(X);
 
boxplot(lx); pause
 
normplot(lx);pause
 
edges=-3:3;
 
[N1,BIN1] = histc(lx,edges);
 
bar(edges,N1,'histc');axis([-3.1 3.1 0 5.1]);
 

http:alpha=0.05
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set(get(gca,'Children'),'FaceColor',[.8 .8 1])
 
ylabel('Frequency','FontSize',20);
 
ax1=gca;set(ax1,'xtick',-3:3,'FontSize',20);
 
set(ax1,'ytick',0:5:10,'FontSize',20);
 
title('Figure 7.4.3b','FontSize',22);figure(gcf)
 
[H,P,CI,STATS]=ttest(lx);
 
fprintf('\nThe geometric mean is %6.4f\n',exp(mean(lx)))
 
fprintf('The 95%% confidence interval is (%6.4f %6.4f)\n',exp(CI))
 

Questions p. 486-489 
7.4.4 Testing H µ = µ  (The One-Sample t Test) o o 

Theorem 7.4.2 Let y , y , ..., y  be a random sample of size n from a normal distribution where σ1 2 n 

is unknown. Let 

a. To test H : µ = µ  versus H : µ > µ  at the α level of significance, reject H o o 1 o o 

if t ; tα,n-1 . 
b. To test H : µ = µ  versus H : µ < µ  at the α level of significance, reject H o o 1 o o 

if t t .α,n-1 

c. To test H : µ = µ  versus H : µ * µ  at the α level of significance, reject H  if t iso o 1 o o 

either (1)  -tα/2,n-1 or; t1-α/2,n-1 . 

Example 7.4.2 
% LMex070402_4th.m 
% Case 7.4.2 p. 490 
% Example of one-sample t test in 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% Written by Eugene.Gallagher@umb.edu October 2010, revised 1/21/11 
% http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html 
% Theorem 7.4.2: T=(Avg-mu_o)/(s/sqrt(n)) 
% The p value can for T can be determined 
% using the wording indicating that a 1-tailed 
% test is required: "Can it be concluded 
% that children at this particular facility 
% have a HIGHER risk of pica? 
alpha=0.05;M=16 
[D,t,df,pvalue,CI]=student1group(12,18.65, 5.049,M, alpha); 
fprintf('The 1-tailed p value = %6.4g for t=%6.4f\n',pvalue/2,t); 
fprintf(...
 'The blood lead difference of %4.2f mg/l had 95%% CI =[%4.2f %4.2f]\n',...
    D,CI(1),CI(2)); 
if pvalue/2<alpha

 fprintf(... 
'Reject Ho: Evidence that children had lead levels higher than %4.2f\n',M); 
fprintf(... 

http:D,t,df,pvalue,CI]=student1group(12,18.65
http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
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'The difference from ''normal (=%2.0f mg/l)'' was %3.1f mg/l +/- %3.1f mg/l\n',...
 
M,D,D-CI(1));
 
end
 
function [D,t,df,pvalue,CI]=student1group(Xn,Xmean, Xstd, M, alpha) 
% Student't 1-sample t test with grouped data 
% [D,t,df,pvalue,CI]=student1group(Xn,Xmean,Xstd,alpha) 
% Input: Xn = Size of group = number of cases 
% Xmean = mean for groups 
% Xstd, Ystd= standard deviations for 2 groups 
% M=expected mean, 0 if not provided 
% alpha level for CI, optional, 95% if not specified 
% Output: D=Xmean-M or Xmean-0; 
% t=Student's t statistic 
% df=degrees of freedom for t statistic 
% p value, 2-sided, for t Statisitc, with df degrees of freedom 
% CI for 1-alpha CI, [L U];95% CI if alpha not specified. 
% Based on Theorem 7.4.2, page 490 in Larsen & Marx (2006) 
% Introduction to Mathematical Statistics, 4th edition. 
% uses Statistics toolbox 
% Written by Eugene.Gallagher@umb.edu, Revised 11/14/10 
% see also stud1sample, binom2sample, student2group, stud2sample 
if nargin<4
    M=0;
    alpha=0.05; 
elseif nargin <5
    alpha=0.05; 
end 
D=Xmean-M; 
% Calculate sample standard deviation 
t=D/(Xstd/sqrt(Xn)); 
% Use stixbox's pt.m for significance of t. 
df=Xn-1; 
if t>=0
    pvalue=2*(1-tcdf(t,df)); 
else
    pvalue=2*tcdf(t,df); 
end 
HalfCI=tinv(1-alpha/2,df)*Xstd*sqrt(1/Xn); 
CI=[D-HalfCI D+HalfCI]; 

Example 7.4.3 
% LMex070403_4th.m 
% Application of the one sample t test using 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% Written by Eugene.Gallagher@umb.ed 11/14/2010, revised: 11/17/2010 
% Percentage loan approval from different banks 

mailto:Eugene.Gallagher@umb.ed
http:alpha=0.05
http:alpha=0.05
mailto:Eugene.Gallagher@umb.edu


EEOS 601 
Prob. & Applied Statistics 
Week 7, P. 44 of 72 

X=[59 65 69 53 60 53 58 64 46 67 51 59]'; 
fprintf('The mean of X is %6.3f %%\n',mean(X)); 
meanHo=62; 
fprintf('The true mean being tested is %6.3f%%\n',meanHo); 
alpha=0.05; 
% Matlab's 1-sample t test is: 
[h,p,ci,stats] = ttest(X,meanHo) 
% The book reports the critical values for the 2-tailed t 
% statistic based on 11 df. 
df=stats.df; 
fprintf(... 
'The 2 tailed critical values for D=0, %d df and alpha=0.05, are %4.2f and %4.2f\n',... 
df,tinv(alpha/2,df),tinv(1-alpha/2,df)); 
fprintf('The observed mean was %6.3f with 95%% CI: [%6.3f %6.3f]\n',mean(X),ci); 
fprintf(... 
'The 2-tailed p of observing a difference of %6.3f by chance is %5.3f.\n',... 
mean(X)-meanHo,p) 
% Test the 3 banks separately, Table 7.5.4, page 492: 
BANK=['AU';'TU';'TU';'FT';'FT';'AU';'FT';'FT';'AU';'TU';'AU';'FT']; 
% Find how many different unique banks 
UB=unique(BANK,'rows'); 
[r,c]=size(UB); 
alpha=0.05; 
for i=1:r
    j=strmatch(UB(i,:),BANK); % finds indices for all rows with the 1st unique bank name 
fprintf('\nThe Bank being analyzed is %3s\n',UB(i,:)); 
x=X(j); 
fprintf('The mean Percentage approved is %5.2f%% vs. %5.2f%% 
expected\n',mean(x),meanHo); 
% [D,t,df,pvalue,CI]=stud1sample(x,meanHo,alpha); 
% Matlab's 1-sample t test is: 
[h,pvalue,ci,stats] = ttest(x,meanHo,alpha); 
D=mean(x)-meanHo; 
% The book reports the critical values for the 2-tailed t 
% statistic based on 11 df.

 fprintf(...
 'For Bank %s, the difference is %5.2f%%, with 2-tailed p value=%5.3f\n',...

        UB(i,:),D,pvalue); 
    if pvalue<alpha
        fprintf('For bank %s, reject the null hypothesis at alpha=%5.3f\n',...
            UB(i,:),alpha);

 else
        fprintf('For bank %s, fail to reject the null hypothesis at alpha=%5.3f\n',UB(i,:),alpha);

 end
    df=stats.df; 

http:df=stats.df
http:alpha=0.05
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 fprintf(...
 'The 2 tailed critical values for the t statistic=%4.2f and alpha=%5.3f, are %4.2f and 

%4.2f\n',...
    t,alpha,tinv(alpha/2,df),tinv(1-alpha/2,df)); 
end 
% HOWEVER, if the 3 banks were not idenitified in advance, then a Bonferroni correction 
% to alpha should be used. 
fprintf('\nAnalyses using Bonferroni adjustment based on number of tests (3)\n') 
alpha=0.05; 
alpha=0.05;ntests=r; % r is 3, the 3 types of banks 
alpha=1-exp(log(1-alpha)/ntests);  % I'll overwrite alpha to avoid having to recode the if loop 
fprintf('The Bonferroni adjusted alpha, based on %d tests is %5.3f.\n',ntests,alpha); 
for i=1:r
    j=strmatch(UB(i,:),BANK); % finds indices for all rows with the 1st unique bank name 
fprintf('\nThe Bank being analyzed is %3s\n',UB(i,:)); 
x=X(j); 
fprintf('The mean Percentage approved is %5.2f%% vs. %5.2f%% 
expected\n',mean(x),meanHo); 
% [D,t,df,pvalue,CI]=stud1sample(x,meanHo,alpha); 
% Matlab's 1-sample t test is: 
[h,pvalue,ci,stats] = ttest(x,meanHo,alpha); 
D=mean(x)-meanHo; 
% The book reports the critical values for the 2-tailed t 
% statistic based on 11 df.

 fprintf(...

