	Slide 1 Chapter 12: Strategies for Variable Selection
Chapter 12: Strategies for Variable Selection	NOTES:
Class 19, 4/15/09 W	
	Slide 2 HW 12 due Friday 4/17/09
HW 12 due Friday 4/17/09 Submit as Myname-HW12.doc (or *.rtf)	
HW 12 10.28: El Niño and Hurricanes Due Friday 4/17/09 Noon	NOTES:
 HW 13 Cammen's ingestion rate data. Note that this was a 2003 final exam problem Read Cammen (1980) & evaluate his regression model 	
 Due Friday 4/25/09 Noon This problem will count double! Read Chapter 12: Selection of variables 	
 Run my overfitting syntax: overfitting sps Read Campbell & Kenney Chapters 4 & 5 on the regression artefact and gender inequities 	
 Run my Campbell & Kenny syntax: RTMCK.sps No Class Monday 4/20: Patriot's Day 	
	Slide 3 HW12: Cammen model
HW12: Cammen model	Shue 3 11 w 12. Cammen model
Cammen (1980) compiled data from the literature on the ingestion	
rates of 22 deposit feeders. Deposit feeders are organisms that live in mud and sand and ingest mud and sand. Deposit feeders use the organic matter in the mud and sand for growth. Table 1 shows the	NOTES:
species from the literature, their ingestion rates, the fraction organic matter in sediment, and the body weights of individual deposit	
feeders. Cammen (1980) used regression to estimate the ingestion rate of deposit feeders (ING) (mg dry weight/day) using the fraction organic matter in the sediment (OM) and body weight of the deposit feeder (WT). He regressed log ₁₀ (ING) as the response variable with	
two explanatory variables log ₁₀ (NO) and log ₁₀ (OM). He deleted the three bivalves from his analyses because they appeared to be outliers, and based his regressions on the 19 non-bivalve species,	
-,	

Table I. Due from Common (1990). Loaded on Promethour as commonwey, in case	Slide 4
you wanted to contrine the data (optional). The last 3 highlighted species are lived to modified and calculated in Taxon). Wit is the body weight of the deposit finder (day weight of the artist of intelligence). It fills in the imposition rate in imposition weight day. Carmon scaled the inposition rate is account for temperature effects (higher imposition at higher temperature). Off is do reposition rate to account for temperature effects (higher imposition at higher temperature). Off is do reposition rate to content (weight organic).	
renter	NOTES:
3 Timbre stables	
9 Corressing since Characterism 124 4.4 65 16 17 17 17 17 17 17 17 17 17 17 17 17 17	
14 Sopplemen globours Chusenosm 05 50 22.6 15 Pedicinia gualis Pedybrane (mod id) 80 160 0.7 16 Abstraictia gualis Pelybrane (mod id) 380 360 1.2 17 Abstraiction dripment Pelybrane (mod id) 380 480 0.4 18 Amiscalarumine Pelybrane (mod id) 980 470 0.64 19 Amiscalarumine 2000 4600 2.1	
19 decognitudos approcisus Cusanoscos 2000 4660 2-1 20 Miscores harbites Biskin emissas 5-1 4-40 20 21 Portantis a recisas Biskin emissas 199 3-39 0.0 22 Scredicialnia palvas Biskin emissas 200 43 3-4	
Was Cammen (1980) justified in dropping the three bivalve molluscs	Slide 5
from his regression equation? • Consider both the case-wise diagnostic tests (residuals vs. predicted values, Cook's D, studentized residuals, and leverage values), and the results of fitting bivalves as a dummy variable.	
 Discuss the problems in using Cook's D, leverage, and studentized residuals in detecting outliers when more than one datum may be an outlier. There is no strictly right or wrong answer to this question, but you must justify 	NOTES:
your choice with evidence from the regression analyses. There were 5 groups of animals in Cammen's data. Is there evidence that the ingestion rates as a function of weight and organic matter differ among these 5 groups?	
Based on your analyses, produce a graph showing the relationship between ingestion rate, body weight and organic matter.	
 Write the regression equation expressing the relationship between ingestion rate, organic matter, and body weight. Pay attention to significant figures, and include an estimate of the standard error of the coefficients. 	
If you found that the animal groups differed in ingestion rate, your final graphs and model should reflect this full model	
Hammanda Bara autoffana	Slide 6 Homework Presentations
Homework Presentations	
William Walker for HW 8,Steven Kichefski for HW 9 and	NOTES:
Lisa Greber for HW10	
Environmental Euro and Depart Sciences University of Manachusetts Brother	

