Class 10: Ch 6 & 7

Ch 6: Linear combinations
and multiple comparisons
of means
& Ch7 Simple linear
regression: a model for the
mean

Class 10: 3/9/09 M

EEOS611

Slide 1 Ch 6: Linear combinations and
multiple comparisons of means

& Ch7 Simple linear regression: a model for
the mean

NOTES:

HW 8 due Thus 3/12/09 11 am

Submit as Myname-HW8.doc (or *.rtf)
® Read Chapter 7 Comparisons among several samples

Comment on Chapter 7 conceptual problems in
Blackboard Vista4

Computation Problem 8
> Problem 6.22 A biological basis for homosexuality
» You must use linear contrasts to solve the problem
» You can assume that the contrasts were specified a priori

EEOS611

Slide 2 HW 8 due Thus 3/12/09 11 am

NOTES:

HW 9 due Monday 3/16/09 10 am

Submit as Myname-HW9.doc (or *.rtf)
Read Chapter 8 A closer look at assumptions for
simple linear regression
Comment on Chapter 8 conceptual problems in
Blackboard Vista4

Computation Problem 9
> Problem 7.29 (Sleuth 2nd edition, p. 203) Male displays

EEOS611

Slide 3 HW 9 due Monday 3/16/09 10 am

NOTES:
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Class 10: Ch 6 & 7

Student Presentations

Starting at 10:50 (8 minutes each)

® Seth Sheldon for HW 3
» 2.21 Bumpus’s data: weights of Bumpus’s birds

® Barry Fradkin for HW 4.
» 3.28 Pollen removal

EEOS611

Slide 4 Student Presentations

NOTES:

Ch 6: Linear combinations
and multiple comparisons
of means

EEOS611

Slide S Ch 6: Linear combinations and
multiple comparisons of means

NOTES:

Case Study 6.1.1

Discrimination against the handicapped

® U.S. Vocational Rehabilitation Act of 1973

® 5 Videotaped job inteviews
» Applicant appeared with different handicaps
» Wheelchair
» Crutches
» Hearing impaired
» Amputated
» No handicap

® 70 undergraduates randomly assigned to view
tapes, 14 to each tape.

e Rated on a 1 to 10 applicant qualification scale

EEOS611

Slide 6 Case Study 6.1.1

NOTES:
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Class 10: Ch 6 & 7

Display 6.1

Applicant qualification scores; Control group is in the
middle of the distribution of scores

Display 6.1
i e et i
sismulating e dilferent handicap cnndition

Applicant's Handicup
umg
0 H
i o 2
HIlH g °
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5| |14 |
s |17
S lia .
] ot
)
[P — PPE—— Ne 1 0 [ ) )
Control Crutches Wheelchair
Amputee Hearing
Handicap

Slide 7 Display 6.1

NOTES:

Case 6.01

Summary of Statistical Findings

VALUE
L] A £ A0 1
Strong but not convincing evidence p = 0.03 that —nni—
r t conv e [
. |Convincieg s Y No
#Ave ‘Crutches’ score much higher (1.87 £0.73) | PRI i D

than hearing, using Tukey-Kramer multiple

comparison test (difference in score * %2 95% CI)
oThe gt is fora

between “wheelchair & crutches” vs. “Amputee

& hearing” (t-statistic = 3.19 for linear contrasts), °

with a 1.420.9 higher average score for the k
former group .
> Since this was not a planned comparison, the Scheffé £
multiplier was used to calculate the 95% CI for the .
difference
eNone of the feigned handicaps different from 2
T £ K 2

Is there evidence of a difference?

Qualification

control! (The protected least significant
differences all have 2-sided p > 0.05) o

Slide 8 Case 6.01

NOTES:

N
Control Crutches
Amputee

Wheelchair
Hearing

Handicap

Display 6.4

Wheelchair + Crutches vs. Amputee + hearing

ey 4

eLinear contrasts can be
solved

Slide 9 Display 6.4

NOTES:

> By hand
> With SPSS Oneway
> SPSS GLM (analyze/general linear

modelfunivariate) p—
> the appropriate 95% CI’s for the
average difference can be Q=
calculated o
#SPSS routine Oneway will @

calculate the appropriate p
value using a linear contrast,
but it will not present the Qe
appropriate difference in i
means
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Class 10: Ch 6 & 7

SPSS syntax for Linear contrasts

Display 6.4, p. 149 (1st ed), p. 155 (2nd ed)
If planned, report results as 1.4 £ 0.9
If unplanned report as 1.393 * 1.382 (Sleuth p. 164)

Contrast Results (K Matrk)

Slide 10 SPSS syntax for Linear contrasts

NOTES:

" - Dependent
* DATA order Control Amputee Crutches Hearing Viriable
Wheelchair. ificatic
Contrast Estimate 14
SONEWAY Hypothesized Value 0
escore BY code Difference (Estimate - Hypothesized) 14
©/CONTRAST =0-11-11. Std. Error m
®* This call to GLM does it all. Sig. foo2
95% Confidence Intervalower Bound 5
@UNIANOVA for Difference Upper Bound a9
escore BY code a.Based on the user-specified contrast coefficients (L') matrix: Avg A H
vs Avg CW

©/METHOD = SSTYPE(3)
®/INTERCEPT = INCLUDE

©/LMATRIX = "Avg A H vs Avg C W" code 0 -423 %™
21712 &

#/POSTHOC = code ( TUKEY SCHEFFE LSD

BONFERRONI )
®/CRITERIA = ALPHA(.05)
©/DESIGN = code .

1]

1090 % (1eTAM) —s from

EEOS61

sl 975}
ANOVA 1393

1097

L OLGATHAG) e (1o .522 10 2264

Qualification Scheffé: 1.393 + 3.1705 * 0.436 -» from 0.011 to 2.775
Sum of p=0.0476
Squares df Mean Square F Sig.
Between Groups 30.5 4 76 29 030
Within Groups 173.3 65 27
Total 203.8 69
Contrast Coefficients
Handicap
Contrast  Control Amputee Crutches Hearing Wheelchair
0 -1 1 -1 1

SPSS Oneway doesn’t allow fractional
contrast coefficients; the estimates are 2x
too large, but the p values are ok

Contrast Tests

Value of
Contrast Std. Error t df Sig. (2-tailed)

2.79 .87 3.19 65 .002

Slide 11

NOTES:

Case 6.1.1

Scope of inference, Questions

® Scope of inference
» Differences exist, but the situation is complicated by
having the control having an average in the middle of the
group of 5 treatments
» How should one compare groups?

e Questions:
» How does one perform linear contrasts in SPSS?
= Use Oneway with contrasts
= Use UNIANOVA (GLM) with /Lmatrix

o The p values and ClI's assume planned or a priori contrasts
» What is the Tukey-Kramer procedure?
» What is “the protected least significant difference”?
» When should the Bonferonni & Scheffé procedures be
used?