 'For Bank %s, the difference is %5.2f%%, with 2-tailed p value=%5.3f\n',...


        UB(i,:),D,pvalue); 

    if pvalue<alpha

 fprintf(... 
'For bank %s, reject the null hypothesis at Bonferroni-adjusted alpha=%5.3f\n',...
            UB(i,:),alpha);

 else
 fprintf(... 

'For bank %s, fail to reject the null hypothesis at Bonferroni-adjusted 
alpha=%5.3f\n',UB(i,:),alpha);

 end

    df=stats.df;


 fprintf(...

 'The 2 tailed critical values for the t statistic=%4.2f and alpha=%5.3f, are %4.2f and
 

%4.2f\n',...
    t,alpha,tinv(alpha/2,df),tinv(1-alpha/2,df)); 
end 

Questions p. 492-493 
7.4.5 Testing H µ = µ  When the Normality Assumption is not Met o o 

Is the validity of the t test compromised if the normality assumption is not met? 

http:alpha=%5.3f
http:statistic=%4.2f
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Figure 7.4.6 
% LMFig070406_4th.m 
% Pages 495-498 in 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 
4th edition 
% Written by Eugene.Gallagher@umb.edu 3/12/11, revised 
3/13/11 
% Use 7.2.1b as a model 
K=menu('Pick a Figure','7.46a Uniform','7.46b exponential, n6',...

 '7.46c Poisson','7.46d Exponential n15'); 
n=6;N=100; 
Binsize=1; 
tx='t ratio (n=6)'; 
ymax=0.42; 
if K==1
    % Plot the distribution figure

    y=[0 1];fy=[1 1];

    plot(y,fy,'--k','LineWidth',3)

    axis([0 1.05 0 1.1]);

    set(gca,'ytick',[0 1],'xtick',[0 1],'FontSize',20)

    xlabel('y','FontSize',20);ylabel('Probability
 
Density','FontSize',20);
    text(0.5,0.92,'f_y(y) = 1','FontSize',18);
    title('Figure 7.4.6: Uniform Distribution');figure(gcf);pause
    % settings for the Monte Carlo simulated data:
    tl='Figure 7.4.6a: Uniform';
    R=rand(n,N);
    xmin=-6.2;xmax=6.2;

 mu=0.5; 
elseif K==2
    % Plot the distribution figure
    YMAX=6.2;y=[0:0.01:YMAX];fy=exppdf(y,1);
    plot(y,fy,'--k','LineWidth',3)
    axis([0 YMAX 0 1.1]);
    set(gca,'ytick',[0:.5:1],'xtick',[0:2:6],'FontSize',20)
    xlabel('y','FontSize',20);ylabel('Probability 
Density','FontSize',20);
    text(1.5,0.35,'f_y(y) = e^{-y}','FontSize',18);
    title('Figure 7.4.6: Exponential Distribution');figure(gcf);pause
    % Settings for the Monte Carlo Simulated data
    tl='Figure 7.4.6b: Exponential';
    R=exprnd(1,n,N);
    xmin=-7.2;xmax=4.2;

 mu=1; 
elseif K==3 

Figure 35. Uniform 
distribution 

Figure 36. Mean (n=6) from 
uniform distribution as t 
ratios. 

Figure 37. Exponential 
distribution (µ = 1) 

Figure 38. Mean (n=6) from 
exponential distribution 
(µ=1) as t ratios. 

Figure 39. Poisson 
distribution, λ=5 

http:ymax=0.42
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    % Plot the distribution figure

    % use Figure 5.1.1 as a model

    lambda=5;k5=0:10;pxk5=poisspdf(k5,lambda);

    h2=stem(k5,pxk5,'Marker','none');

    xlabel('k','FontSize',20)

    axis([-.5 10.5 0 0.19])

    set(h2,'LineWidth',3)

    figure(gcf);pause

    set(gca,'ytick',[0:.08:.16],'xtick',[0:2:10],'FontSize',20)

    xlabel('k','FontSize',20);ylabel('Probability
 
Density','FontSize',20); Figure 40. Mean (n=6) from 
    text(7.5,0.08,'f_y(y) = {e^{-5 5^k}}/k!','FontSize',18); Poisson distribution, λ=5, as t
    title('Figure 7.4.6: Poisson Distribution');figure(gcf);pause ratios. 
    % Settings for the Monte Carlo Simulated data
    tl='Figure 7.4.6c: Poisson';
    lambda=5;
    R=poissrnd(lambda,n,N);
    xmin=-5.2;xmax=4.2;
    mu=lambda; 
elseif K==4
    % Plot the distribution figure same as before
    YMAX=6.2;y=[0:0.01:YMAX];fy=exppdf(y,1);
    plot(y,fy,'--k','LineWidth',3)
    axis([0 YMAX 0 1.1]);
    set(gca,'ytick',[0:.5:1],'xtick',[0:2:6],'FontSize',20) Figure 41. Mean 
    xlabel('y','FontSize',20);ylabel('Probability Density','FontSize',20); (n=15) from 
    text(1.5,0.35,'f_y(y) = e^{-y}','FontSize',18); exponential 
    title('Figure 7.4.6: Exponential Distribution');figure(gcf);pause distribution, µ=1, as t 
    % Settings for the Monte Carlo Simulated data ratios. 

n=15;
    tx='t ratio (n=15)';
    tl='Figure 7.4.6d';
    R=exprnd(1,n,N); 
    xmin=-4.2;xmax=4.2;

 mu=1; 
end 
edges=ceil(xmin):Binsize:floor(xmax); 
tdf=n-1; 
V=[xmin xmax 0 ymax];
    mr=mean(R)';
    s=std(R)';
    mu=repmat(mu,N,1);
    Z1=(mr-mu)./(s./sqrt(n)); 
[N1,BIN1] = histc(Z1,edges); 
bar(edges,N1/N,'histc'); 
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axis(V)
 
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
 
ylabel('Density','FontSize',20);
 
ax1=gca;set(ax1,'xtick',[ceil(xmin):floor(xmax)],'FontSize',20);
 
set(ax1,'ytick',[0.1:0.1:0.6],'FontSize',20)
 
hold on
 
figure(gcf);pause
 
y_j=xmin:0.01:xmax;
 
fy_j=tpdf(y_j,tdf)*Binsize; 

h1=line(y_j,fy_j);
 
set(h1,'linestyle','--','color','r','linewidth',3)
 
xlabel(tx,'FontSize',20),ylabel('Density','FontSize',20)
 
title(tl,'FontSize',22)
 
figure(gcf);pause
 
hold off
 

Questions p. 498-499 None really appropriate for Matlab programming 
7.5 DRAWING INFERENCES ABOUT σ2 

Shift attention to scale parameter σ2 

Figure 42 shows the chi square 
distribution for 5 df. 