	Slide 7 Chapter 12: Strategies for variable selection
Chapter 12: Strategies for variable selection	NOTES:
Using multiple regression to test causal models	Slide 8 Using multiple regression to test causal models
Being in politics is like being a football coach. You	
have to be smart enough to understand the game and dumb enough to think it's important Eugene McCarthy	NOTES:
Application to Regression & Chapter 12 To use multiple regression to test causal models, you have to know enough statistics to	
run the analysis, but you have to be dumb enough to think the approach is valid	
De maration among 0 antifacts	Slide 9 Regression errors & artifacts
Regression errors & artifacts	
 A) Covariates are often necessary Fluoride & cancer (Manly 1992) Storks & babies 	NOTES:
B) Multicollinearity: Interpreting Beta signs as effects when the magnitude and sign of Beta is a function of other variables in the equation	
Handguns & Crime rates (Lott & Mustard vs. Ayers & Donahue) Peterson on school vouchers & test scores	
C) The regression artifact and improper interpretation of the effects of covariates Math ability & gender	
► Math ability & gender ► The Bell Curve	

Does fluoride cause cancer? Manly (1992) The design & analysis of research studies • Ylamouylannis & Burk 1977 • Fluoridation began in 1952-1956 • Fluoridated and non-fluoridated cities matched by population size • 10 largest non-fluoridated cities • Fluoridated cities of comparable stre Table 1.2. Cancer deaths per 100 000 population in fluoridated and non-fluoridated cities in the United States (Yiamouyiannis and Burk, 1977) Fluoridated cities Non-fluoridated cities 1950 181 179 Why ? Change +36 +18

Slide 10 Does fluoride cause cancer?
NOTES:

Slide 11 Cancer & Fluoride NOTES:

Guidelines for predictive modeling

From Holmes' Causal modeling (Sage)

- Theorize before analyzing data or validate theory with additional data
- Formulate explicitly ordered hypotheses
- Measure covariation with an appropriate technique
- Examine measures of association to see if they are significant
- Reject competing models that are more complex or less based on theory
- Reject models that have "bad fit"

Slide 12 Guidelines for predictive modeling

NOTES:

Slide 13 Gallagher's addenda Gallagher's addenda From Harrell & Campbell & Kenney • Don't use multiple regression to infer causation. When more than one variable is in the model, the sign and magnitude of the coefficients for an explanatory variable NOTES: often depend on the value of other variables in the equation • Don't use stepwise or other automated selection • Beware the regression artifact and control for it Use repeated measures designs, structural equation models or corrections for the regression artifact. ► Or, design a controlled experiment to properly assess the effect Slide 14 Display 12.1 Average SAT scores by US State in 1982, and possible Case Study 12.1 SAT Scores NOTES: E E ... O ... S ... Slide 15 Case Study 12.1 Final model SAT Scores = f(% Taking exam, **NOTES:** median class rank) or (% taking exam, rank and expenditure) Result: NH is #1, Massachusetts is 11 or 32 (expenditure) E E ... O ... S ..

Slide 22 Bayes' Theorem **Bayes' Theorem** Larsen & Marx 2nd Ed't'on (2001) Enyer' Theorem (Theorem, 26.2 p. 65) Let $\{A_1\}_{R}^{(2)}$ be a set of n events, each with positive probability that partitions S in such a way that NOTES: $\bigcup_{i=1}^{n} A_i = S$ and $A_i \cap A_j = \emptyset$ for $i \neq j$. For any event B (also defined on S), where R(B) > 0, $P(AjB) = \frac{P(B|A_j)P(A_j)}{n}$ $= \sum_{i=1}^{n} P(B(A)P(A))$ for any Lajan. Slide 23 All possible regressions All possible regressions All regression models in SAS, R & Matlab, not SPSS SAS procedure NOTES: • SPSS ► /STATISTICS COEFF OUTS CI R ANOVA COLLIN TOL CHANGE SELECTION Display 12.8 Matlab ▶ Stixbox Slide 24 SPSS regression syntax **SPSS** regression syntax /STATISTICS ALL or /STATISTICS SELECTION * Case 1201- note the /STATISTICS=SELECTION. REGRESSION **NOTES:** /DESCRIPTIVES MEAN STDDEV CORR SIG N /SELECT= istate NE 2 /MISSING LISTWISE /STATISTICS ALL /CRITERIA=PIN(.05) POUT(.10) CIN(95) /NOORIGIN /DEPENDENT sat /METHOD=BACKWARD Igtakers Income years public expend rank /PARTIALPLOT ALL /SCATTERPLOT=(*ZRESID, *ZPRED) /RESIDUALS ID(state) /SAVE PRED COOK MCIN ICIN RESID .