Slide 12 Case 6.1.1

NOTES:
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Class 10: Ch 6 & 7

Slide 13 Case 6.1.2

Case 6.1.2

Preexisting preferences of fish — a randomized

experiment

® Sexual selection by females
> A. L. Basolo

e Southern platyfish: males don’t produce the .
brightly colored sword tail NOTES:

® Experiment
> 6 pairs of males surgically given artificial plastic sword
tails.

= 1 individual of each pair received a yellow sword
= the other a transparent sword.
» Female fish placed in a compartment

» Amount of 20 minute periods spent courting with the
yellow-sword male recorded.

Slide 14 Display 6.2

Display 6.2 145

Experimental tank alkowing female fivh (o chosse between males

NOTES:

EEOS611

Slide 15 Display 6.3

Display 6.3

Percent of courtship time spent by 84 females with the vellow-sword male;
body sizes of the males are shown in parentheses

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6

(35 mum) (31 nan) (33 mm) (34 mm) (28 mun} (34 mum)
se o oms e omr s NOTES:
4.0 656 62.0 58.1 66.0
68.5 5.0 4
459 6.5 778
80.2 2.4 L]
67.0 55 6l.1
73.0 59 65.1
77 12.0 62
5.0 68.3 L0
T0.0 784
632 9.6
06 892
410 67.3
02 7.5
Avernge: 5641 60,59 67.00 6421 63.34
sD: 9.02 1248 1433 9.41 17.68
n: 16 14 14 9 14
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Class 10: Ch 6 & 7

Sexual preference
Case Study 6.2

oTest for preference for yellow-
sword male (expected

2
]
£
. k4
proportion = 2) g °
H
eTest for differences among H =
pairs ;»’W
eTest for the covariate of male E o
fish weight using a linear s
contrast <
E 16 14 14 =9 14
Pair

Slide 16 Sexual preference

NOTES:

6.1.2

SUMMARY OF FINDINGS

® No evidence that the mean percentage of time
with the yellow-sword male differed from one male
pair to another [P(F; ;5> 0.79)) = 0.56]

® No evidence for linear relationship with male body
size, from a linear contrast

» Contrast available with one-way or general linear model

® Mean proportion (+ 99.9% CI) with yellow sword is
62.4 (£5.9) %

e This study provide convincing evidence that the
mean percentage of time with the yellow tail
exceeds the lack of preference value (50%)

EEOS611

Slide 17 6.1.2

NOTES:

Test for any difference among
pairs
Page 158, Sleuth 2nd edition

Display 6.5

Analysis of the pre-existing preference example: F-test for differences in
mean percent of time with yellow-tailed male and t-test for linear effect of
male body size

ANOVA Fetest

Source of Variation  Sum of Squares  df Mean Square  F Statistic  povalue

Between Male Groups
Within Groups

5 187.78 0.786 0456

Totwl 19.575.43 83
Conclusion: There is no evidence that the group means ave different
for different pairs of males (p-value = 0.36, from ANOVA F-statistic).

EEOS611

Slide 18 Test for any difference among
pairs

NOTES:
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Class 10: Ch 6 & 7

Testing a linear contrast

Another way of handling some types of Analysis
of Covariance: ANCOVA

£ 8

E o, o ° 3 Is there a non zero
P P slope between
28 2 s B proport on of t me
H o S spent w th yellow
5 ¢ ta led sword and
£. male pa r body

g . 2 8 s ze?

Slide 19 Testing a linear contrast

NOTES:

Male body size (mm)

EEOS611

Testing for the male fish weight
effect

% Case0602 m
) BodyS ze [35 31 33 34 28 34]';
g mn mean(BodySize);
. % Subtract the mean from each body length

Dev BodyS.ze repmat(mn,size(BodySize))
% Solution:

Gallagher Matlab code: =

Slide 20 Testing for the male fish weight
effect

NOTES:

t test for linear contrast

>> Dev =
2.5000
-1.5000
0.5000
1.5000
-4.5000
1.5000

% to get integer
% coefficients:
>> C_i=Dev*2
Ci=

woOw=ado

_
Unless the authors)
had previous
theory, the test
should have been
performed 2 ta led )

Conclusion: There is no evidence that the linear assoctation between group
means and male body size has a non-zevo slope { i-sided p-value = 0,32}

Slide 21 t test for linear contrast

NOTES:
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Class 10: Ch 6 & 7

Analysis of swordtail linear
contrast: ONEWAY or GLM?

Syntax posted on Blackboard/Vista 4

Title 'Case 6.1.2 - Sexual preference in
swordtails'.

* This will find the std error but not do the CI
ONEWAY

prop BY code

J/CONTRAST=5-313-93.

* This call to GLM does it all.

UNIANOVA

prop BY code

/METHOD = SSTYPE(3)

/INTERCEPT = INCLUDE

/SAVE = PRED RESID

/EMMEANS = TABLES(OVERALL)

ILMATRIX = "Weight linear contrast" code 5-313-93
JCRITERIA = ALPHA(.05)

/DESIGN = code .

Slide 22 Analysis of swordtail linear
contrast: ONEWAY or GLM?