7.5.1	 Chi Square
 
Tables
 

7.5.2	 Constructing
 
Confidence
 
Intervals for σ²
 

Theorem 7.5.1 Confidence interval
 
for σ2
 

%LMFig070501_4th.m
 
% Based on LMFig060205_4th. Page
 
500 in
 
% Larsen & Marx (2006)
 
Introduction to Mathematical Statistics, 4th edition
 
% Written by Eugene.Gallagher@umb.edu 3/13/11
 
df=5;chi05=chi2inv(0.05,df);
 
chi99=chi2inv(0.99,df);
 
zmax=17.1;
 
z=0:.01:zmax;
 
fzz=chi2pdf(z,df);
 
plot(z,fzz,'linestyle','--','color','r','linewidth',3)
 
ylabel('Probability Density','FontSize',20)
 
xlabel('z','FontSize',20)
 
axis([0 zmax 0 0.17])
 
set(gca,'Ytick',[0:.05:0.15],'FontSize',18)
 
set(gca,'Xtick',[chi05 4:4:12 chi99],'FontSize',18)
 
ax=axis;
 

Figure 42. Chi square distribution for 5 df 
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ax1=gca; % save the handle of the graph
 
title('Figure 7.5.1','FontSize',22)
 
hold on
 
fz=chi2pdf([chi05 chi99],df);
 
plot([chi05 chi05;chi99 chi99]',[0 fz(1);0 fz(2)]','-k','linewidth',1) 

% Fill in the upper tail with fill
 
y2=chi99:.001:ax(2);
 
fy2=chi2pdf(y2,df);
 
fymax=chi2pdf(ax(2),df);
 
fill([chi99 y2 ax(2) ax(2)],[0 fy2 fymax 0],[.8 .8 1])
 
% Fill in the lower tail with fill
 
y3=ax(1):.001:chi05;
 
fy3=chi2pdf(y3,df);
 
% fymin=chi2pdf(ax(1),df);
 
fymin=0;
 
fill([ax(1) ax(1) y3 chi05],[0 fymin fy3 0],[.8 .8 1])
 
t=sprintf('Area=0.05');
 
t1='Area=0.01';
 
text(chi05+.05,.02,t,'Color','b','FontSize',20);
 
text(13.25,.02,t1,'Color','b','FontSize',20);
 
figure(gcf)
 
hold off
 

Case Study 7.5.1
 
% LMcs070501_4th.m
 
% Page 502-503 in
 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
 
% Written by Eugene.Gallagher@umb.edu, 3/13/11, revised:
 
% Will solve the easy and easiest way.
 
X=[249;254;243;268;253;269;287;241;273;306;303;280;260;256;278;344;304;283;310];
 
[MUHAT,SIGMAHAT,MUCI,SIGMACI] = normfit(X);df=length(X)-1;
 
fprintf('The 95%% CI for sigma is %4.2f and %4.2f million years\n',SIGMACI)
 
alpha=0.05;chi2low=chi2inv(alpha/2,df);
 
chi2up=chi2inv(1-alpha/2,df);
 
s2=var(X);s=std(X);
 
fprintf('The variance is %5.1f and sd is %5.1f million years.\n',s2,s);
 
Low95s=sqrt(df*s2/chi2up);Up95s=sqrt(df*s2/chi2low);
 
fprintf('The 95%% CI for sigma is %4.2f and %4.2f million years\n',Low95s,Up95s)
 

Example 7.5.1 
Solve with fsolve 
% LMex070501_4th.m 
% Page 503 in 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% Written by Eugene.Gallagher@umb.edu 3/13/11 
% What is the minimum n such that the width of the 95% confidence interval 
% for sigma^2 is no greater than sigma^2; 
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Width=(n-1)*s2*(1/chi2inv(alpha/2,n-1)-1/chi2inv(1-alpha/2,n-1));
 
% So
 
alpha=0.05;
 
x = fsolve(@(n) (n-1)*(1/chi2inv(alpha/2,n-1)-1/chi2inv(1-alpha/2,n-1))-1,30)
 
% x=38.562, so
 
fprintf(...
 
'The min n such that 95%% CI width for sigma^2 < sigma^2 is %2.0f\n',...
 
ceil(x));
 

7.5.3 H : σ² = σ² o o 

Theorem 7.5.2 

Case Study 7.5.2 
% LMcs070502_4th.m 
% Page 505-506 in 
% Larsen & Marx (2006) 
Introduction to Mathematical 
Statistics, 4th edition 
% Written by 
Eugene.Gallagher@umb.edu 
X=[6.38;6.63;6.88;6.75;6.13;6.50;6. 
63;6.38;6.50];n=length(X);df=n-1; 
sd=.1;alpha=0.05; 
fprintf(... 
'The variance for 30-y fixed 
mortgages = %5.3f%% and 1-year adjustables = %5.3f%%\n',... 
sd^2,var(X)) 
[H,P,CI,STATS] = vartest(X,sd^2,alpha,'both') 
if H==1
    fprintf('Reject the null hypothesis\n') 
else
    fprintf('Fail to reject the null hypothesis\n') 
end 
% Or using theorem 7.5.2 
chi2=df*var(X)/sd^2 
pvalue1tail=(1-chi2cdf(chi2,df)); 
pvalue2tail=pvalue1tail*2; 
fprintf('The two-tailed p-value for chi2 = %6.2f & %1.0f df is %5.2e\n',chi2,df,pvalue2tail) 
% Plot the chi square distribution using Figure 7.5.1 as a model 
chi95=chi2inv(0.95,df); 
zmax=24; 
z=0:.01:zmax; 
fzz=chi2pdf(z,df); 
plot(z,fzz,'linestyle','--','color','r','linewidth',3) 
ylabel('Probability density','FontSize',20) 
xlabel('z','FontSize',20) 
axis([0 zmax 0 0.13]) 

Figure 43. Chi square distribution for 8 df 

http:sd=.1;alpha=0.05
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set(gca,'Ytick',[0:.04:0.12],'FontSize',18)
 
set(gca,'Xtick',[0:4:12 chi95 20],'FontSize',18)
 
ax=axis;
 
ax1=gca; % save the handle of the graph
 
title('Figure 7.5.3','FontSize',22)
 
hold on
 
fz=chi2pdf(chi95,df);
 
plot([chi95 chi95]',[0 fz]','-k','linewidth',1) 

% Fill in the upper tail with fill
 
y2=chi95:.001:ax(2);
 
fy2=chi2pdf(y2,df);
 
fymax=chi2pdf(ax(2),df);
 
fill([chi95 y2 ax(2) ax(2)],[0 fy2 fymax 0],[.8 .8 1])
 
t='Area=0.05';
 
text(chi95,.02,t,'Color','b','FontSize',20);
 
figure(gcf)
 
hold off
 

Questions 506-509 
7.6 Taking a second look at statistics (“Bad” Estimators) 

14 Nonparametric statistics 
14.1 Introduction 
14.2 The Sign Test 

Theorem 14.2.1 

Case Study 14.2.1 
% LMcs140201_4th.m 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% page 804. A case study solved by the sign test 
% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 11/16/10, 3/1/11 
% 
D=[7.02 7.35 7.32 7.33 7.15 7.26 7.25 7.35 7.38 7.20 7.31 7.24 7.34 ...

 7.32 7.34 7.14 7.20 7.41 7.77 7.12 7.45 7.28 7.34 7.22 7.32 7.4 ...
 6.99 7.1 7.3 7.21 7.33 7.28 7.35 7.24 7.36 7.09 7.32 6.95 7.35 ...
 7.36 6.6 7.29 7.31]; 

[p,h,stats] = signtest(D,7.39,0.05,'method','exact'); 
fprintf('\nThe sign test exact p=%6.4g\n',p); 
[p,h,stats] = signtest(D,7.39,'method','approximate'); 
fprintf('The sign test approximate p=%6.4g;z=%6.4f\n',p,stats.zval); 
[H,P,CI,STATS] = ttest(D,7.39); 
fprintf('The one-sample t test 2-tailed p=%6.4g\n',P); 
fprintf('The mean pH = %4.2f with 95%% CI: [%4.2f %4.2f]\n',mean(D),...
    CI(1),CI(2)); 
[P,H,STATS] = signrank(D,7.39,'alpha',0.05,'method','exact'); 
fprintf('The sign rank test exact p=%6.4g\n',P); 

http:ttest(D,7.39
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[P,H,STATS] = signrank(D,7.39,'alpha',0.05,'method','approximate');
 
fprintf('The sign rank test approximate p=%6.4g\n',P);
 
% Plot histogram and check for symmetry
 
binsize=.1;  % Needed in order to properly scale the normal pdf
 
edges=6.4:binsize:8;
 
% hist(D);
 
[N,BIN] = histc(D,edges);
 
bar(edges,N,'histc')
 
axis([6.35 8.05 0 21])
 
set(get(gca,'Children'),'FaceColor',[.8 .8 1]);
 
xlabel('pH','FontSize',20);
 
ylabel('Number of Cases','FontSize',20);
 
ax1=gca;
 
set(ax1,'Ytick',[0:5:25],'Xtick',[6.4:0.2:8])
 
figure(gcf);pause
 
% Superimpose the normal probability pdf on a histogram of differences.
 