Overfitting: why stepwise procedures	Slide 28 Overfitting: why stepwise procedures should not be used to estimate p values.
should not be used to estimate p values.	NOTES:
Display 12.7	Slide 29
Simulated distribution of the largest of ten F-statistics 10 random distributions used as explanatory variables with 100 cases. One is found significant using an F test about 40% of the time - Stepwise tends to fit too many variables	NOTES:
Largest of ten F-to-enter values (histogram from 500 simulations)	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 F-Statistic Unwerly of Measur Local Parising Community Commun	
	Slide 30 Gallagher's overfitting.sps
Gallagher's overfitting.sps	
* Overfitting simulation, inspired by * Nontechnical Introduction to Overfitting in Regression-Type Models, Babyak (2004), * Michael A Babyak, What You See May Not Be What You Get: A Brief, Nontechnical * Introduction to Overfitting in Regression-Type Models. * Psychosom Med 2004 65; 411-421.	NOTES:
* Written by E Gallagher, revised 4/12/05. * Generate 100 cases, with 32 normally distributed variates. new file. input program.	
loop #I = 1 to 100. COMPUTE V1 = RV.normal (0,1). COMPUTE V2 = RV.normal (0,1). ÖOMPUTE V32 = RV.normal (0,1).	
end case, end loop. end file, end fine, formats V1 to V32 (4.2), exe.	

	Slide 31 Results of Stepwise Selection
Results of Stepwise Selection	The second of step in the selection
31 Random predictor variables	
Confinence* Juniselectory Confinent	NOTES:
1 Condend 377 584 2545 564 581 445 455 564 581 445 455 564 581 445 455 564 581 445 455 564 581 445 455 564 581 445 455 564 581 481 481 481 481 481 481 481 481 481 4	NOTES.
viji	
Machine Mach	
V3 102 are 200 218 m 600 564 6 (Grandell 312 312 310 310 310 310 310 310 310 310 410 310 410 310 410 310 410 310 410 310 410 310 410 310 410<	
Backward (added V23, V19)	
(added V23, V19)	
	Slide 32 Harrell (2002, p. 56-57) on
Harrell (2002, p. 56-57) on stepwise	stepwise
Harrell's conclusion: Don't use stepwise! • It yields R² values that are biased high	
 F and χ² distributions don't have their claimed 	
distributions SE of regression coefficients are biased low and Cl's	NOTES:
and predicted values that are falsely narrow	
P-values too small Pagrangian coefficients bigged high in checkuts value	
 Regression coefficients biased high in absolute value and need shrinkage. 	
 Rather than solving the problem of collinearity, variable selection is made arbitrary by collinearity 	
It allows us not to think about the problem	
	Slide 33 Multicollinearity, collinearity
Multicollinearity, collinearity	
 If the explanatory variables are strongly correlated The regression coefficient estimates have a huge variance 	NOTES:
 They can change in sign and significance with a slight change in the data, bouncing betas 	TOTES.
Diagnostics (Variance Inflation Factors (VIF's) - see	
next page) Solutions for multicolinearity for OLS regression	
➤ Reduce the number of explanatory variables using theory & insight into the field	
➤ Ridge regression ➤ Principal components regression	
E E O S	
Environmental Carts and Union Sciences University of Messachusetts Boston	