NOTES:

Contrast Results (K Matrix} Variable
Rl An F test with 1 df
) in numerator is
" | mathematically
. | identical to a ttest
Sig. .648 H
e e T Upuer cound oo with the same df.
for Difference. Upper Bound 839 11
+ st on e s apuitod oo ey e | 1DE || critical value
contrast by weight Test Results H L
De Variable: portion of time with yell s .J-F crltlcal Value-
Sum of
Source  Squares df Mean Square F
Contrast .005 1 .005 210
Error 1.864

Unless the auth }
had previous

theory, the test
should have been
performed 2-tailed |

Canclusion: There is no evidence i the finear associarion benween grony
mieney anal male bely size has o non-seve slope {1-sided p-valie - 0,328

Slide 23

NOTES:

Matlab, Statbox orthpoly.m

Gordon Smyth's <Free> Statbox 4.2
Also includes all of the major probability distributions and includes a nice routine for
Poisson regression.
statsci

htmi>> help orthpoly A

ORTHPOLY ORTHPOLY(X,N) calculates the orthog I polyr ials up
to order N corresponding to vector X.
BodySize=[35 31 33 34 28 34]’;

format rat;orthpoly(BodySize,2) [\ Order_-2

. polynomial. Is
eng = ]J there a
1 5/2 1214/201 Quadratic or
1 -3/2 ~1318/201 curved effect?
1 1/2 -856/201
1 3/2 -22/201
1 -9/2 1004/201
1 3/2 -22/201

Slide 24 Matlab, Statbox orthpoly.m

NOTES:
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Class 10: Ch 6 & 7

Slide 25

coefficients

Linear orthogonal

Quadratic
{ orthogonal

coefficients

/1 NOTES:

Orthogonal: the

- correlation between
coefficient vectors is
zero (right angles)

Testing a quadratic contrast

Slide 26 Testing a quadratic contrast

Quadratic implies a unimodal (humped) pattern

Quadratic contrast
coefficients have

NOTES:

mean zero, are

oo

0 000 famm ©

Proportion of time with yellow-sword male

proportional to X,

and, if orthogonal,
are uncorrelated
with other

contrasts.

T T T
2 0 2

Male body size (mm)

EEOS611

Results for a quadratic contrast

Slide 27 Results for a quadratic contrast

Is there any unimodal pattern in fish length vs.
preference?

UNIANOVA

prop BY code

/METHOD = SSTYPE(3)

/INTERCEPT = INCLUDE

/EMMEANS =
TABLES(OVERALL)

/LMATRIX = "Linear contrast by
weight" code 5-313-93

JLMATRIX = "Quadratic contrast
by weight" code 1214 -1318 -856 -
221004 -22

/CRITERIA = ALPHA(.05)

/DESIGN = code

Contrast

a. Based on the user-specified contrast coefficients (L') matrix: Quadratic
contrast by weight

Contrast Results (K Matrix] . S
Proportion of .
me wih
yellow-sword
male

Contrast Estimate. -36.002
Hypothesized Value 0

Difference (Estimate - Hypothesized) 36,002

Std. Error

94.197
sig 703
95% Confidence Interval  Lower Bound

223624
for Difference Upper Bound

151440

/I'here is little if any

evidence indicating a
unimodal (quadratic)

Mean Square

.004

Test Results
Variable: Proportion of time with yell
Sum of

Source  Squares df

Contrast .004

Error 1.864 78

.024

dimale pattern between
F si female tail preference
oD 0 |and male body length

(p=0.7, quadratic
\ contrast test)
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Class 10: Ch 6 & 7

Slide 28 When will environmental
scientists need to consider linear contrasts?

When will environmental
scientists need to consider

linear contrasts?

Regression lack of fit: a huge, but largely

NOTES:

unrecognized, problem with environmental
regression analyses

EEOS611

Slide 29 Testing for Lack of Fit

Testing for Lack of Fit

This topic will be coveredinde] © °~ = _
eYou must have true replicates o
eExamine scatterplots NOTES :

> Are or quadratic y variables
needed?

oFit linear regression model
> Examine residuals
> Transform data, add quadratic or cubic explanatory
terms if needed

» Add other explanatory terms (Ch 9...)

ePerform lack of fit test
> If LOF significant with linear model, consider tests of
higher order (quadratic & cubic) trends in ANOVA "
model

= Retumn to regression if quadratic or cubic trend found
= LOF could be due to cluster & serial effects
eReport effect size with regression or ANOVA
> Regression slope is still an unbiased estimator of true
slope

i
» Use linear contrast in ANOVA to determine effect size i
(GLM Unianova)

Slide 30 What to do if there is lack of fit!

What to do if there is lack of fit!

® You may still estimate the slope & Y intercept using
regression: OLS regression still provides unbiased

estimators NOTES:

® You can NOT use the variance estimates and p values
based on the error mean square from the OLS linear
regression

e Fit a richer or different model

» Consider testing higher order interaction terms: quadratic & cubic, if
warranted

> Add other explanatory variables

® You may analyze the data as an ANOVA model with linear
contrasts.
> Linear contrasts allows tests for linear trend, quadratic trend (hump

shaped), cubic trends (S-shaped) and higher order polynomials
» The variance estimate doesn’t assume equal spreads around the
regression line, just equal spreads around means

Page 10 of 34




Class 10:

Ch6 &7

Lack of Fit & Boston Harbor soft-
bottom benthic diversity

®Eight sampling stations:
not chosen randomly!
> Historically important sites
> Severely limits the statistical S

inference possible l;f?;\ ——
eStations sampled in May ’
& Aug each year, g
starting in Aug 1991 3, 7 1 TE

o3 replicate 0.043-m? Ted
Young modified Van
Veen graps

eSpecies richness
measured with Fisher’s

Slide 31 Lack of Fit & Boston Harbor soft-
bottom benthic diversity

NOTES:

o
Slide 32 T1: Deer Island Flats
T1: Deer Island Flats
Very high rates of increase in richness
. (higher in spring than summer)
Ny Spring Summer NOTES:
— 3 p Ryt - g Tihersa=3T +OST (£0.7) year Fishors a= 52+ 030 (+0.10) year
cr .I.;:-*_.\: Lack of Fit,
m——al p=0.03
Only a linear /
" trend
¥ ° 1991 1996 2001 1991 1996 2001

Year Year

~— +  Amy Banik ECOS M.Sc.

Orthogonal polynomials in Winer et al. (See
syllabus) or calculated by Matlab’s orthpoly m
(from Smyth’s statbox)

Slide 33

NOTES:
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Class 10: Ch 6 & 7

id L ni ¥ g

Lack of fit test: Can these two
stimates of variance be pooled
tq form the ion Error mean

Slide 34

NOTES:

/ square?

Conclusion on lack of fit test of
Boston Harbor

e®There is strong evidence
that species richness (as
measured by Fisher’s a)
is increasing in Spring
samples [ANOVA linear
contrast (F, ;3 =19,
p<0.001)]

Fishers a = 3.7 +0.67 (20.17) year _Fisher's a =52+ 0.30 (2 0.10) year
oThere was significant

Fisher's a

/
/ %
lack of fit in the OLS

regression indicating S gm me W gmo @n
perhaps non-linear
patterns in year-to-year
changes in species
richness

EEOS611

Slide 35 Conclusion on lack of fit test of
Boston Harbor

NOTES:

Estimates of effect size

Sleuth 2e p 152, The mean percentage is 62.4%...