% The normal probability equation is provided on p. 293
 
% This is for mean 0, and unit standard
 
% deviation. The more general equation (Legendre & Legendre, 1998 p. 147) is:
 
% f(y_j)=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)/sigma_j)^2);
 
n=length(D);
 
mu_j=mean(D);
 
sigma_j=std(D); % sigmaj is the standard deviation; = 1 after Z transform
 
y_j=6.35:0.01:8.05;
 
fy_j=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)./sigma_j).^2);
 
fy_j=n*binsize*fy_j;
 
cutoff=7.39;
 
fy_cutoff=n*binsize/(sqrt(2*pi)*sigma_j)*exp(-1/2*((cutoff-mu_j)./sigma_j).^2);
 
% will properly scale the height of the pdf
 
% fyj=1/(sqrt(2*pi)*sigmaj)*exp(-1/2*((y-muj)/sigmaj).^2); 

% Plot using ax1 handle, saved above,to save this graph
 
% on top of the previous graph.
 
v=axis;
 
h1=line(y_j,fy_j ,'Color','r','Parent',ax1);
 
set(h1,'linestyle','--','color','r','linewidth',2)
 
h1=line([cutoff cutoff]',[0 fy_cutoff]','Color','b','Parent',ax1);
 
set(h1,'linestyle','-.','color','b','linewidth',3)
 
h2=line([cutoff cutoff]',[fy_cutoff v(4)]','Color','b','Parent',ax1);
 
set(h2,'linestyle','-.','color','b','linewidth',3)
 
s=sprintf('Case Study 14.2.1, %2.0f samples untransformed',n);
 
title(s,'FontSize',22)
 
figure(gcf);pause
 

14.2.1 A Small-Sample Sign Test, Use the exact binomial 

Case Study 14.2.2 
% LMcs140202_4th.m 

http:cutoff=7.39
http:y_j=6.35:0.01:8.05
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EEOS 601 
Prob. & Applied Statistics 
Week 7, P. 53 of 72 

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
 
% page 806. A case study solved by the sign test
 
% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 11/16/10, 3/1/11
 
% 

D=[4.8 4.0 3.8 4.3 3.9 4.6 3.1 3.7];
 
expected=3.55;
 
[H,P,CI,STATS] = ttest(D,expected,0.05,'both');
 
fprintf('\nThe one-sample t test 2-tailed p=%6.4g\n',P);
 
fprintf(...
 
'The mean caffeine = %4.2f (g/100g residue) with 95%% CI: [%4.2f %4.2f]\n',...

    mean(D), CI(1),CI(2)); 
[p,h,stats] = signtest(D,expected,0.05,'method','exact'); 
fprintf('The sign test statistic is %4.1f with exact 2-tailed p=%6.4g\n',stats.sign,p); 
[p,h,stats] = signtest(D,expected,'method','approximate'); 
fprintf('The sign test z=%5.3f with approximate 2-tailed p=%6.4g\n',stats.zval,p); 
[P,H,STATS] = signrank(D,expected,'alpha',0.05,'method','exact'); 
fprintf(... 
'The sign rank test statistic is %4.1f with exact 2-tailed p=%6.4g\n',...
 STATS.signedrank,P);
 
[P,H,STATS] = signrank(D,expected,'alpha',0.05,'method','approximate');
 
fprintf('The sign rank test approximate 2-tailed p=%6.4g for z=%6.4f\n',P,STATS.zval);
 

% Plot histogram and check for symmetry
 
binsize=.2;  % Needed in order to properly scale the normal pdf
 
edges=3:binsize:5;
 
% hist(D);
 
[N,BIN] = histc(D,edges);
 
bar(edges,N,'histc')
 
axis([2.9 5.1 0 2.1])
 
set(get(gca,'Children'),'FaceColor',[.8 .8 1]);
 
xlabel('Caffeine Residue (g/100 g dry weight)','FontSize',20);
 
ylabel('Number of Cases','FontSize',20);
 
ax1=gca;
 
set(ax1,'Ytick',[0:2],'Xtick',[3:0.2:5])
 
figure(gcf);pause
 
% Superimpose the normal probability pdf on a histogram of differences.
 
% The normal probability equation is provided on p. 293
 
% This is for mean 0, and unit standard
 
% deviation. The more general equation (Legendre & Legendre, 1998 p. 147) is:
 
% f(y_j)=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)/sigma_j)^2);
 
n=length(D);
 
mu_j=mean(D);
 
sigma_j=std(D); % sigmaj is the standard deviation; = 1 after Z transform
 
y_j=2.9:0.01:5.1;
 
fy_j=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)./sigma_j).^2);
 

http:expected=3.55
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fy_j=n*binsize*fy_j;
 
cutoff=expected;
 
fy_cutoff=n*binsize/(sqrt(2*pi)*sigma_j)*exp(-1/2*((cutoff-mu_j)./sigma_j).^2);
 
% will properly scale the height of the pdf
 
% fyj=1/(sqrt(2*pi)*sigmaj)*exp(-1/2*((y-muj)/sigmaj).^2); 

% Plot using ax1 handle, saved above,to save this graph
 
% on top of the previous graph.
 
v=axis;
 
h1=line(y_j,fy_j ,'Color','r','Parent',ax1);
 
set(h1,'linestyle','--','color','r','linewidth',2)
 
h1=line([cutoff cutoff]',[0 fy_cutoff]','Color','b','Parent',ax1);
 
set(h1,'linestyle','-.','color','b','linewidth',3)
 
h2=line([cutoff cutoff]',[fy_cutoff v(4)]','Color','b','Parent',ax1);
 
set(h2,'linestyle','-.','color','b','linewidth',3)
 
s=sprintf('Case Study 14.2.2, %2.0f samples untransformed',n);
 
title(s,'FontSize',22)
 
figure(gcf);pause
 

14.2.2 Using the Sign Test for Paired Data (p. 807) 

Case Study 14.2.3 
% LMcs140203_4th.m 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% page 807. A case study solved by the sign test 
% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 11/16/10, 3/1/11 
% 
D=[15 13;12 8;12 12.5;14 12;13 12;13 12.5;13 12.5;12 14;12.5 12;12 11;

 12.5 10]; 
[p,h,stats] = signtest(D(:,2),D(:,1),0.05,'method','exact'); 
fprintf('\nThe sign test statistic is %4.1f with exact 1-tailed p=%6.4g\n',stats.sign,p/2); 
[p,h,stats] = signtest(D(:,2),D(:,1),'method','approximate'); 
fprintf('The sign test z=%5.3f with approximate 1-tailed p=%6.4g\n',stats.zval,p/2); 
% It is a 1-tailed p test to the left since the expectation is that mean 
% circulation time is reduced by 4 months of cyclandelate. 
[H,P,CI,STATS] = ttest(D(:,2),D(:,1),0.05,'left'); 
fprintf('The t statistic was %5.3f with %2.0f df.\n',STATS.tstat,STATS.df) 
fprintf('The paired t test 1-tailed p=%6.4g\n',P); 
fprintf(... 
'The mean circulation time = %4.2f secs with 95%% CI: [%4.2f %4.2f]\n',...
    mean(D(:,2)-D(:,1)), CI(1),CI(2)); 
[P,H,STATS] = signrank(D(:,2),D(:,1),'alpha',0.05,'method','exact'); 
fprintf(... 
'The sign rank test statistic is %4.1f with exact 1-tailed p=%6.4g\n',...
 STATS.signedrank,P/2); 
[P,H,STATS] = signrank(D(:,2),D(:,1),'alpha',0.05,'method','approximate'); 

http:df.\n',STATS.tstat,STATS.df
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fprintf('The sign rank test approximate 1-tailed p=%6.4g for z=%6.4f\n',P/2,STATS.zval);
 

% Plot histogram and check for symmetry
 
binsize=.5;  % Needed in order to properly scale the normal pdf
 
edges=-4:binsize:2.5;
 
% hist(D);
 
[N,BIN] = histc(D(:,2)-D(:,1),edges);
 
bar(edges,N,'histc')
 
axis([-4.1 2.6 0 3.3])
 
set(get(gca,'Children'),'FaceColor',[.8 .8 1]);
 
xlabel('''After-Before'' Mean Circulation Time (secs)','FontSize',20);
 
ylabel('Number of Cases','FontSize',20);
 
ax1=gca;
 
set(ax1,'Ytick',[0:3],'Xtick',[-4:0.5:2.5])
 
figure(gcf);pause
 
% Superimpose the normal probability pdf on a histogram of differences.
 
