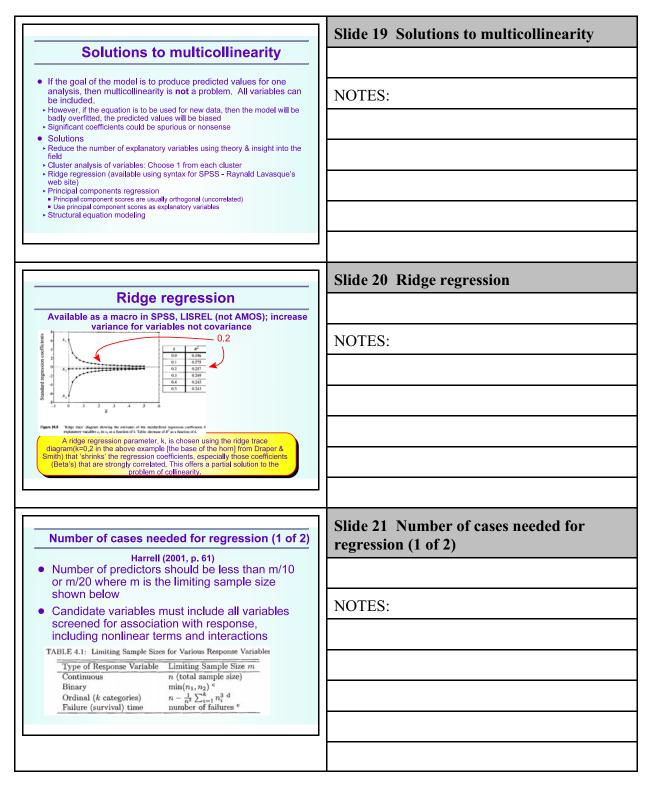
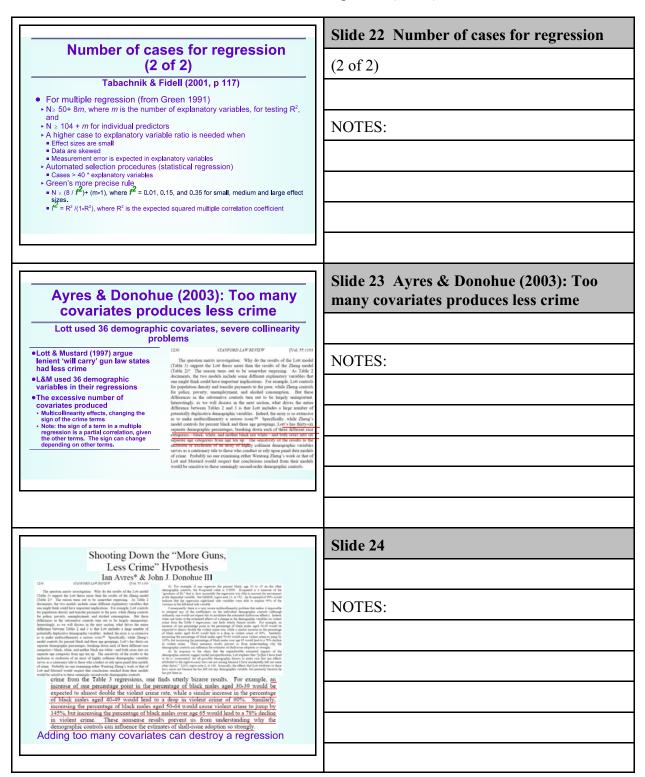
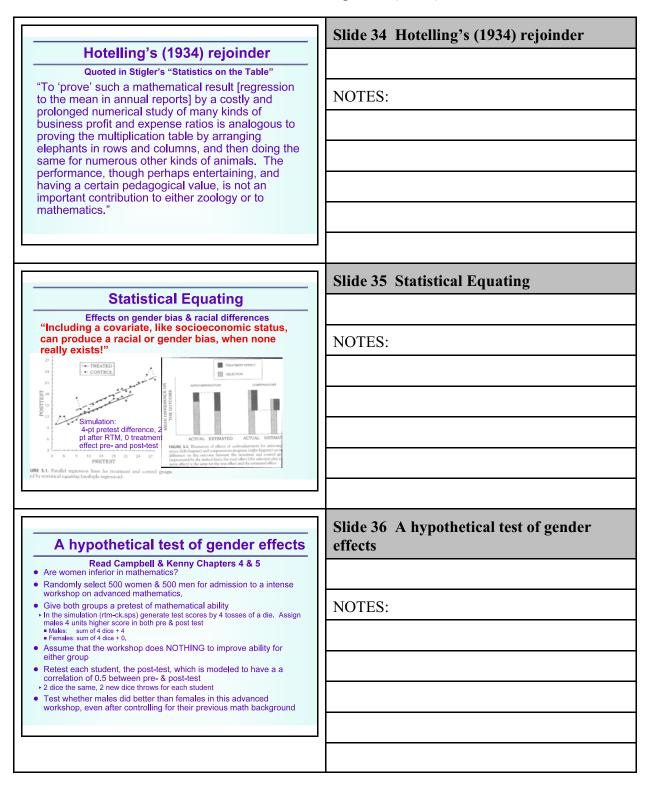