Estimates of
effect size,
available in
GLM/Univariate
Needed to
estimate effect
across fish pairs
in Case 6.2 (62.4
+ 3.4% preferred
yellow tails)

2. Grand Mean

Dependent Variable: Proportion of time with yellow-sword male
95% Confidence Interval
Mean Std. Error  Lower Bound  Upper Bound
624 .017 .590 .658

Slide 36 Estimates of effect size

NOTES:
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Class 10: Ch 6 & 7

More on Simultaneous Inferences

Confidence limits

o Individual (pairwise) confidence level is
the frequency with which a single interval
captures its parameter.

® Overall (familywise or experiment-wise)
confidence level is the frequency with which
all intervals simultaneously capture their
parameters.

® Planned vs. Unplanned comparisons

EEOS611

Slide 37 More on Simultaneous Inferences

NOTES:

Multiple comparisons (1 of 2)
Interval half width = Multiplier x Standard error

e |SD (Least Significant Difference): Student’s t
with pooled standard error — no protection
against multiple hypothesis testing

e F-protected Inference
> Fisher’s protected Least Significant Difference
» Don't claim a difference if the overall F statistic is not
significant
e Tukey-Kramer, Studentized range Table A.5
» Generalization of Tukey’s HSD (Honestly Significant
Difference) for unequal sample sizes)
» Games-Howell more robust to unequal variance

EEOS611

Slide 38 Multiple comparisons (1 of 2)

NOTES:

Multiple comparisons (2 of 2)

Interval half width = Multiplier x Standard error

e Bonferroni, based on the number of comparisons (a/possible tests)
» A conservative test (most often applied a posteriori test in drug trials for unplanned
comparisons)
» Test a = Experiment-wise a/k, where k is the number of tests
= This approximation provides a remarkably accurate estimate of
= Experiment-wise alpha: ,,, = 1-(1 - 0,,,)", whre k is the number of tests
= For example, 20 groups being tested 2 at a time
© 20 Choose 2 tests = 190
© Experiment-wise a = 1-(1- 0.05)'
o Experiment-wise a = 0.99994
o But 0.04877683466514 = 1-(1- 0.05/190)'
o Scheffé, based on the number of linear contrasts: most conservative of
the widely used multiple comparison tests

e Others Sokal & Rohlf's Biometry, Quinn & Keough and Toothacker
provide comprehensive listing
» Newman-Keuls, SNK, Student-Newman-Keu/s; based on studentized range, more
powerful (less conservative) than Tukey-Kramer
» Duncan’s multiple range
» Dunnet’s, where there is a control group

» Dunn'’s for non-parametric a posteriori contrasts EEOS61 1

Slide 39 Multiple comparisons (2 of 2)

NOTES:
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Class 10:

Ch6 &7

Display 6.6
S nary of 95% confidence interval procedures for differences between
treatment means in the handicap study

)i  wi

Group Average | hearing ampitee control  wheelelair

5.92 1.871 1.492 1.021 0.578

5.34 1.293 0914 0.443
confrol 4.900 0850 0471

s -
angites 1.429 0.379
fearing 1,050
Erocedure 5% v
LsSD 1.233
Tukey-Kramer 1.735
1.794 *

Scheffé 1.957

Slide 40 Display 6.6

NOTES:

SPSS output from GLM

UNIANOVA

score BY code
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
JLMATRIX ="Avg A H vs Avg C W" code 0 -1/2 1/2 -1/2 1/2
/POSTHOC = code ( TUKEY SCHEFFE LSD BONFERRONI )
JCRITERIA = ALPHA(.05) I
/DESIGN = code .

N 1 2

Slide 41 SPSS output from GLM

NOTES:

Multiple Comparisons available in
SPSS

See Garson web site

eBonferroni: a conservative test
(beware Type Il error)
eTukey-Kramer
> In SPSS, if you ask for the Tukey test and
sample sizes are unequal, you will get the
Tukey-Kramer test, using the harmonic mean.
eGames-Howell, a modified Tukey-
Kramer appropriate when the

Unberse: Pt Bkl Compasms o Oparoe are. (8]

ity of variances
is violated, controls for unequal
sample sizes

®Ryan test (REGWQ): modified

Newman-Keuls test

> Toothaker (1993: 56) calls Ryan the "best
choice” among tests supported by major
statistical packages because maintains good
alpha control (ex., better than Newman-Keuls)
while having at least 75% of the power of the
most powerful tests (ex., better than Tukey
HSD).

Slide 42 Multiple Comparisons available
in SPSS

NOTES:
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Class 10: Ch 6 & 7

Quinn & Keough review of
multiple comparison tests

® Use planned (a priori) contrasts whenever
possible for testing specific differences
among groups

e “|f unplanned comparisons must be used,
Ryan’s REGW or Tukey’s tests are
recommended, the latter if simultaneous
confidence intervals are required.” (P. 207)

» REGW: Ryan, Einot, Gabriel & Welch procedure.

EEOS611

Slide 43 Quinn & Keough review of
multiple comparison tests

NOTES:

Ryan’s test: REGW
From SPSS algorithms

Ryan, Einot, Gabriel, and Welsch (R-E-G-W)
developed two multiple step-down range tests.
Multiple step-down procedures first test whether all
means are equal. If all means are not equal, subsets
of means are tested for equality. R-E-G-W F is based
on an F test and R-E-G-W Q is based on the
Studentized range. These tests are more powerful
than Duncan's multiple range test and Student-
Newman-Keuls (which are also multiple step-down
procedures), but they are not recommended for
unequal cell sizes. <emphasis added by Gallagher>

Slide 44 Ryan’s test: REGW

NOTES:

Display 6.7

2,436 mononucleotides along 4 DNA molecule. All 40 occurrences of the fri-
nucleatide TG appear in bold Face, Eleven breaks occurred in the string,
ut the positions indicated by dushes.