% The normal probability equation is provided on p. 293
 
% This is for mean 0, and unit standard
 
% deviation. The more general equation (Legendre & Legendre, 1998 p. 147) is:
 
% f(y_j)=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)/sigma_j)^2);
 
[n,c]=size(D);
 
mu_j=mean(D(:,2)-D(:,1));
 
sigma_j=std(D(:,2)-D(:,1)); % sigmaj is the standard deviation; = 1 after Z transform
 
y_j=-4.1:0.01:2.6;
 
fy_j=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)./sigma_j).^2);
 
fy_j=n*binsize*fy_j;
 
cutoff=0;
 
fy_cutoff=n*binsize/(sqrt(2*pi)*sigma_j)*exp(-1/2*((cutoff-mu_j)./sigma_j).^2);
 
% will properly scale the height of the pdf
 
% fyj=1/(sqrt(2*pi)*sigmaj)*exp(-1/2*((y-muj)/sigmaj).^2); 

% Plot using ax1 handle, saved above,to save this graph
 
% on top of the previous graph.
 
v=axis;
 
h1=line(y_j,fy_j ,'Color','r','Parent',ax1);
 
set(h1,'linestyle','--','color','r','linewidth',2)
 
h1=line([cutoff cutoff]',[0 fy_cutoff]','Color','b','Parent',ax1);
 
set(h1,'linestyle','-.','color','b','linewidth',3)
 
h2=line([cutoff cutoff]',[fy_cutoff v(4)]','Color','b','Parent',ax1);
 
set(h2,'linestyle','-.','color','b','linewidth',3)
 
s=sprintf('Case Study 14.2.2, %2.0f samples untransformed',n);
 
title(s,'FontSize',22)
 
figure(gcf);pause
 

Questions p 809-810 
14.3 WILCOXON TESTS 

14.3.1 Testing H : µ=µo o 
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Theorem 14.3.1 

w14.3.2 Calculating p (w) 

W14.3.3 Tables of the cdf, F (w) 

Case Study 14.3.1 Swell sharks 
% LMcs140301_4th.m 
% Case Study 14.3.1 from 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% page 815. A case study using Wilcoxon signed rank test 
% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 11/16/10, 3/1/11 
% 
D=[13.32 13.06 14.02 11.86 13.58 13.77 13.51 14.42 14.44 15.43]; 
expected=14.6; 
[P,H,STATS] = signrank(D,expected,'alpha',0.05,'method','exact'); 
fprintf(... 
'\nThe signed rank test statistic is %4.1f with exact 2-tailed p=%6.4g\n',...
 STATS.signedrank,P); 
[P,H,STATS] = signrank(D,expected,'alpha',0.05,'method','approximate'); 
fprintf('The signed rank test approximate 2-tailed p=%6.4g for z=%6.4f\n',P,STATS.zval); 
[H,P,CI,STATS] = ttest(D,expected,0.05,'both'); 
fprintf('The one-sample t test 2-tailed p=%6.4g\n',P); 
fprintf(... 
'The mean TL/HDl = %4.2f with 95%% CI: [%4.2f %4.2f]\n',...
    mean(D), CI(1),CI(2)); 
[p,h,stats] = signtest(D,expected,0.05,'method','exact'); 
fprintf('The sign test statistic is %4.1f with exact 2-tailed p=%6.4g\n',stats.sign,p); 
[p,h,stats] = signtest(D,expected,'method','approximate'); 
fprintf('The sign test z=%5.3f with approximate 2-tailed p=%6.4g\n',stats.zval,p); 

% Plot histogram and check for symmetry
 
binsize=0.25;  % Needed in order to properly scale the normal pdf
 
edges=11:binsize:16;
 
% hist(D);
 
[N,BIN] = histc(D,edges);
 
bar(edges,N,'histc')
 
axis([10.9 16.1 0 max(N)+0.2])
 
set(get(gca,'Children'),'FaceColor',[.8 .8 1]);
 
xlabel('TL/HDl','FontSize',20);
 
ylabel('Number of Cases','FontSize',20);
 
ax1=gca;
 
set(ax1,'Ytick',[0:max(N)],'Xtick',edges)
 
figure(gcf);pause
 
% Superimpose the normal probability pdf on a histogram of differences.
 
% The normal probability equation is provided on p. 293
 
% This is for mean 0, and unit standard
 

http:binsize=0.25
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% deviation. The more general equation (Legendre & Legendre, 1998 p. 147) is:
 
% f(y_j)=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)/sigma_j)^2);
 
n=length(D);
 
mu_j=mean(D);
 
sigma_j=std(D); % sigmaj is the standard deviation; = 1 after Z transform
 
y_j=10.9:0.01:16.1;
 
fy_j=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)./sigma_j).^2);
 
fy_j=n*binsize*fy_j;
 
cutoff=expected;
 
fy_cutoff=n*binsize/(sqrt(2*pi)*sigma_j)*exp(-1/2*((cutoff-mu_j)./sigma_j).^2);
 
% will properly scale the height of the pdf
 
% fyj=1/(sqrt(2*pi)*sigmaj)*exp(-1/2*((y-muj)/sigmaj).^2); 

% Plot using ax1 handle, saved above,to save this graph
 
% on top of the previous graph.
 
v=axis;
 
h1=line(y_j,fy_j ,'Color','r','Parent',ax1);
 
set(h1,'linestyle','--','color','r','linewidth',2)
 
h1=line([cutoff cutoff]',[0 fy_cutoff]','Color','b','Parent',ax1);
 
set(h1,'linestyle','-.','color','b','linewidth',3)
 
h2=line([cutoff cutoff]',[fy_cutoff v(4)]','Color','b','Parent',ax1);
 
set(h2,'linestyle','-.','color','b','linewidth',3)
 
s=sprintf('Case Study 14.3.1, %2.0f samples untransformed',n);
 
title(s,'FontSize',22)
 
figure(gcf);pause
 

Questions p 816-817 
14.3.4 A large sample Wilcoxon signed rank test 

Theorem 14.3.2 
Theorem 14.3.3 

Case Study 14.3.2 Heroine addiction 
% LMcs140302_4th.m 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% page 819. A case study using Wilcoxon signed rank test 
% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 12/12/10, 3/1/11 
% 
D=[51 53 43 36 55 55 39 43 45 27 21 26 22 43]; 
expected=28; 
[P,H,STATS] = signrank(D,expected,'alpha',0.05,'method','exact'); 
fprintf(... 
'\nThe signed rank test statistic is %4.1f with exact 1-tailed p=%6.4g\n',...
 STATS.signedrank,P/2); 
[P,H,STATS] = signrank(D,expected,'alpha',0.05,'method','approximate'); 
fprintf('The signed rank test approximate 1-tailed p=%6.4g for z=%6.4f\n',P/2,STATS.zval); 
[H,P,CI,STATS] = ttest(D,expected,0.05,'right'); 
fprintf('The one-sample t test 1-tailed p=%6.4g\n',P); 
fprintf(... 
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'The mean Q Score = %4.2f with 95%% CI: [%4.2f %4.2f]\n',...
    mean(D), CI(1),CI(2)); 
[p,h,stats] = signtest(D,expected,0.05,'method','exact'); 
fprintf('The sign test statistic is %4.1f with exact 1-tailed p=%6.4g\n',stats.sign,p/2); 
[p,h,stats] = signtest(D,expected,'method','approximate'); 
fprintf('The sign test z=%5.3f with approximate 1-tailed p=%6.4g\n',stats.zval,p/2); 

% Plot histogram and check for symmetry
 
binsize=2;  % Needed in order to properly scale the normal pdf
 
edges=20:binsize:56;
 
% hist(D);
 
[N,BIN] = histc(D,edges);
 
bar(edges,N,'histc')
 
axis([19.5 56.5 0 max(N)+0.2])
 
set(get(gca,'Children'),'FaceColor',[.8 .8 1]);
 
xlabel('Q Score','FontSize',20);
 
ylabel('Number of Cases','FontSize',20);
 
ax1=gca;
 
set(ax1,'Ytick',[0:max(N)],'Xtick',edges)
 
figure(gcf);pause
 
% Superimpose the normal probability pdf on a histogram of differences.
 