	Slide 1 Chapter 12: Strategies for Variable Selection (Class 2 of 2)
Chapter 12: Strategies for Variable Selection (Class 2 of 2)	NOTES:
Class 20, 4/22/09 W	
	Slide 2 HW 12 due Friday 4/24/09
HW 12 due Friday 4/24/09 Submit as Myname-HW12.doc (or *.rtf) • WIMBA sessions:	
Tonight & every Weds 10-11 pm Thursday Noon - 1 pm (log on from anywhere) New Homework due dates HW 12 10.28: El Niño and Hurricanes	NOTES:
Due Friday 4/24/09 Noon Note: There will 2 WIMBA sessions available on this topic HW 13 Cammen's ingestion rate data. Note that this was a 2003 final exam	
problem • Read Cammen (1980) & evaluate his regression model • Due Weds 4/29/09 Noon This problem will count doublet • Read Chapter 12: Selection of variables	
 Run my overfitting syntax: overfitting.sps Read Campbell & Kenney Chapters 4 & 5 on the regression artefact and gender inequities Run my Campbell & Kenny syntax: RTMCK.sps 	
 Kun ny campuer a kenny synax. Kriwick sps 	
HW12: Cammen model	Slide 3 HW12: Cammen model
Cammen (1980) compiled data from the literature on the ingestion rates of 22 deposit feeders. Deposit feeders are organisms that live in mud and sand and ingest mud and sand. Deposit feeders use the	NOTES:
organic matter in the mud and sand for growth. Table 1 shows the species from the literature, their ingestion rates, the fraction organic matter in sediment, and the body weights of individual deposit feeders. Cammen (1980) used regression to estimate the ingestion	
rate of deposit feeders (ING) (mg dry weight/day) using the fraction organic matter in the sediment (OM) and body weight of the deposit feeder (WT). He regressed log ₁₀ (ING) as the response variable with	
two explanatory variables log ₁₀ (W T) and log ₁₀ (O M). He deleted the three bivalves from his analyses because they appeared to be outliers, and based his regressions on the 19 non-bivalve species.	