TGG before
break in line
1 7; 6 of the 11
breaks

occured

. ‘downstream’
of TGG, p=
0.000243

TCATTTATAACCOAN TTGGA T ADACUATGIATGA

Slide 45 Display 6.7

NOTES:
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Class 10: Ch 6 & 7

Display 6.8

Simulated estimate of the distribution of the highest frequency of
occurrence of a trinucleotide upstream of eleven randomly-selected breaks

I 2 i 1 5 3 7 8 9 w1 12+

Highesi Frequency of Occurrence for a Trinucleotide Upsiveam of the Break Polnts

P=0.32 from a Monte Carlo simulation, but
p=0.000243 from a test that didn’t take into
account the number of possible tests

Slide 46 Display 6.8

NOTES:

Conclusions to Chapter 6

10f4

® ANOVA is a subset of regression and both are subsets of
general linear models
» SPSS UNIANOVA is the standard GLM package in SPSS
» GLM/UNIANOVA & regression have the greatest flexibility

® Linear contrasts: can be called through GLM or ANOVA
» SPSS’s Oneway only allows integer contrasts
= With integer contrasts, p values are identical for any contrast vector
multiplied by a scalar (effect sizes and standard errors increase
proportionately)
» With fractional contrasts in GLM/univariate, effect sizes & standard
errors don'’t need to be rescaled
» Matlab’s orthpoly.m (statbox toolbox) solves orthogonal contrasts
for any vector of explanatory variables
» Can be used as an accepted alternative to regression when there is
‘lack of fit’ due to cluster effects
= E.g., Boston Harbor regression of biodiversity vs. Year

EEOS611

Slide 47 Conclusions to Chapter 6

NOTES:

Conclusions to Chapter 6
20f4

® Planned and unplanned comparisons
» Always try to specify hypotheses a priori, and use
the LSD test (or equivalent linear contrast test) at
a predetermined experiment-wise a level (usually
0.05)
» Use the v (Within groups MS) as the pooled
estimate of population s for these tests

o Unplanned comparisons
» Also called: ad hoc, a posteriori, multiple
comparison tests
» Experiment-wise (family-wise) error levels usually

set at 0.05 EEOS611

Slide 48 Conclusions to Chapter 6

NOTES:
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Class 10: Ch 6 & 7

Conclusions to Chapter 6

3of4
® Linear contrasts
»E.g., Avg (A,B) vs. Avg (C,D,E)
> Only Scheffé procedure should be used

® Bonferroni

» A conservative test

» Test a = Experiment-wise a/ k, where k is the
number of tests

» Experiment-wise a = 1-(1-Test a)"

» For example, 20 groups being tested 2 at a time
= 20 Choose 2 tests = 190
= Experiment-wise a = 1-(1-.05)
= Experiment-wise a = 0.99994
= But 0.04877683466514 = 1-(1- 0.05/190 )'*°

190

EEOS611

Slide 49 Conclusions to Chapter 6

NOTES:

Conclusions to Chapter 6

4of4
® Tukey-Kramer °

» Tukey’s HSD ('Honestly significant difference’)
with adjustments for unequal sample sizes

» Assumes equal variance (Games-Howell protects
for unequal variance)

e Treatment vs. Control: use Dunnet’s test
(only n-1 comparisons, not ,C,)

® More powerful tests
» SNK: recommended by Underwood
» Ryan’s test (REGWF), recommended by Quinn &
Keough (in addition to Tukey-Kramer)

= Ryan’s test not suitable for unequal group sizes
(SPSS)

Slide S0 Conclusions to Chapter 6

NOTES:

Chapter 7 Simple Linear
Regression: a model for the
mean

Simple regression = ordinary least squares (OLS)
regression, Model | regression

EEOS611

Slide 51 Chapter 7 Simple Linear
Regression: a model for the mean

NOTES:
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Legendre (1805) & least squares

Used to define the meter, 1/10,000,000 meridional arc

\ N
Sl
._.__.:_::"_‘ -
P
See: Stigler (1986) on T
statistical history and Alder's iy
‘The Measure of all Things’  + | Pa

(2002) on why the meridional -

circumference is now - - by
40,007.849 km 0.02% L
deviation from true value

Slide 52 Legendre (1805) & least squares

NOTES:

Probability & least squares landmarks

Legendre (1805) gets priority for the method of Least
Squares
eJacob Bernoulli (1654-1705)

» His work led to the binomial
distribution

oDe Moivre (1667-1754)
» 1733 described what would later be
called the normal curve

eBayes (1764): Bayes theorem
elLegendre (1805) least squares
eGauss (1809)

» Reported using least squares since

The normal

1795
elLaplace (Gaussian)
» 1810: central limit theorem curve

» 1827: least squares theory

Slide 53 Probability & least squares
landmarks

NOTES:

Sir Francis Galton

Inventor of the Qunicunx & ‘regression’

Slide 54 Sir Francis Galton

NOTES:

Page 18 of 34




Class 10:

Ch6 &7

Galton (1885) on filial height

Girls x 1.08

i o 033 aulal chiliirets b of 0% sl

Slide 55 Galton (1885) on filial height

NOTES:

Galton’s regression to mediocrity
Campbell & Kenny, 1999 p. 2

e Galton (1822-1911) measured the heights of 928 parents
and children
> Multiplied female heights by a scaling factor
> Galton (1886)
= Tall parents tended to have tall children, but the children of the tallest parents

were, on average, not quite as tall as the parents. Nor, were the children of
the shortest parents as short as their parents

Slide 56 Galton’s regression to mediocrity

NOTES:

= “filial regression toward mediocrity” (Galton 1886, p. 246)
= Galton (1879, 1886) reasoned that there must be
a biological force that made people move toward

the mean, and he called that force regression.
= Galton himself soon realized that the cause was
statistical, not biological!

= Stigler: the most remarkable discovery in all of
statistics

Slide 57 Galton’s regression to mediocrity

Galton’s regression to mediocrity

Friedman et al. 1998 (Fig. 10.5, p. 171)
Galton (1822-1911), Pearson (1857-1936)

. NOTES:
- 3

| £
&
il e
i g

Hed
wl 4
- KGE
- ED‘//
e e s e B AW G B B A
P FATHER'S HEIGHT (INCHES)
Pearson’s data on 1078 fathers & sons at maturity
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RTM (Regression to the mean)

—effect
— - ian etal.
8
Gl
Er
5n!
Seol
Sl !
W | Bsion
Ew ean
H
e 1
Figurg from wéﬂT_mﬂs o T2 T T 7
Freedman et al. FATHER'S HEIGHT (NCHES) EEOS611
—

Slide S8 RTM (Regression to the mean)
effect

NOTES:

Correlation & regression history

Galton (1886) introduced the correlation coefficient

oThe method of least squares had been
described completely by Legendre RATE or RECAELISEN = WIRLS(TARY STATUR
(1805) and Gauss in 1810; Gauss T . -
introduced the normal equations to :
solve least squares problems in 1822
eGalton’s regression bl =
> did not formally use the method of least i
squares! o 5
» described the relation between correlation ar **
‘regression to the mean’ in 1888 -l A
eMethod of least squares and Gauss’s .. |
normal equations first used for
‘regression’ by Yule (1897)
oThe term regression was later applie "~ | ..
to any fit of continuous variables by .
the method of least squares

My history from Bell (1937), Stigler &
Campbell & Kenny (1999)

Slide 59 Correlation & regression history

NOTES:

OLS regression invented by Yule
Display 7.5, p. 180

The bieal monrrmeel. shatphe mens regessian medel

eLinearity
eConstant variance
» Estimators still unbiased, but p values in errc
eIndependence of errors Hespoms
> Cluster effects, Thowth
» serial correlation: 1 type tested with Durbin-
Watson tests
eNormality of errors
> (not of explanatory variables)
» Estimators (e.g., of slope & Y intercept) still

Slide 60 OLS regression invented by Yule

NOTES:

unbiased if normality assumption violated
» P values robust to violati of i
o[X variable measured without error] s e \

» This is an assumption involved in minimizing
residuals

Faplanatury Variable (%]

L - b pepaiations Bl v simight e Fumctinn o
he uplanseary it

5 Vi s st stsndire s ativms avs o8 epusl f1e 73
& The ehoetion o ap shacr L r——
Sndpminbest ol sl o o S bt )
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OLS, find parameters to minimize
sum of squared residuals
Dienlav 7.6 n. 181

Display 7.6

Illustration of the residual and fitted value for observation (X4 Y4) in a
hypothetical data set of size 4

4 |
v, ]
resy Estimated rlt;gre’s‘sinn line
~
} Y [ X)=Po+ B1X
fity
L
L ]
[ ]
» X
Xy

sum of squared residuals

Slide 61 OLS, find parameters to minimize

NOTES:

Plot of interpolated estimates
G;:jrpn_rild nr\f use least canares to fit filial height line

Method now

S L7 1| called Model Il
f regress on and s

appropr ate
when both X & Y
measured w th
error

Model Il regress on See
Legendre & Legendre (1998)
Qu nn & Keough (2002), Not
really ava lable n SPSS

Slide 62 Plot of interpolated estimates

NOTES:

Display 7.1

Hubble (1929)

Display 7.1

Scatterplot of measured distance versus velocity for 24 extra-galactic
nebulae

[Hstanee
(megaparsees) |

sl husiulsine)

Slide 63 Display 7.1

NOTES:
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Display 7.2

Big Bang Theary model for distance-velocity relationship of nchulac

Slide 64 Display 7.2

NOTES:

Questions from Hubble’s data

Is the relationship between distance & velocity a
straight line?

® |s the y-intercept zero, as the Big Bang theory
predicts?

How old is the universe?

Findings

» Age of the universe: 1.88 billion years (with 95% CI of 1.5
to 2.27 billion years)
= Current estimates of the Universe’s age: 10 to 15 billion years

> Probability that the Y intercept is zero is 0.0028

» Scope: Not a random sample of stars and errors in
measuring velocities not included in p values

Slide 65 Questions from Hubble’s data

NOTES:

SPSS solution

Constant is not zero (0.40 * 0.25)

Coefficients”

Unstandardized  Standardized
Coefficients Coefficients 95% Confidence Interval for B
B Std. Error Beta t Sig.  LowerBound Upper Bound
(Constant) 399 18 337 .003 53 645
Recession

Velocity (kmisec) 00137 00023 790 6.036  .000004 00090 00184

Scattrplot

a. Dependent Variable: Distance

REGRESSION R
/MISSING LISTWISE
JSTATISTICS COEFF OUTS CI R ANOV/‘
JCRITERIA=PIN(.05) POUTY(.10)

INOORIGIN L .
/DEPENDENT distance N oo o 0
/METHOD=ENTER velocity ca  °
JSCATTERPLOT=(*ZRESID ; ADJPRED} .

/SAVE PRED RESID

Slide 66 SPSS solution

NOTES:
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Forcing regression through origin

Generally, not advisable. Poor fit to slope.

Coeflicien
Unstandardized Standardized
Coefficients Coefficients 95% Confidence Interval for B
Model B std. Error Beta t Sig.  LowerBound Upper Bound
1 Recessi
genon 002 1.911E-004 803 10057  6.9E-010 002 002

Velocity (km/sec)
a. Dependent Variable: Distance (megaparsecs)

LLR Smoather

b. Linear Regression through the Origin R

Scattorplot
Dopendent Variable: Distance (megaparsecs)

13
Unstandardized Residual

Regrossion Adjusted (Press) Predicted Value
Unstandardized Predicted Value

Slide 67 Forcing regression through origin

NOTES:

Case 7.1: Scatterplot

See Sleuth Display 7.11, p 189
Distance (megaparsecs) = 0.40 (% 0.25) + 0.0014 (+ 0.0005) * velocity

R-Square = 0.62
95% Mean Prediction Interval and
95% Individual Prediction Interval

Individual
prediction
interval
(n=1)

2,000 =

1000 =

istance (megaparsecs)

The Hotelling-
Workman
(Scheffé) interval

95%

,Qﬁg?on is not shown and
pimerva| T T T not available in
o 500 1000
(n==) SPSS

Velocity (km/sec)

Slide 68 Case 7.1: Scatterplot

NOTES:

Case 7.2 Meat processing & pH

Postmortem muscle pH and time since slaughter

How many hours (with ClI’s to obtain a pH of 6)?
Display 7.3

pH of 10 steer carcasses measured at 5 different times after slaughter

Time After

Steer Slaughter (Hr) Filil
I 1 7.02
2 ! 6.93
3 2 6,42
4 2 6.51
5 4 6.07
[ 4 5.99
7 6 3.59
& [ 5.80
9 B 5.51

10 ] 5.36

EEOS611

Slide 69 Case 7.2 Meat processing & pH

NOTES:

Page 23 of 34




Class 10: Ch 6 & 7

Conclusion from Case 7.2

pH of 6.0 at 3.9 h, 95% calibration interval: 2.94 & 5.1 h
Display 74

The
Peerebion o7 ol o o e aher Abvekeer and 9954 peeiicime bind . APpropriate
704 o83 il it 95% CIl must
¥ be used: for
s individual
- ' measurements,
3 the individual
== S prediction band
\ is appropriate
554
vours: —* —* =~ Fiducial Limits
logihoars): 00 1] (X 15 0