% The normal probability equation is provided on p. 293
 
% This is for mean 0, and unit standard
 
% deviation. The more general equation (Legendre & Legendre, 1998 p. 147) is:
 
% f(y_j)=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)/sigma_j)^2);
 
n=length(D);
 
mu_j=mean(D);
 
sigma_j=std(D); % sigmaj is the standard deviation; = 1 after Z transform
 
y_j=19.5:0.01:56.5;
 
fy_j=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)./sigma_j).^2);
 
fy_j=n*binsize*fy_j;
 
cutoff=expected;
 
fy_cutoff=n*binsize/(sqrt(2*pi)*sigma_j)*exp(-1/2*((cutoff-mu_j)./sigma_j).^2);
 
% will properly scale the height of the pdf
 
% fyj=1/(sqrt(2*pi)*sigmaj)*exp(-1/2*((y-muj)/sigmaj).^2); 

% Plot using ax1 handle, saved above,to save this graph
 
% on top of the previous graph.
 
v=axis;
 
h1=line(y_j,fy_j ,'Color','r','Parent',ax1);
 
set(h1,'linestyle','--','color','r','linewidth',2)
 
h1=line([cutoff cutoff]',[0 fy_cutoff]','Color','b','Parent',ax1);
 
set(h1,'linestyle','-.','color','b','linewidth',3)
 
h2=line([cutoff cutoff]',[fy_cutoff v(4)]','Color','b','Parent',ax1);
 
set(h2,'linestyle','-.','color','b','linewidth',3)
 
s=sprintf('Case Study 14.3.2, %2.0f samples untransformed',n);
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title(s,'FontSize',22) 
figure(gcf);pause 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% page 819. A case study using Wilcoxon signed rank test 
% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 12/12/10 
% 
D=[51 53 43 36 55 55 39 43 45 27 21 26 22 43]; 
hist(D-28);figure(gcf);pause 
hist(log(D)-log(28));figure(gcf);pause 
M=28; 
[H,P,CI,STATS] = ttest(D,M,0.05,'right'); 
fprintf('\nThe paired t test 1-tailed p=%6.4g\n',P); 
fprintf('The mean Q score = %4.2f with 95%% CI: [%4.2f %4.2f]\n',...
    mean(D), CI(1),CI(2)); 
[H,P,CI,STATS] = ttest(log(D),log(M),0.05,'right'); 
fprintf('\nThe paired t test of log transform 1-tailed p=%6.4g\n',P); 
[p,h,stats] = signtest(D,M,0.05,'method','exact'); 
fprintf('The sign test exact 1-tailed p=%6.4g\n',p/2); 
[p,h,stats] = signtest(D,M,'method','approximate'); 
fprintf('The sign test approximate 1-tailed p=%6.4g\n',p/2); 
[P,H,STATS] = signrank(D,M,'alpha',0.05,'method','exact'); 
fprintf('The sign rank test exact 1-tailed p=%6.4g\n',P/2); 
[P,H,STATS] = signrank(D,M,'alpha',0.05,'method','approximate'); 
fprintf('The sign rank test approximate 1-tailed p=%6.4g\n',P/2); 

14.3.5 Testing H : µ  = 0 (Paired data) o D 

Case Study 14.3.3 
% LMcs140303_4th.m 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% page 821. A case study solved by the sign and Wilcoxon signed rank 
% test 
% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 3/1/11 
% 
D=[4.67 4.36;3.5 3.64;3.5 4;3.88 3.26;3.94 4.06;4.88 4.58;4 3.52

 4.4 3.66;4.41 4.43;4.11 4.28;3.45 4.25;4.29 4;4.25 5;4.18 3.85
 4.65 4.18]; 

expected=0; 
[P,H,STATS] = signrank(D(:,1),D(:,2),'alpha',0.05,'method','exact'); 
fprintf(... 
'\nThe signed rank test statistic is %4.1f with exact 2-tailed p=%6.4g\n',...
 STATS.signedrank,P); 
[P,H,STATS] = signrank(D(:,1),D(:,2),'alpha',0.05,'method','approximate'); 
fprintf('The signed rank test approximate 2-tailed p=%6.4g for z=%6.4f\n',P,STATS.zval); 
[H,P,CI,STATS] = ttest(D(:,1),D(:,2),0.05,'both'); 
fprintf('The paired t test 2-tailed p=%6.4g\n',P); 

http:4.25;4.29
http:4.28;3.45
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fprintf(...
 
'The mean difference in ratings (In-Class - Online) = %4.2f with 95%% CI: [%4.2f %4.2f]\n',...

    mean(D(:,1)-D(:,2)), CI(1),CI(2)); 
[p,h,stats] = signtest(D(:,1),D(:,2),0.05,'method','exact'); 
fprintf('The sign test statistic is %4.1f with exact 2-tailed p=%6.4g\n',stats.sign,p); 
[p,h,stats] = signtest(D(:,1),D(:,2),'method','approximate'); 
fprintf('The sign test z=%5.3f with approximate 2-tailed p=%6.4g\n',stats.zval,p); 

% Plot histogram and check for symmetry
 
binsize=.2;  % Needed in order to properly scale the normal pdf
 
edges=-.8:binsize:.8;
 
% hist(D);
 
[N,BIN] = histc(D(:,1)-D(:,2),edges);
 
bar(edges,N,'histc')
 
axis([-.82 .82 0 max(N)+0.2])
 
set(get(gca,'Children'),'FaceColor',[.8 .8 1]);
 
xlabel('Difference in evaluations, In-Class - Online','FontSize',20);
 
ylabel('Number of Cases','FontSize',20);
 
ax1=gca;
 
set(ax1,'Ytick',[0:max(N)],'Xtick',edges)
 
figure(gcf);pause
 
% Superimpose the normal probability pdf on a histogram of differences.
 
% The normal probability equation is provided on p. 293
 
% This is for mean 0, and unit standard
 
% deviation. The more general equation (Legendre & Legendre, 1998 p. 147) is:
 
% f(y_j)=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)/sigma_j)^2);
 
n=length(D(:,1)-D(:,2));
 
mu_j=mean(D(:,1)-D(:,2));
 
sigma_j=std(D(:,1)-D(:,2)); % sigmaj is the standard deviation; = 1 after Z transform
 
y_j=-.82:0.01:.82;
 
fy_j=1/(sqrt(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)./sigma_j).^2);
 
fy_j=n*binsize*fy_j;
 
cutoff=expected;
 
fy_cutoff=n*binsize/(sqrt(2*pi)*sigma_j)*exp(-1/2*((cutoff-mu_j)./sigma_j).^2);
 
% will properly scale the height of the pdf
 
% fyj=1/(sqrt(2*pi)*sigmaj)*exp(-1/2*((y-muj)/sigmaj).^2); 

% Plot using ax1 handle, saved above,to save this graph
 
% on top of the previous graph.
 
v=axis;
 
h1=line(y_j,fy_j ,'Color','r','Parent',ax1);
 
set(h1,'linestyle','--','color','r','linewidth',2)
 
h1=line([cutoff cutoff]',[0 fy_cutoff]','Color','b','Parent',ax1);
 
set(h1,'linestyle','-.','color','b','linewidth',3)
 
h2=line([cutoff cutoff]',[fy_cutoff v(4)]','Color','b','Parent',ax1);
 
set(h2,'linestyle','-.','color','b','linewidth',3)
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s=sprintf('Case Study 14.3.3, %2.0f samples untransformed',n);
 
title(s,'FontSize',22)
 
figure(gcf);pause
 

14.3.6 Testing H : µ  = µ  (The Wilcoxon Rank Sum Test) o X Y 

Theorem 14.3.4 

Case Study 14.3.4 
% LMcs140304_4th.m 
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition 
% Written by Eugene.Gallagher@umb.edu; written 11/16/10; revised 11/23/10 
% Calls Matlab's ranksum.m and Gallagher's Wilcoxranksum.m 

AL=[177 177 165 172 172 179 163 175 166 182 177 168 179 177]'; 
NL=[166 154 159 168 174 174 177 167 165 161 164 161]'; 
boxplot([AL;NL],[ones(length(AL),1);zeros(length(NL),1)]);figure(gcf) 
[P,H,STATS] = ranksum(AL,NL,'alpha',0.05,'method','exact'); 
fprintf(...