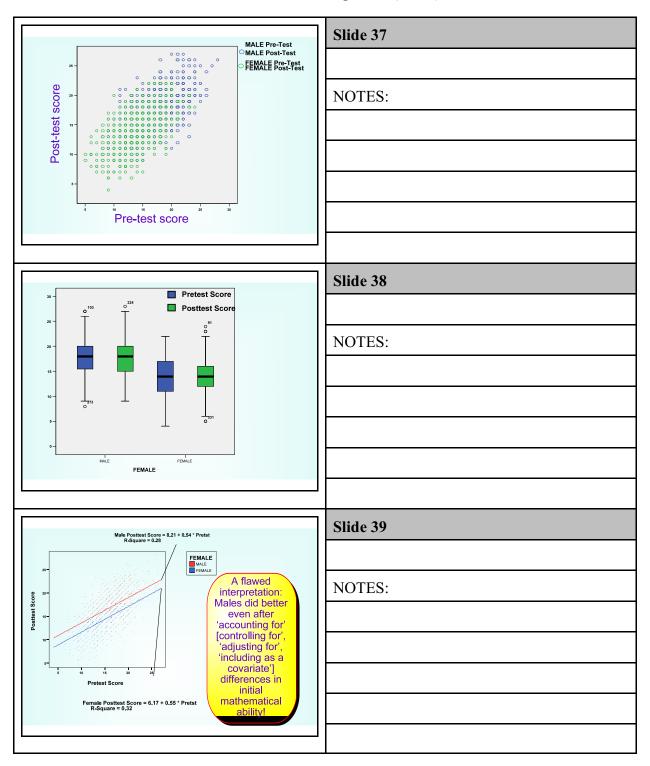

[
Table 1. Data from Cammon (1990). Loaded on Promotore as campon any, in case	Slide 4
years waited to examine the data (optional). The last 3 highlighted spectra are bival se- mediance (and cated under Taxona) WF (a the body weight of the deposit fixeder (day methods with ensemble methods). The interview of the interview of the deposit fixed of the spectra of the spectra of the spectra of the spectra of the interview of the spectra of the day.	
weight of the animal inmallignment). INGs in the ingenion rate in regular weight day. Camman acaled the ingenion rate to account for temperature effects (higher ingenion at higher temperature). Off is the organic renator contant () weight organic	
matter (1) total addiment dry volgiti (), oppressing as %). Species Taxon WY BYG CHE r ///ortobin-registral Genergoed molace 0.2 0.57 10 2 //ortobin-verytram Genergoed molace 0.2 0.56 17	NOTES:
3 Bahavitation Oligochemic (mmeld) 0.27 0.40 20.7 4 Hydridia autoca Crustenan 0.32 0.40 50	
6 Hydrobia ukwa Gasampod molluso 0.9 0.67 13 7 Nerda zuodinen Polythane (montid) 5.8 20.2 6.8	
11 Instance encourses and a comparation of a constant and a constant an	
15 Pediminia paulai Polythana (mentida 80 1667 0.7 16 Abarnischa paul an Polythana (mentida 300 3400 1.2 17 Abarnischa draganet Polythana (mentida 300 6400 0.4	
10 Available and an	
27 Portavita archia likelo molian 199 3.5 00 22 Secolo alega plana likelo molian 310 43 3.4	
	Slide 5 HW12: Cammen model
HW12: Cammen model	
 Answer each question and address each issue. Was Cammen (1980) justified in dropping the three bivalve molluscs from his regression equation? 	
 Consider both the case-wise diagnostic tests (residuals vs. predicted values, Cook's D, studentized residuals, and leverage values), and the results of fitting bivalves as a dummy 	NOTES:
 variable. Discuss the problems in using Cook's D, leverage, and studentized residuals in detecting outliers when more than one datum may be an outlier. 	
 There is no strictly right or wrong answer to this question, but you must justify your choice with evidence from the regression analyses. 	
 There were 5 groups of animals in Cammen's data. Is there evidence that the ingestion rates as a function of weight and organic matter differ among these 5 groups? 	
 Based on your analyses, produce a graph showing the relationship between ingestion rate, body weight and organic matter. 	
 Write the regression equation expressing the relationship between ingestion rate, organic matter, and body weight. Pay attention to significant figures, and include 	
 an estimate of the standard error of the coefficients. If you found that the animal groups differed in ingestion rate, your final graphs 	
and model should reflect this full model	
	Slide 6 Homework Presentations
Homework Presentations	
William Walker for HW 8	
 Steven Kichefski for HW 9 and 	NOTES:
Lisa Greber for HW10	
Energy of Masselwards Boder	
Ensencerit East and User Source University of Mecachandra Botton	

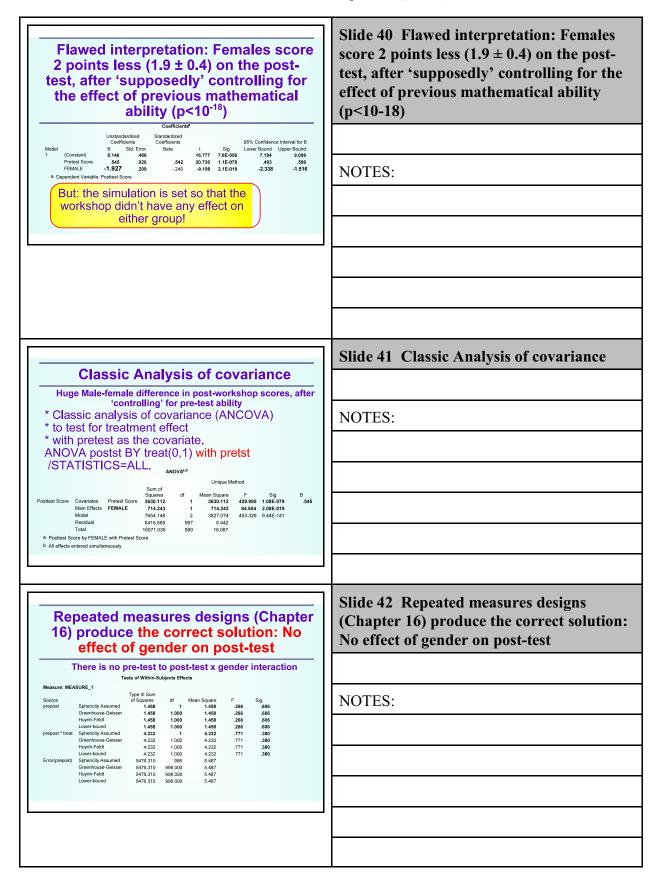

Chapter 12: Strategies for variable selection (continued)	Slide 7 Chapter 12: Strategies for variable selection (continued) NOTES:
Overfitting: why stepwise procedures should not be used to estimate p values.	Slide 8 Overfitting: why stepwise procedures should not be used to estimate p values. NOTES:
 Covariates: overfitting & multicollinearity Overfitting.sps 32 random variables, 100 cases Stepwise, forward & backward regression will usually always find a significant regression One solution: use 40 times as many cases as covariates (>1200 for a 32-variable model)! More guns, less crime Ayres, I and JJ Donohue (2003) Shooting down the more guns, less crime hypothesis. Stanford Law Review. Including many covariates, many correlated with the key explanatory variable (gun control laws) produces an artifact, showing an effect when none existed Peterson's voucher studies Kreuger critique: Including pre-lest scores as a covariate produces an effect when none existed 	Slide 9 Covariates: overfitting & multicollinearity NOTES:

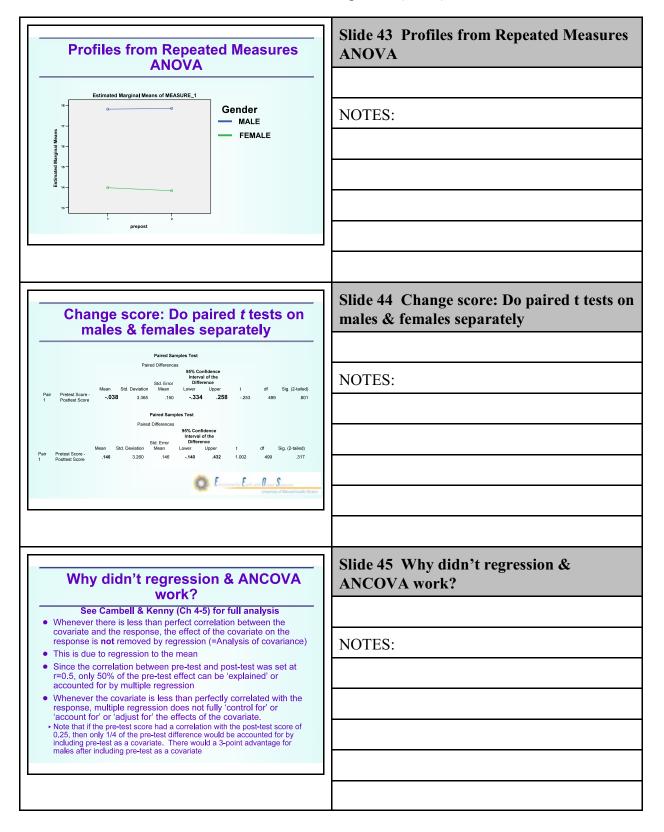
	Slide 10
Display 12.7	Shue IV
Simulated distribution of the largest of ten F-statistics	
10 random distributions used as explanatory vanables with 100 cases. One is found significant using an F test	NOTES:
(F-distribution with I and 98 df (theoretical curve) (theoretical curve)	
(Largest of ten F-to-enter values (histogram from 500 simulations)	
All Marken	
Encounter Encounter Encounter Connector	
	Slide 11 Gallagher's overfitting.sps
Gallagher's overfitting.sps	
 Overfitting simulation, inspired by Nontechnical Introduction to Overfitting in Regression-Type Models, Batyak (2004) Michael A Batyak. What You See May Not Be What You Get: A Brief, Nontechnical 	NOTES:
* Introduction to Overfitting in Regression-Type Models. * Psychoson Med 2004 65: 411-421. * Written by E Gallagher, revised 4/12/05.	NOTES:
 Generate 100 cases, with 32 normally distributed variates. new file, input program. 	
loop #i = 1 to 100. COMPUTE V1 = RV.normal (0,1). COMPUTE V2 = RV.normal (0,1).	
COMPUTE V32 = RV.normal (0,1). end case. end loop.	
end file. end input program. formats V1 to V32 (4(.2)	
exe.	
	Slide 12 Results of Stepwise Selection
Results of Stepwise Selection	
31 Random predictor variables	
Differentiation Continue Differentiation Differentiation 8 10	NOTES:
V1 A12 B01 A13 L10 B1 A13 B21 2 Conned 36 C 213 667 103 642 4 0 361 213 667 103 642 7 368 668 214 203 697 103 686 97 368 668 214 213 600 103 263 97 108 668 214 213 600 368 368	
P Gambani Long 201 204 201 201 101 101 101 V1 -00 -00 -00 -00 -00 -00 V1 -00 -00 -00 -00 -00 -00 -00 V1 -00 -00 -00 -00 -00 -00 -00 -00 V1 -00 -00 -00 -00 -00 -00 -00 -00 V1 -00 -00	
Formandi D-31 Dir D-32 D-30 D-30 D-31 AD1 V 4.20 4.0	
V2 100 100 241 000 300 a Dependent/synatius V1 25 Construct 286 286 300 320 489 25 Construct 296 380 391 320 489	
Backward (added V23, V19)	
4 Generativadas vit	