Slide 70 Conclusion from Case 7.2

NOTES:

How to design a standard curve

From Draper & Smith (1981) Chapter 3: assiagned fo!
Display 7.4

Meat p ing data with esti d ion line (from the simple linear
regression of pH on log time after slaughter) and a 95% prediction band ;@ 1 @ 1 @

704

95% prediction band

s

Slide 71 How to design a standard curve

NOTES:

Plot the Residuals (standardized or
unstandardized) vs Predicted values and
examine the plot for patterns Save
residuals and use a smoother (Lowess fit for
patterns, but LOWESS not available in
SPSS)

Unstandardized Predicted Value

6.5+
pH

Ll Dexirahle level .\

5.5 \
hours: 1 z ] 4 5 & 78

log(hours): 0.0 05 10 15 20
Slide 72 Residual plot with smoother
Residual plot with smoother
Save predicted and residual values: untransformed

NOTES:
i
3 °
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Log transform ‘time since

slaughter’
SPSS LLR smoother plot available in scatterplot

PH

pH=6.98 + 073 Intim
ReSquare = 0.98

In (Time since slaughter) e oo Py 7o

Slide 73 Log transform ‘time since
slaughter’

NOTES:

Display 7.6

Illustration of the residual and fitted value for observation (X4, Yy) in a
hypothetical data set of size 4

v, 4 el
} resy Estimated regression line

oy 1=+ Fix

X4

Slide 74 Display 7.6

NOTES:

Standard error of b, & b,

G df = n-2
- 2
(n-1)s,
SAMPLING DISTRIBUTION WA
0OF i o ok
df = n-2
..w. -t
R »

Slide 75 Standard error of bo & bl

NOTES:
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Display 7.9

Regression parameter estimates for the Big Bang study

Variable Coelficient Standard Error t-Statistic p=Value
Constant 039491 1185 » 3360 " 002%
Velociry 01373 000227 #6036 p0DDO4S

¢ For hypotheses that ™

e S0 (22 df ) ¢ coetie,
Estimate of & 04050 (224.F) \_ Gtnderderraer, ) o the cocfficients =0
g o ANOVA
um o
Mean Square
.Squares df Sig.
Regression5.975 1 5.975 36.4 4.5e-6
Residual  3.608 22 164,
Total 9.583 23
Coeficients®
Unstandardized  Standardized
Coefficients Coefficients g
Model B SW.Eror  Beta Lower Bound Upper Bound
1 (Constant) 399 18 645
Ve tmisog) 0014 0002 7% 603 <te:s 0009 0018

a. Dependent Variable: Distance (megaparsecs)

V364 =6 036 J

Slide 76 Display 7.9

NOTES:

Display 7.10

95% Confidence interval for the estimated mean pll of sieers 4 hours aller

laughter (from the 1 of pH on fagitime) afier slaughter
for the meat processing data)

MEY 1386 = 69836 - 0.7257 = 1386 = 598
A

o - 1190y
SEIRE Y 1386)) = 0.08226

(0.62:44)
a
00269

= o {n) 'fl n‘-l |h\- rﬂs. )
(tg.975)) it SR T )
Ulpper limir: 598 + 2,306 x 0.0269 [A]
Lower fimit: 598 - 2306 0,0269 592

Sleuth computer trick subtract 4
from each X value, look at Y
intercept and ClI for Y intercept, but
there I1s a better way in SPSS

Slide 77 Display 7.10

NOTES:

Predicting Y, given X in SPSS

Enter X as an additional case, 5.5 hours and 4 hours

Sleuth trick
subtract 5 5

Dl [ Pew Dets
= T T

ey ehs bt Addpre e fw

|| a6 Tir| TEIR 2]

;h: n:.] Irh--,-] WFEIO]QFEEUI] I!.U.'cl'l:‘| =.MC.‘| II:'| IICIE'.‘\:] llr':‘l )IjL Or 4 from
o e 4 | each value
S S5 | skl w0 of X and use

561

the upper &
lower 95%
Cl for the Y
Intercept

Slide 78 Predicting Y, given X in SPSS

NOTES:

variable blank
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>3 confidence intervals

Individual (n=1), mean (n==), for the line (Scheffé, n=«)
Display .11

The 3% confidence band on the population regression line, the 95%
confidence interval band for single mean estimates, and a 95% prediction

imterval band for the Big Bang example CI fOr Slngle
observations
Cl for mean

<

3

204 line (Scheffé
s 1 adjustment)
megaparsen) | 2 assumes very

»large («) sample
size

400 200 0 200 400 600 BOO 1,000 1,200
Hecrssion Velugity (kmisee)

Slide 79 >3 confidence intervals

NOTES:

Slide 80

Case 7.1.1
3
Estimated regression line.
’8\ 2 95% Confidence band X .
2 Sfor estimated means NOTES .
g
©
&
E 1
Q
o
c
S
@ ++
a 0 95% Confidence
band for all lines
(Scheffé adjustment o
05% individual """ orkman
prediction band
-1
-400 0 400 800 1200
Recession velocity (km/sec)
Slide 81 Display 7.4: Inverse regression
Display 7.4: Inverse regression
R fidueial limite
Display 7.4

Meat p ing data with esti d ion line (from the simple linear
regression of pll on bog time after slaughter) and a 95% prediction band

704 et
s 5% prediction band

6.5
it
6 .
| Derarabie Tevet T
.
554
v v -
bowrs;: 1 2 3 4 5 6 T &
logihoars): 00 (1] Lo 15 0

NOTES:
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Slide 82
Confidence intervals for
mean and for individual
TE observations 1
E NOTES:
55 N St B
] 0.5 o “ime’ 15 2 25
Sleuth Case 7.2 Slide 83
Confidence intervals for
i mean and for predictions |
o based on n=3 at each-
aed value of the explanatory | NOTES:
£ variable
& [ 0‘5 ‘1 1‘5 ‘2 25
X
Slide 84
Confidence intervals for
mean and for all possible
regression lines, based
! predictions based on n=3 at]
L each value of the NOTES:

Y,95% limits for mean(Yq),q

B
b

explanatory variable
Scheffé or Hotelling-1
Workman

1 15 2 25
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Sleuth Case 7.2

=1

>
b

Y & 95% conf. limits for mean(Yq),
>

o

Confidence intervals for
mean and for all possible
regression lines,
predictions based on n=1 at
each value of the
explanatory variable
Scheffé or Hotelling-|
Workman