Slide 34 Collinearity [multicollinearity] **Collinearity [multicollinearity]** When one or more predictors can be predicted NOTES: by other predictors, the standard error of the regression coefficients can be inflated and the corresponding tests have reduced power Assessed with Variance inflation factors (VIF) or tolerance ► VIF_i = 1 (1- R²_i), where R²_i is the squared multiple correlation coefficient between explanatory variable 'i' and the other explanatory variables ► Neter et al. (1996): VIF's > 10 are cause for concern (but smaller VIF's can also be a problem) Slide 35 Ways of detecting Ways of detecting multicollinearity multicollinearity Marayuma (1998, p. 64) When the variance (standard errors) of beta weights is • When signs on beta weights are inappropriate [e.g., **NOTES:** larger classes ⇒ higher test scores] When regression weights and signs change radically upon the addition or removal of single variables When the Variance Inflation Factor is high (VIF> 6 or 7 as a very rough rule) • When simple correlations are > 0.8-0.9 When correlations among predictor variables > R² for response with all predictor variables Slide 36 Shooting Down the "More Guns, Less Crime" Hypothesis The openion ments accordance: We do the results of the Learn model. The openion ments accordance: We do the results of the Learn model. The openion ments accordance: We do the results of the Learn model. On the Compact the Learn flows to the the Learn model. On the Learn model of the Learn model. On the Learn model and the respective splice, the Learn model. As the compact the Learn model and the respective splice, the Learn model. On the Learn model and the respective splice, the Learn model. On the Learn model and the respective splice, the Learn model. On the Learn model and the respective splice, the Learn model. On the Learn model and the respective splice, the Learn model. In the Learn model and the respective splice, the Learn model. In the Learn model and the Learn model and the Learn model. In the Learn model and the Learn model and the Learn model. In the Learn model and the Learn model and the Learn model and the Learn model. In the Learn model and the Learn model and the Learn model. In the Learn model and the Learn model and the Learn model and the Learn model. In the Learn model and the Learn model and the Learn model and the Learn model. In the Learn model and the Learn model and the Learn model and the Learn model. In the Learn model and the Learn model and the Learn model and the Learn model. In the Learn model and the Learn mo Ian Avres* & John J. Donohue III NOTES: black that we have been as the control of the contr

Adding too many covariates can destroy a regression

Slide 37 Solutions to multicollinearity Solutions to multicollinearity • If the goal of the model is to produce predicted values for one analysis, then multicollinearity is **not** a problem. NOTES: All variables can be included. However, if the equation is to be used for new data, then the model will be badly overfitted, the predicted values will be ▶ Significant coefficients could be spurious or nonsense Solutions ▶ Variable selection procedures (cluster analysis of variables) ▶ Principal components regression Use principal component scores as explanatory variables Principal component scores are orthogonal (uncorrelated) ► Ridge regression ► Structural equation modeling Slide 38 Ridge regression Ridge regression Available as a macro in SPSS, LISREL (not AMOS); increase variance for variables not covariance ___ 0.2 NOTES: "Ridge trace" diagram showing the estimates of the standardized regression coefficients explanatory variables s_i to s_j as a function of k. Table: decrease of R^2 as a function of k. A ridge regression parameter, k, is chosen using the ridge trace diagram(k=0,2 in the above example [the base of the horn] from Draper & Smith) that 'shrinks' the regression coefficients, especially those coefficients (Beta's) that are strongly correlated. This offers a partial solution to the problem of collinearity. Slide 39 Case 11.2 Gender discrimination **NOTES: Case 11.2 Gender discrimination**

Model Summary	Slide 43 SPSS output using forward, backward or stepwise NOTES:
Has gender equity really been rejected? Campbell & Kenny: statistical equating often produces gender discrimination when there is none, and racial differences when there are none	Slide 44 Has gender equity really been rejected? NOTES:
Statistical Equating & RTM Campbell & Kenny: The regression artifact The sophomore jinx Spontaneous remission of depression Misclassification of individuals using standardized tests Perhaps: Ashland cancer study Washington D.C. vouchers Sander's analysis of African-American failure on the bar exam Statistical equating Regression to the mean leads to a bias in estimating gender differences using "equating" Page 84: Ethnic differences in intellectual ability: "We believe that the bias in statistical equating for ethnic differences in achievement and intelligence testing is underadjustment"	Slide 45 Statistical Equating & RTM NOTES:

Slide 55 Classic Analysis of covariance **Classic Analysis of covariance** Huge Male-female difference in post-workshop scores, after 'controlling' for pre-test ability * Classic analysis of covariance (ANCOVA) NOTES: * to test for treatment effect * with pretest as the covariate. ANOVA postst BY treat(0,1) with pretst /STATISTICS=ALL. ANOVARA Unique Method a. Posttest Score by FEMALE with Pretest Score Slide 56 Repeated measures designs Repeated measures designs (Chapter (Chapter 16) produce the correct solution: 16) produce the correct solution: No No effect of gender on post-test effect of gender on post-test There is no pre-test to post-test x gender interaction Type III Sum of Squares df Mean Squares 1.458 1 1.458 .266 1.458 1.000 1.458 .266 1.458 1.000 1.458 .266 1.458 1.000 1.458 .266 1.458 1.000 1.458 .266 1.458 1.000 1.458 .266 1.452 1.000 1.4232 .771 1.4232 1.000 1.4232 1.000 1.4232 .771 1.4232 1.000 1.4232 1.00 NOTES: Sphericity Assumed Greenhouse-Geisser Huynh-Feldt Lower-bound Sphericity Assumed Greenhouse-Geisser Huynh-Feldt Lower-bound Error(prepost) Sphericity Assumed Greenhouse-Geisser Huynh-Feldt Lower-bound **Slide 57 Profiles from Repeated Measures Profiles from Repeated Measures ANOVA ANOVA** Estimated Marginal Means of MEASURE_1 Gender NOTES: - MALE FEMALE

Slide 58 Change score: Do paired t tests on Change score: Do paired t tests on males & females separately males & females separately **NOTES:** 150 -.334 Paired Samples Test Std. Error Mean Slide 59 Why didn't regression & Why didn't regression & ANCOVA **ANCOVA work?** work? See Cambell & Kenny (Ch 4-5) for full analysis Whenever there is less than perfect correlation between the covariate and the response, the effect of the covariate on the response is **not** removed by regression (=Analysis of covariance) NOTES: This is due to regression to the mean • Since the correlation between pre-test and post-test was set at r=0.5, only 50% of the pre-test effect can be 'explained' or accounted for by multiple regression Whenever the covariate is less than perfectly correlated with the response, multiple regression does not fully 'control for' or 'account for' or 'adjust for' the effects of the covariate. Note that if the pre-test score had a correlation with the post-test score of 0.25, then only 1/4 of the pre-test difference would be accounted for by including pre-test as a covariate. There would a 3-point advantage for males after including pre-test as a covariate Slide 60 Galton's regression to the mean Galton's regression to the mean Son's height 1" taller than father's, r=0.5, SD=2.5" NOTES: Figure from Freedman et al.

Slide 67 Statistical matching & equating Statistical matching & equating Creates 'bias' in assessing treatment effects • Matching: If a covariate (e.g., pretest scores) is used to select groups, and there is less than perfect correlation between pre-and post-test assessments, then there will be regression to the mean. NOTES: ► Each group will regress to its own mean The regression to the mean effect will produce a treatment difference due to the treatment when none may have existed. Scaling College math performance vs. Gender based on categorical variables like (high school algebra I, Algebra I & II, Algebra I, II & Calculus) is still prone to the regression artifact Equating: If the covariate is weakly correlated with the presumed factor that it is controlling for (SES), & the covariate is positively associated with the response, then differences among groups can be magnified by the addition of the covariate. E E ... O ... S. Slide 68 Structural modeling vs. Structural modeling vs. ANCOVA **ANCOVA** Cook & Campbell 1979. Primer on Regression artifacts "The usefulness of analysis of covariance is closely coupled to the assumption that each covariate be measured without error" **NOTES:** Other assumptions too Violation of this assumption could be disastrous Using unreliable covariates can produce treatment effects that do not exist and can mask strong treatment effects Gender discrimination ► Racial differences on standardized tests • Really unreliable covariates can change the sign of a treatment effect E E ... O ... S ... Slide 69 Solutions to Equating & matching **Solutions to Equating & matching** problems problems • Need a procedure that can adjust for the effect of the covariate, to correct for the 'bias' due to the regression to the mean phenomenan NOTES: Equating & ANCOVA, may be ok when ► Randomized assignment of subjects to cases Equating not needed at all for reliability, but only for increasing 'power' If there is little correlation between the treatment groups and the covariate. Alternatives to multiple regression: Structural equation modeling, change-score analysis (Campbell & Kenny 1999), Hierarchical linear models, James-Stein (empirical Bayes) estimators