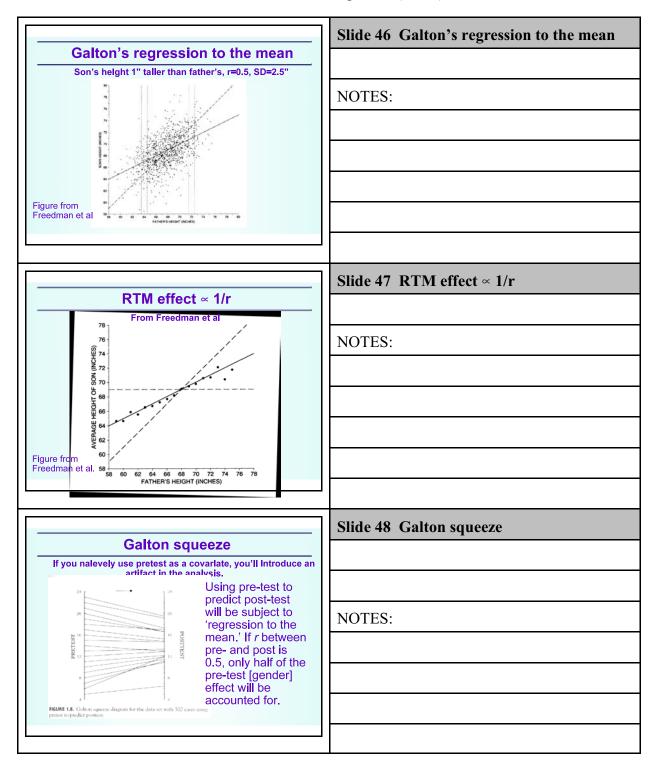
Harrell (2002, p. 56-57) on stepwise	Slide 13 Harrell (2002, p. 56-57) on stepwise
 Harrell's conclusion: Don't use stepwise! It yields R² values that are biased high F and x² distributions don't have their claimed distributions SE of regression coefficients are biased low and CI's and predicted values that are falsely narrow P-values too small Regression coefficients biased high in absolute value and need shrinkage. 	NOTES:
 Rather than solving the problem of collinearity, variable selection is made arbitrary by collinearity It allows us not to think about the problem 	
	Slide 14 Overfitting: too many covariates
Overfitting: too many covariates Harrell (2001, p. 60) "When a model is fitted that is too complex, that is	
it has too many free parameters to estimate for the amount of information in the data, the worth of the model (<i>e.g.</i> , R^2) will be exaggerated and future observed values will not agree with predicted	NOTES:
values. In this situation overfitting is said to be present, and some of the findings of the analysis come from fitting noise or finding spurious associations between X and Y"	
Number of cases needed for regression (1 of 2)	Slide 15 Number of cases needed for regression (1 of 2)
 Harrell (2001, p. 61) Number of predictors should be less than m/10 or m/20 where m is the limiting sample size shown below 	NOTES:
Candidate variables must include all variables screened for association with response, including nonlinear terms and interactions	NOTES:
TABLE 4.1: Limiting Sample Sizes for Various Response Variables Type of Response Variable Continuous n (total sample size) Binary min (n_1, n_2) °	
Ordinal (k categories) $n - \frac{1}{n^2} \sum_{i=1}^{k} n_i^2 d$ Failure (survival) timenumber of failures e	