1 15 2 25

Slide 85

NOTES:

Sleuth Case 7.2

=3

Y & 95% conf. limits for mean(Yq),

Fiducial Limits (Fisher's
phrase), unknown

measured with a meany
based on 3
independent samples

Slide 86

NOTES:

0 0s Prsdi;ndx(') with fidL?:ial limits (o) ? 28
, Slide 87
Fiducial Limits (Fisher's
phrase), unknown
L7 measured with just a1
single sample NOTES:

Y & 95% conf. limits for mean(Yaq), g
>

o

1 15 2
Predicted X (*) with fiducial limits (o)

25
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How to design a standard curve
From Draper & Smith (1981)

a4 FITTING A STRAIGHT LINE BY LEAST SQUARES

ics of Various Strategies Depicted in Figare 113

f & d are the best choices,
with f being preferred if a
quadratic alternative is all
that is being considered.

EEOS611

Slide 88 How to design a standard curve

NOTES:

More regression to the
mean

Important note: regression to the mean is a
group phenomenon. Groups of individuals will
show a consistent regression to the mean, but

individuals may not. There are correction factors
that take into account the RTM phenomenon.

‘Empirical Bayes Estimators’ are now the
accepted correction procedures to correct the

accuracy of predictions for the RTM

phenomenon. EEOS611

Slide 89 More regression to the mean

NOTES:

Galton’s regression to mediocrity

Friedman et al. 1998 (Fig. 10.5, p. 171)
Galton (1822-1911), Pearson (1857-1936)

AVERAGE HEIGHT QF SON {INGHES)

7o 12 4 T8 78

88— - ———
68 o) €2 B4 66 68
FATHER'S HEIGHT (INCHES)

Pearson’s data on 1078 fathers & sons at maturity

Slide 90 Galton’s regression to mediocrity

NOTES:
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Slide 91 RTM (Regression to the mean)
RTM (Regression to the mean) effect

n:--m—-u—:.gifiﬂ.s.-_et al. 1998

—] N
i
Gl
2n) NOTES:
i
el
]
Hoel o
W, | Bsion
EW , jean
= | s
m‘./(
Figure from P . o 6 68 70 72 74 76 78
Friedrhan et al FATHER'S HEIGHT (INCHES) EEOS611
——

Slide 92 The regression effect or
regression artifact

The regression effect or
regression artifact

Peaalaall © e, AQAN

NOTES:

POSTTEST
s

Zero Correlation Line

18 21 24

12 15
PRETEST

Slide 93 Display 7.13

Display 7.13

Test-retest scores, illustrating the regression effect

&

Skill Axis

NOTES:

Luck Axis

Second
Test

Score

»
First Test Score

fverage
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The Galton Squeeze diagram

Don’t use improvement to fire employees or award $

|
LSALLSO]

FIGURE 1.8, Ciulr "

Slide 94 The Galton Squeeze diagram

NOTES:

4th Grade MCAS scores

1998 vs. 1999

Lake Wocheguaranteed:
Misuse of Test Scores in
Muassachusetes, Part |

Wale IIulu'_\I
Boston College

Slide 95 4™ Grade MCAS scores

NOTES:

4th Grade Change in MCAS scores

1009 ve 1999

The mean change In
math scores from 1998
to 1999 for all schools
with 4th grade classes
are plotted vs average
class size Four

principals heading the
schools with the greatest
T improvement (%) were
* given $10,000 cash

awards from a private
foundation grant

rsmss EEOS611

Slide 96 4™ Grade Change in MCAS
scores

NOTES:
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4th Grade Change in MCAS scores

1998 vs. 1999, from Walt Haney BC

3 of the 4 award-
winning schools
declined in

-a

performance in
their post-award
year

EEOS611

cow-'coon 0@

75 150 225 300

Axg Sizo 1999-2000

Slide 97 4™ Grade Change in MCAS
scores

NOTES:

The regression artifact

® \What major statistical principal must be
considered when analyzing test and retest data of
this sort? [A 2003 midterm question]
» Two related statistical problems
= Regression to the mean, which is a strong function of the
correlation between tests. The weaker the correlation between
tests, the more the regression to the mean phenomenon
= The effects of sample size on the difference in averages.
> Note that RTM is a group phenomenon, "You cannot tel!
which way an individual's score wifl move based on the
regression to the mean phenomenon. Even though the
group's average will move toward the population's
average, some individuals in the group are likely to move
in the other direction." Quote from Trochim's RTM web
site

Slide 98 The regression artifact

NOTES:

Luck or skill in awarding MCAS
winners (1 of 3)

® As discussed on page 192 in Sleuth, in a test-
retest situation (and many other situations of
repeated measures on subjects) the change
scores are composed of a true "skill" effect, the
improvement in student performance and error.

® The error is reflected in the lack of perfect
correlation between the 1st and 2nd tests.
> In this case, the correlation is 0.86 between 1998 and
1999. The lack of perfect correlation could be due to
differences in the teaching quality between schools, but
some is due to just test-to-test variability.

Slide 99 Luck or skill in awarding MCAS

winners (1 of 3)

NOTES:
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Luck or skill in awarding MCAS
winners (2 of 3)

® The RTM effect is directly proportional to (1-r),
with r being the test-to-test correlation.

» With perfect correlation, there is no RTM effect.

» The Dept of Education identified schools based on their
change scores on the 1998 to 1999 exams, and most of
these schools had small class sizes.

> Smaller class sizes will be associated with sample
averages that deviate from the true mean to a far greater
extent than large schools.

= The extent of this deviation is assessed with the standard error of
the difference in averages, with standard errors proportional to
(1/n, + 1/n,), where n, and n, are the class sizes for the two
exams.

EEOS611

Slide 100 Luck or skill in awarding MCAS
winners (2 of 3)

NOTES:

Luck or skill in awarding MCAS
winners (3 of 3)

® Take into account the standard error of the
difference, use p values based on
change/(standard error of change) instead of
absolute differences

® Use Empirical Bayes estimators (James-Stein
estimators) to adjust for the chance element in
assessing change (used for batting averages &
hospital mortality by Effron & Morris)

® Use hierarchical longitudinal models, assessing
change in individual student performance

EEOS611

Slide 101 Luck or skill in awarding MCAS
winners (3 of 3)

NOTES:
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