Applications to SAT & MCAS

- SAT scores: can be analyzed using SEM
- ▶ % Taking exams and expenditure per students are the most important variabels
- How should socioeconomic factors be included in evaluating schools with MCAS
- ▶ Strong collinearity among socio-economic variables
- ▶ Gaudet & UMASS Donahue Institte
- Socioeconomic variables are strongly correlated
 Used principal component regression (didn't need to)
- Could have used ridge regression
- ► Tuerck, Beacon Hill Institute
- Class size increases MCAS scores: probably an artifact, but need original data.
- ► Chen & Ferguson (2002) simultaneous spatial autoregressive model (SAR)

Slide 85 Applications to SAT & MCAS

NOTES:

Gaudet's Ranking of MA Schools

1998 UMASS/Amherst Ph.D. and Donahue Institute Annual reports

- Gaudet's method for evaluating school quality
- ► Socioeconomic variables from the 1990 census database, per student expenditure from MA DOE, MEAP results
- ▶ 6 variables used in a "Major Axis" or principal components regression
- average education level, average income, poverty rate, single-parent status, language spoken, and percentage of school-age population enrolled in private schools.

 86% of the variation in 1998 MCAS score is due to
- socioeconomic background of the students
- ► Reduced to 85%, 83%, 81% and 81%MA
- Rerank 240 communities after controlling for 6 socioeconomic factors.

Slide 86 Gaudet's Ranking of MA Schools

NOTES:

The best 10th grade classes

Gaudet's ranking for President Bulger's office

District	ELA 10 Score	Overscore	District	Math 10 Score	Overscore
Berlin	255	10	Harvard	254	10
Boylsto		11100	Lenox	250	9
Lenox	251	8	Newburyport	251	8
Stoneham	250	8	Westborough	253	8
Northampton	248	8	Amesbury	246	8
Harvard	254	8	Northampton	245	7
Nauset	250	В	Gardner	240	7
Braintree	250	8	Nauset	247	7
Clinton	245	7	Shrewsbury	249	7
Wareham	244	7	Serlin		
Shrewsbury	251	7	Boyisto	250	7
Pentucket Re	250	6	Braintree	247	6
Norwood	248	5	Nashoba	250	6
Westborough	251	5	Tyngsboroug	245	6

Similar to Case Study 12.1, the residual after fitting covariates (Socio-economic factors) is used to assess teaching Quality

Slide 87 The best 10th grade classes

NOTES:

Slide 88 The thrip/regression fallacy The thrip/regression fallacy Variation in Boson and State (a) Variation explained by X Unexplained NOTES: Variation explained by W variation Figure 10.10 Partition of the variation of a response carable y among two sets of explanatory variables X and W. The length of the benefit of the benefit of the benefit of in y. Flaction [b] in the intersection of the linear effects of X and W on y. Adapted from Legendre (1993). Andrewartha & Birch (1954) on 'weather' vs. Biological interactions controlling thrip abundance and Smith's critique Slide 89 Chen & Ferguson (2002) Chen & Ferguson (2002) **Evaluating school quality** $Y_i = \beta_0 + \sum_{i=1}^{4} \beta_j X_{ij} + \varepsilon_i$ NOTES: where, Y_i , $i = 1, 2, \dots 226$ is the grand average of MCAS scores for years 1998, 1999, and 2000 for district i, and X_{ij} , j = 1,2,3,4 are the covariates of economic and demographic factors. They are AFRICAN-AMERICAN, PERCAP, TWOPHLD, and TAFDCPER. (LIM.ENG, which might quite reasonably be deemed a non-school related variable, is not used in this equation, since in combination with these variables alone it is not significant.) Once again, however, a Moran test indicates that the residuals of (A5.1) are spatially autocorrelated. E E S Slide 90 Chen & Ferguson (2002) Just as in the earlier equation we employ spatial models. Here the model is: NOTES: $Y_{i} = \beta_{0} + \sum_{i}^{4} \beta_{j} X_{ij} + \delta_{i} + \varepsilon_{i}$ Again, as in Appendix 3, we estimate both a Conditional Spatial Autoregression (CAR) model using S-Plus and a Bayesian spatial approach estimated with WinBUGS. The estimated coefficients and p-values are listed in Table A5.3. S-PLUS WinBuGS INTERCEPT 221.54(.00) 224.20 -0.160(.00) 0.594(.00) AFRICAN -0.162 PERCAP 0.602 TWOPHLD 0.122(.00) 0.125 **TAFDCPER** -2.124(.00) -2.213