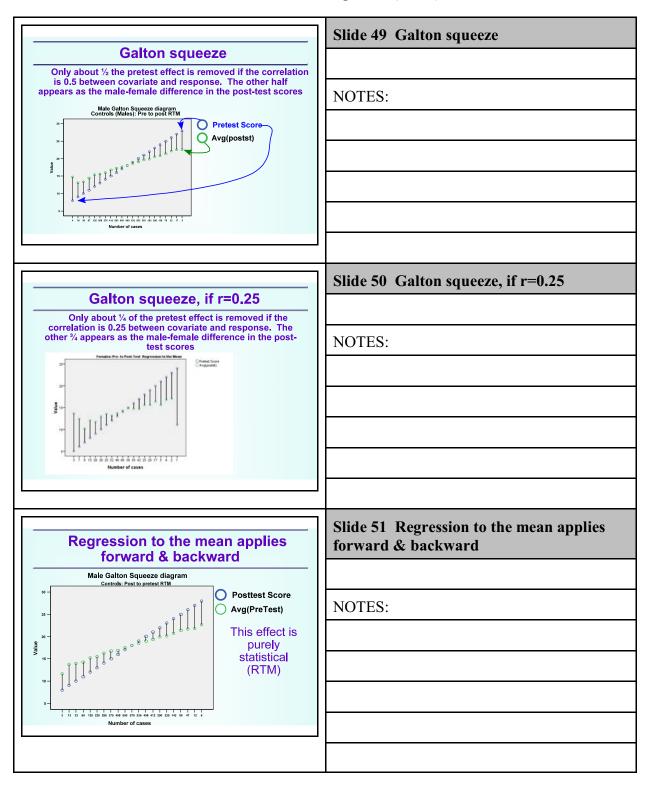


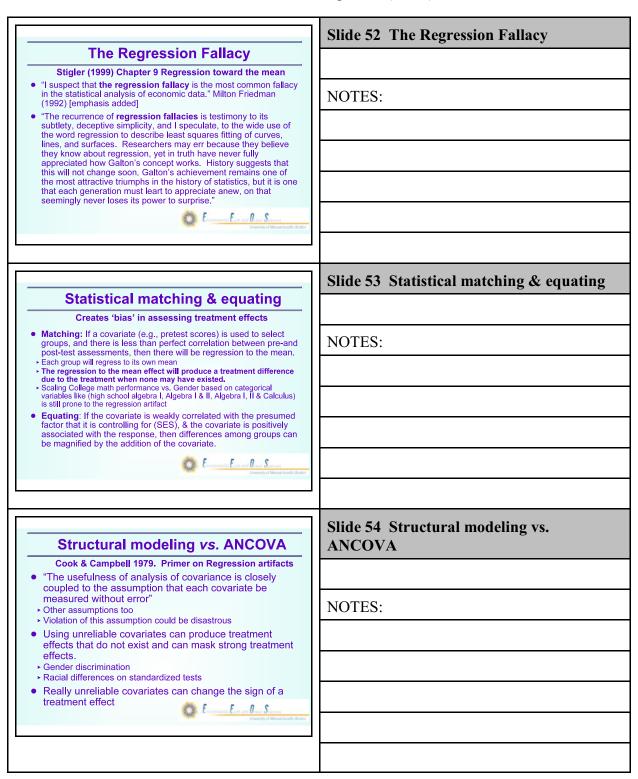


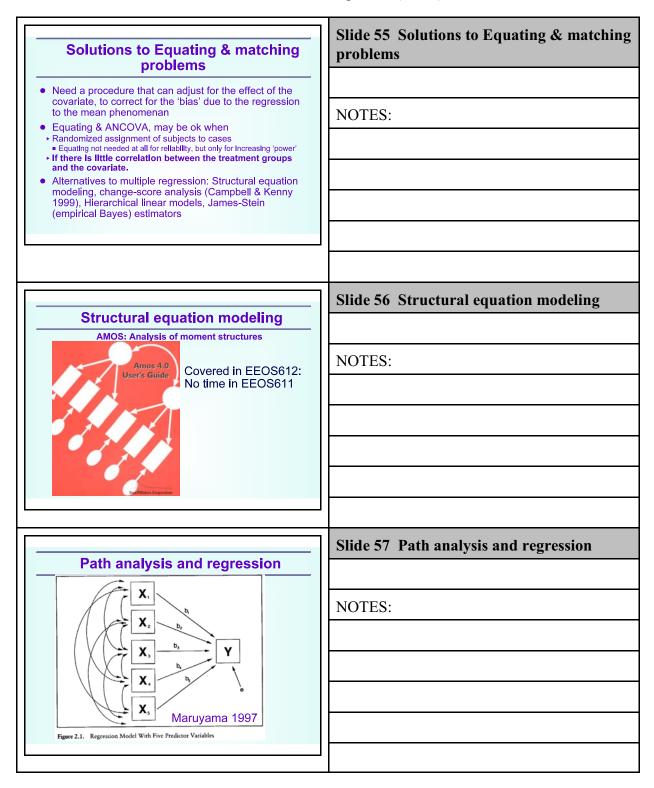

	Slide 25 Case 11.2 Gender discrimination
	NOTES:
Case 11.2 Gender discrimination	
Sri Discrimination Data Rangen Join (17) John Doubl Johnson, Je Lington Lambar,	Slide 26
Image: State If there Image: State If there Image: State If there If there<	
Article evidence for sex discrimination AFTER age, education and experience are 'accounted for'? Note, that Sleuth's approach is subject to 'the regression artifact' (Campbell & Kenny 1999)	NOTES:
Sleuth's approach is subject to 'the	
regression artifact'	
Main Main <th< th=""><td></td></th<>	
	Slide 27
Display 12.9 Main Effect Variables Quadratic Variables Interaction Variables	NOTES:
s = seniority $t = s^2$ $m = s \times a$ $c = a \times c$ $a = agc$ $b = a^2$ $n = s \times c$ $k = a \times x$ $c = cducation$ $f = c^2$ $v = s \times x$	
$\mathbf{x} = $ experience $\mathbf{y} = \mathbf{x}^2$	
Environmental Event and Over Survey	