 '\n\nUsing Matlab''s ranksum, exact p=%6.4f, Rank sum = %4.1f\n',P,...
    STATS.ranksum) 
if H==1
    fprintf('Reject Ho\n\n') 
else
    fprintf('Fail to reject Ho\n\n') 
end 
[pvalue,W,U]=Wilcoxranksum(AL,NL,1); 
fprintf('Using Gallagher''s Wilcoxranksum, exact p=%6.4f;\n', P) 
fprintf('Wilcoxon''s W = %4.1f; Mann-Whitney U=%4.1f;\n',W,U) 
[P,H,STATS] = ranksum(AL,NL,'alpha',0.05,'method','approximate'); 
fprintf('\nUsing Matlab''s ranksum, large sample p=%6.4f;\n',P) 
fprintf('Rank sum = %4.1f; z-value=%5.2f\n',STATS.ranksum,STATS.zval) 
if H==1
    fprintf('Reject Ho\n\n') 
else
    fprintf('Fail to reject Ho\n\n') 
end 
[pvalue,W,U,Wstar]=Wilcoxranksum(AL,NL,0); 
fprintf('Using Gallagher''s Wilcoxranksum, large sample p=%6.4f;\n',P) 
fprintf('Wilcoxon''s W = %4.1f; Mann-Whitney U=%4.1f; z-value=%5.2f\n',...
    W,U,Wstar) 

function [pvalue,W,U,Wstar]=Wilcoxranksum(X,Y,Ex) 
% Wilcoxon rank-sum test 
% [pvalue,W,U,Wstar]=Wilcoxranksum(X,Y,Ex) 
% Tests the null hypothesis that X & Y have the same pdf. 
% Input: X,Y two samples,Ex~=0 indicates do an exact test. 
% Output: pvalue: pvalue, 2-sided p value for large sample approximation N(0,1) distribution 
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% W=Wilcoxon rank sum statistic
 
% U=Mann-Whitney U statistic
 
% Wstar=z value for asymptotic large sample approximation
 
% Calls Wilcoxrsexact
 
% Written by Eugene.Gallagher@umb.edu
 
% Revised 11/14/10
 

X=X(:);Y=Y(:);
 
n=length(X);
 
m=length(Y);
 
% Rank the X&Y values from smallest to largest, assigning average ranks to ties.
 
[T,R,ind]=ties([X;Y]);T=T'; % calls Gallagher's ties.m
 
% Find sum of ranks of the smaller sample;
 
if n<m;

    W=sum(R(1:n)); 
else
    W=sum(R(n+1:n+m));

 n=m; % Expected value & variance equastions assume n is the size of the smaller group.
    m=length(X); 
end 
U=W-n*(n+1)/2; % Mann-Whitney U statistic 
largesample=logical(1); 
if nargin>2

 if Ex~=0

        largesample=logical(0);


 end 
end 
if nargin>2 & ~largesample
  ncomb=nchoosek(n+m,n);  

  if ncomb>1e6

      t=sprintf(...


 '%d combinations, T=%d min (1e6 combs take 1 min on p4)\n',...

          ncomb,round(ncomb/1e6)); 

      toomany=menu(t,'Stop','Continue');

      if toomany==1

         largesample=logical(1);fprintf('Large sample approximation for 2-tailed p\n');


 end

 end

  if ~largesample

      pexuptail=wilcoxrsexact(n,m,W,R);

      if pexuptail<=0.5

          pvalue=2*pexuptail;


 else

          pvalue=2*(1-pexuptail);


 end
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 end 
end 
if largesample
    % Large sample approximation;% Hollander & Wolfe p. 108

    EoW=(n*(m+n+1))/2;

    % Calculate the variance of W, without ties and with ties.

    if isempty(T)  % Size of tied groups from ties.m

        VaroW=(m*n*(m+n+1))/12;


 else

        VaroW=(m*n)/12*(m+n+1-(sum((T-1).*T.*(T+1)))/((m+n)*(m+n-1)));

 end
    Wstar=(W-(n*(m+n+1)/2))/sqrt(VaroW);  % Without ties, tends to an asymptotic N(0,1) 
distribution.
    % Find the 2-tailedprobability of Wstar from the standard normal distributioin
    pvalue=erfc(abs(Wstar)/sqrt(2));
    % Note that the exact p values are tabulated, and an exact test, even in the presence of ties
    % can be performed, see pp. 113-116 in Hollander & Wolfe. 
end 

function pexuptail=Wilcoxrsexact(n,m,W,ranks);
 
% Exact upper tail p values for Wilcoxon Rank Sum statistic
 
% function pexuptail=Wilcoxrsexact(n,m,W,ranks);
 
% Borrows shamelessly from Strauss's combvals.m
 
% Note that Matlab's nchoosek will also generate the list
 
% of combinations. This program doesn't generate the full
 
% matrix of combinations, but calculates the test stat only.
 
% Input: n size of smaller group
 
% m size of larger group
 
% W Wilcoxon signed rank statistic
 
% ranks, actual ranks of n+m items if there are ties present.
 
% Written by E. Gallagher, Eugene.Gallagher@umb.edu
 
% Help file for Strauss' combvals:
 
% COMBVALS: Generates the combinations of n integers taken r at a time.  The
 
% number of such combinations is given by function nc=combin().  

% Usage: c = combvals(n,r)
 
% n = number of integers (1:n) to be combined.
 
% r = number to be taken at a time (0 < r <= n).
 
% ------------------------------------------------------
% c = [nc x r] matrix of combinations.
 

% Based on ACM Algorithm 94, J. Kurtzberg, Comm. ACM, June 1962.
 
% RE Strauss, 12/18/98
 

% An exact conditional distribution with ties follows Hollander & Wolfe p. 115
 
if nargin<4
    ranks=1:n+m; 
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    notiedr=logical(1); 
else
    if length(ranks)<n+m

 error(...

            sprintf(...


 'Number of ranks (%d) doesn''t match n+m (%d)\n',...

            length(ranks),n+m));


 end
    ranks=sort(ranks);
    notiedr=logical(0);  % could do a check to see if there really are ties with ties.m 
end
 
ranks=ranks(:);
 
fudranks=flipud(ranks);    

N=n+m;
 
r = n;
 
ncomb = nchoosek(N,r);  % Matlab's built-in combination function.
 
if W>=n*(n+m+1)-W;

    uppertail=logical(1); 
else
    W=n*(n+m+1)-W;
    uppertail=logical(0); 
end 
if W>sum(fudranks(1:n))
    if uppertail
        error('W impossibly large')

 else
        error('W impossibly small')

 end 
elseif W==sum(fudranks(1:n)) & notiedr
    if uppertail
        pexuptail=1/ncomb;

 else
        pexuptail=(ncomb-1)/ncomb;


 end

 return
 

end
  % Strauss's combval lists combinations in c in lexicographic
  % order, thus the critical values for sum(C) are larger than
  % observed W. We can speed up the process by using
  % Wstar=min(W,n*(m+n+1)-W) and exiting loop when Wstar fails
  % to be less than critical value
  if ncomb>1e6
      t=sprintf(...