	Slide 97 The 15 best schools?
The 15 best schools?	
The 15 Best-Performing Massachusetts School Districts	
Achieving Good Performance Reducing Poor Performance	
CG Rating) (P Rating) DISTRICT (number of ratings for A th 8 th 10 th A th 8 th 10 th	NOTES:
which district fell in the top 10)	110120
Hadley (5) X X X X X	
Clinton (3) X X X X Methuen (3) X X X X X X X X X	
Stoneham (3) X X X X	
Tyngsborough (3) X X X	
Nantucket (2) X X X Chelsea (2) X X X	
Dighton-Rehoboth (2) X X	
Eastham (2) X X X Everett (2) X X	
Hanover (2) X X	
Oxford (2) X X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	
Provincetown (2) X X X Shrewsbury (2) X X X	
Sutton (2) X X	
	Slide 98 The 12 worst schools?
TI 40 () 1 0	Shac you had 12 worst sentons.
The 12 worst schools?	
Beacon Hill Inst: Weighted average of 4th, 8th & 10th grades	
Beacon Hill Inst: Weighted average of 4th, 8th & 10th grades	
The 12 Worst-Performing Massachusetts School Districts	NOTEG
Achieving Good Performance Reducing Poor Performance (G Rating) (P Rating)	NOTES:
DISTRICT (number of ratings for \$ 8 10 4 8 10	
which district fell in the bottom 10)	
Narragansett (4) X X X X	
Gateway (3) X X X	
Somerset (3) X X X X	
Adams Cheshire (2) X X	
Hudson (2) X X	
Leicester (2) X X X Millis (2) X X X X	
Mount Greylock (2) X X	
Randolph (2) X X X Swampscott (2) X X X X	
Watertown (2) X X	
	CITE AND THE AND A SECOND SECO
	Slide 99 The Worst 10 th grade schools
The Worst 10th grade schools	
The Worst Total grade schools	
Beacon HIII Institute	
Foxborough 86 Taunton 210	
Weston 22 Winchendon 192	NOTES:
Quabbin 128 Wareham 186 North Attleborough 171 McIrose 113	NOTES.
Berkshire Hills 133 Carver 187	
Uxbridge 170 Leicester 142	
Quaboag Regional 168 Winthrop 188 Harvard 17 Westford 63	
Peabody 193 Lunenburg 104	
Longmeadow 46 Randolph 200	
Southwick Tolland 199 Littleton 67 North Middlesex 88 Lincoln-Sudbury 36	
North Middlesex 88 Lincoln-Sudbury 36 Sutton 152 Watertown 132	
Hopedale 135 Bellingham 174	
Mount Greylock 60 Somerset 196	
Douglas 172 Narragansett 191	
Saugus 197 Swampscott 141	

Slide 100 The Beacon Hill Institute Report The Beacon Hill Institute Report Would increasing class size improve performance? Beacon Hill study No attempt was made to assess colinearity among the many strongly correlated explanatory variables Multicollinearity would invalidate many of their interpretations of betas, especially class size The authors should have calculated VIF's Solvities. NOTES: Solutions Do ridge regression or principal components regression Do ridge regression or principal components regression Trained a structural equation model for the hypotheses A major conclusion from the study that increased class size improves MCAS performance runs counter to controlled experiments • Experiments or quasi-experiments performed on class size indicate a negative correlation between class size and performance ► SAGE E E S Slide 101 Class size and test scores Class size and test scores Inference: reduced class size causes improved performance The Tennessee Star Study NOTES: ▶ A controlled experiment ▶ Students randomly assiged to class sizes of 15 or 24 Long-lasting effects The Wisconsin SAGE study Students randomly assigned to small and large classes. Analysis of covariance (i.e, multiple regression) IS NOT a valid alternative to a randomized experiment E E ... O ... S ... Slide 102 Conclusions **Conclusions** Regression to the mean will be present whenever an explanatory variable (covariate) exhibits less than NOTES: perfect correlation with the response variable. The higher the variability in the covariate, the more the regression to the mean effect • For pre-test vs. Post-test analyses, regressing with pretest score as an explanatory variable DOES NOT remove the effects of pre-test differences. Better approaches: Repeated measures designs, hierarchical linear longitudinal models, or subtract pretest from posttest (called change score analysis) E E S