 '%d combinations, T=%d min (1e6 combs take 1 min on p4)\n',...

          ncomb,round(ncomb/1e6)); 
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      toomany=menu(t,'Stop','Continue');

      if toomany==1


 return

 end

 end
  % c = zeros(ncomb,r);  % Don't need to store values.
  Tally=0;
  j = zeros(1,r);

  for i = 1:ncomb
 b = 1;

    endflag = 0;
    while(~endflag)

 if (j(b)>=b)

        a = j(b)-b-1;

        for l = 1:b


 j(l) = l+a;

 end;


        endflag = 1;  

else

 if (b==r)


          for b = 1:r

            j(b) = N-r-1+b;


 end;

          endflag = 1;


 end;

 b = b+1;


 end;

 end;


    % c(i,:) = N-j(r:-1:1);

    c=N-j(r:-1:1);

    if sum(ranks(c))>=W

        Tally=Tally+1;

 end
 end;
  pexuptail=Tally/ncomb;
  if ~uppertail
      pexuptail=1-pexuptail;
 end 

function [T,R,ind]=ties(A)
 
% format: [T,R,ind]=ties(A)
 
% a function to return a row vector of tied groups, T,
 
% Ranks R (including average ranks) and indices of tied elements
 
% needed to calculate variance of S using Kendall's
 
% variance formula & Spearman's r.
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% input: A is a row or column vector 
% T: a row vector containing number of members of tied groups 
% T=0 if there are no tied groups 
% sum(T) is equal to the number of tied elements. 
% each element of T equals the number in each tied group 
% tied groups are sorted in ascending order. 
% Examples: A=[1 2 3];[T,R,ind]=ties(A)=>  T=0,R=[1 2 3],ind=[] 
% A=[1 2 3 1];  T=2,R=[1.5 3 4 1.5],ind=[1 4] 
% A=[2 1 2 3 1 2];  T=[2 3],R=[4 1.5 4 6 1.5 4], 
% ind=[5 2 3 1 6] 
% A=[2 1 2 3 3 1 2];  T=[2 3 2],R=[4 1.5 4 6.5 6.5 1.5 4] 
% ind=[6 2 3 1 7 4 5] 
% R (Row vec)=numerical rankings of A with ave. ranks for ties 
% ind: indices of tied elements, sorted by rank; sorted tied elements=A(ind); 
% ties.m is used in Kendall.m as T=ties(A), and Spear.m 
% written by E. Gallagher, Environmental Sciences Program 
% UMASS/Boston, Email: Eugene.Gallagher@umb.edu 
% written: 6/16/93, revised 6/17/93 
[r,c]=size(A); 
if r>c
     A=A'; % change to row vector 
end 
[Asort,k]=sort(A); 
iota=1:length(A);iota=iota'; 
R(k)=iota; 
index=[k' iota]; 
ind=[]; 
CDA=[~diff(Asort) 0]; 
min1=min(find(CDA==1)); 
if isempty(min1)

 T=0;
 return 

end 
i=0; 
[rw,cl]=size(CDA); 
T=zeros(size(rw,cl)); 
while ~isempty(min1)
     min0=min(find(CDA==0));

 if min0<min1
           CDA(min0:min1-1)=[];
           index(min0:min1-1,:)=[];

 else
 i=i+1;

       T(i)=min0-min1+1;
       CDA(min1:min0)=[]; 
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       ind=[ind index(min1:min0,1)'];
       R(1,index(min1:min0))=ones(1,T(i))*sum(index(min1:min0,2))/T(i);
       index(min1:min0,:)=[];

 end
     min1=min(find(CDA==1)); 
end 
T(find(T==0))=[]; 

Questions p 825-826 
14.4 The KRUSKAL-WALLIS TEST 

Theorem 14.4.1 

Case Study 14.4.1 Draft lottery 
% LMcs140401_4th.m 
% Case Study 14.4.1 
% 1969 draft lottery 
% From Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th ed 
% Written by Eugene.Gallagher@umb.edu 12/7/2010 
% Are the data random? 
DATA=[1 305 086 108 032 330 249 093 111 225 359 019 129 
2 159 144 029 271 298 228 350 045 161 125 034 328 
3 251 297 267 083 040 301 115 261 049 244 348 157 
4 215 210 275 081 276 020 279 145 232 202 266 165 
5 101 214 293 269 364 028 188 054 082 024 310 056 
6 224 347 139 253 155 110 327 114 006 087 076 010 
7 306 091 122 147 035 085 050 168 008 234 051 012 
8 199 181 213 312 321 366 013 048 184 283 097 105 
9 194 338 317 219 197 335 277 106 263 342 080 043 
10 325 216 323 218 065 206 284 021 071 220 282 041 
11 329 150 136 014 037 134 248 324 158 237 046 039 
12 221 068 300 346 133 272 015 142 242 072 066 314 
13 318 152 259 124 295 069 042 307 175 138 126 163 
14 238 004 354 231 178 356 331 198 001 294 127 026 
15 017 089 169 273 130 180 322 102 113 171 131 320 
16 121 212 166 148 055 274 120 044 207 254 107 096 
17 235 189 033 260 112 073 098 154 255 288 143 304 
18 140 292 332 090 278 341 190 141 246 005 146 128 
19 058 025 200 336 075 104 227 311 177 241 203 240 
20 280 302 239 345 183 360 187 344 063 192 185 135 
21 186 363 334 062 250 060 027 291 204 243 156 070 
22 337 290 265 316 326 247 153 339 160 117 009 053 
23 118 057 256 252 319 109 172 116 119 201 182 162 
24 059 236 258 002 031 358 023 036 195 196 230 095 
25 052 179 343 351 361 137 067 286 149 176 132 084 
26 092 365 170 340 357 022 303 245 018 007 309 173 
27 355 205 268 074 296 064 289 352 233 264 047 078 
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28 077 299 223 262 308 222 088 167 257 094 281 123
 
29 349 285 362 191 226 353 270 061 151 229 099 016
 
30 164 NaN 217 208 103 209 287 333 315 038 174 003
 
31 211 NaN 030 NaN 313 NaN 193 011 NaN 079 NaN 100];
 
DATA=DATA(:,2:13);
 
y=DATA(:); % convert the data into columns; drop the NaN elements
 
group=repmat(1:12,31,1);group=group(:);i=~isnan(y);y=y(i);group=group(i);
 
[p,table,stats] = kruskalwallis(y,group)
 
multcompare(stats)
 
% As described on page 829, test the 1st vs. 2nd 6 months.
 
g=group;g(group<=6)=1;g(group>6)=2;
 
[p2,table2,stats2] = kruskalwallis(y,g)
 

Questions p 830-832 
14.5 THE FRIEDMAN TEST 

Theorem 14.5.1 

Case Study 14.5.1 
% LMcs140501_4th.m 
% Case Study 14.5.1 
% Base running example from Hollander & Wolfe 
% From Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th ed 
% Written by Eugene.Gallagher@umb.edu 12/7/2010 
% 
DATA=[5.5 5.55

 5.7 5.75
 5.6 5.5
 5.5 5.4
 5.85 5.7
 5.55 5.6
 5.4 5.35
 5.5 5.35
 5.15 5
 5.8 5.7
 5.2 5.1
 5.55 5.45
 5.35 5.45
 5 4.95
 5.5 5.4
 5.55 5.5
 5.55 5.35
 5.5 5.55
 5.45 5.25
 5.6 5.4
 5.65 5.55
 6.3 6.25]; 

plot(DATA'); 
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ax1=gca;
 
set(ax1,'Xtick',[1 2])
 
set(ax1,'XtickLabel',{'Narrow-Angle','Wide-Angle'}) 


figure(gcf);pause
 
[P,TABLE,STATS]=friedman(DATA);
 

14.6 TESTING FOR RANDOMNESS
 

Case Study 14.6.1 
% LMcs140601_4th.m 
% Uses the resampling toolbox function runs.m 
DATA=... 
[61 53 58 51 52 34 45 52 46 52 37 39 50 38 55 59 57 64 73 46 48 47 40 35 40]'; 
n=length(DATA); 
[H,P,STATS]=runstest(diff(DATA)>0); % This is not the same runs test a 
                                    % Larsen and Marx. Matlab's runs test 
                                    % considers the number of positive and
                                    % negative runs, but L&M's test just
                                    % considers the total N (25) in
                                    % calculating its test statistic. Thus,
                                    % L&M's test assumes no trend. 
% Theorem 14.6.1: 
EW=(2*n-1)/3; 
VarW=(16*n-29)/90; 
Z=(STATS.nruns-EW)/sqrt(VarW) 
if Z>0
    p=1-normcdf(Z); 
else
    p=normcdf(Z); 
end 
fprintf(...
 'With Matlab''s runs test, P(%2.0f runs with %2.0f cases) is %5.3f\n',...

  STATS.nruns,n,P)
 
fprintf(...
 'With Larsen & Marx''s runs test P(%2.0f runs with %2.0f cases) = %5.3f\n',...
  STATS.nruns,n,p) 

% Although undocumented, Matlab is probably using the Wald-Wolfowitz runs 
% test; When I can get access to my stats books with the exact version 
% of the test, I'll check. 

Questions p. 838-841 
14.7 Taking a second look at statistics (comparing parametric and nonparametric 

procedures 
Appendix 14.A.1 Minitab applications 
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