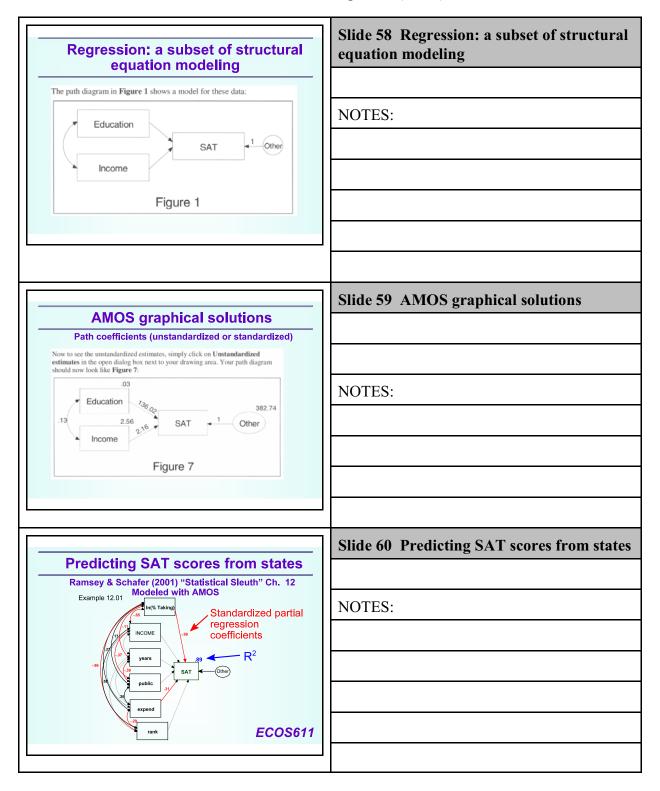

	Slide 28
Baretise poterior analysis of the difference between male and female hegeNotednn<	NOTES:
SPSS output using forward, backward	Slide 29 SPSS output using forward, backward or stepwise
Aake Anemiy Selection Criteria Anemiya Model Summary! Schwarz Information Prediction Bryesian Model Criterion Criterion 1 358.137 368 309.177 2 407.042 7F1 23.681 399.444 3 4107.137 7.31 10.082	NOTES:
$ \begin{cases} 4 & 415.957^6 & .691 & 13.30 & .402.294 \\ 5 & .415.552^* & .655 & .766 & .404.356 \\ 6 & .424.539^6 & .651 & .7718 & .408.676 \\ 7 & .427.248^8 & .612 & .250 & .412.053 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
h. Dependent Variable: in (Salary)	
	Slide 30 Has gender equity really been rejected?
Has gender equity really been rejected? Campbell & Kenny: statistical equating often produces gender discrimination when there is none, and racial differences when there are none	NOTES:

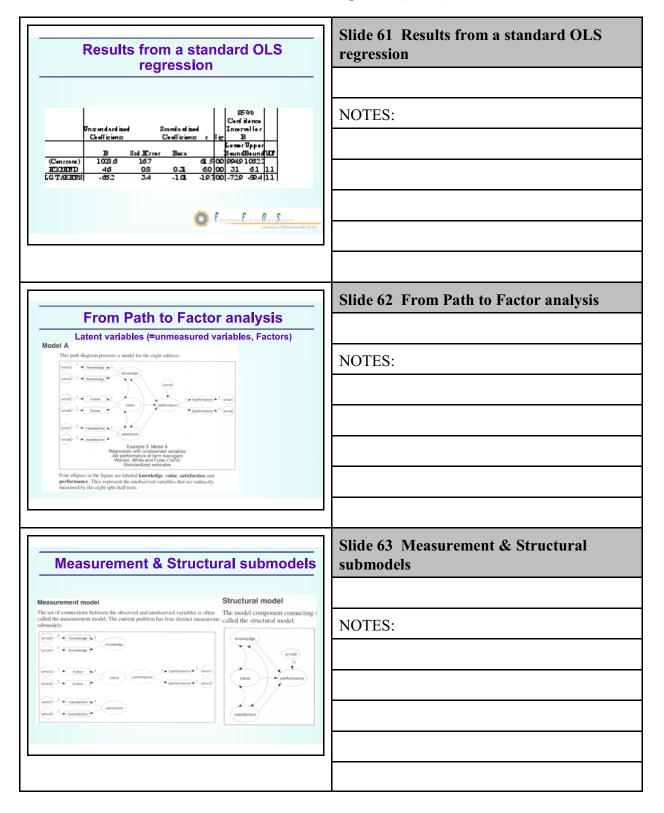


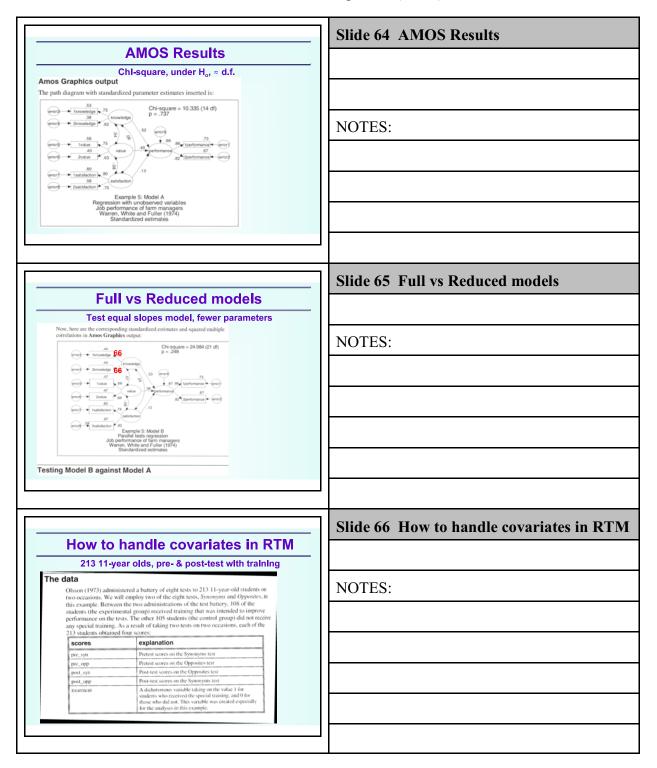


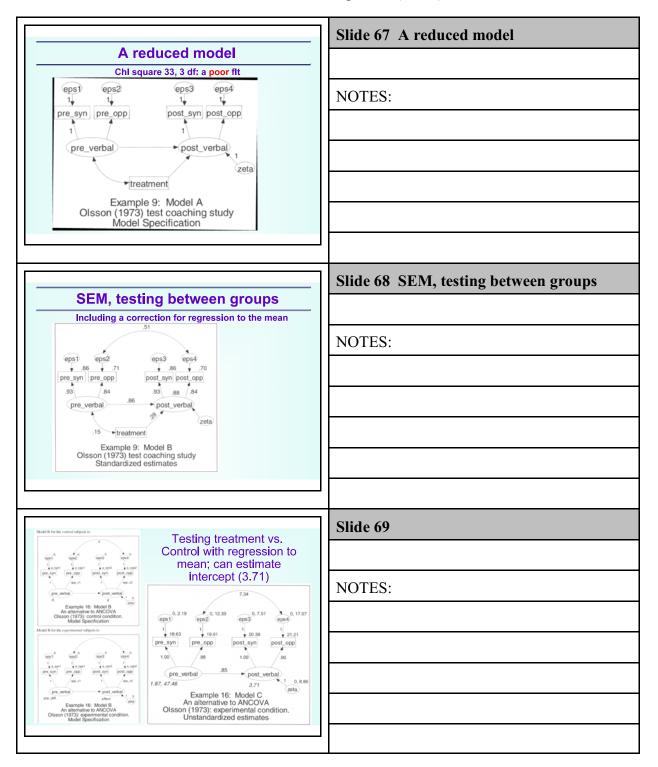


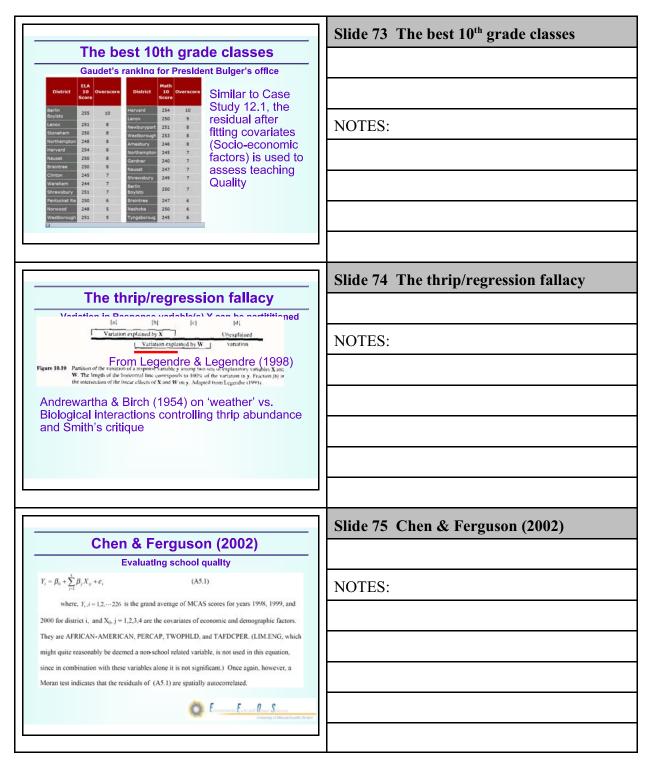


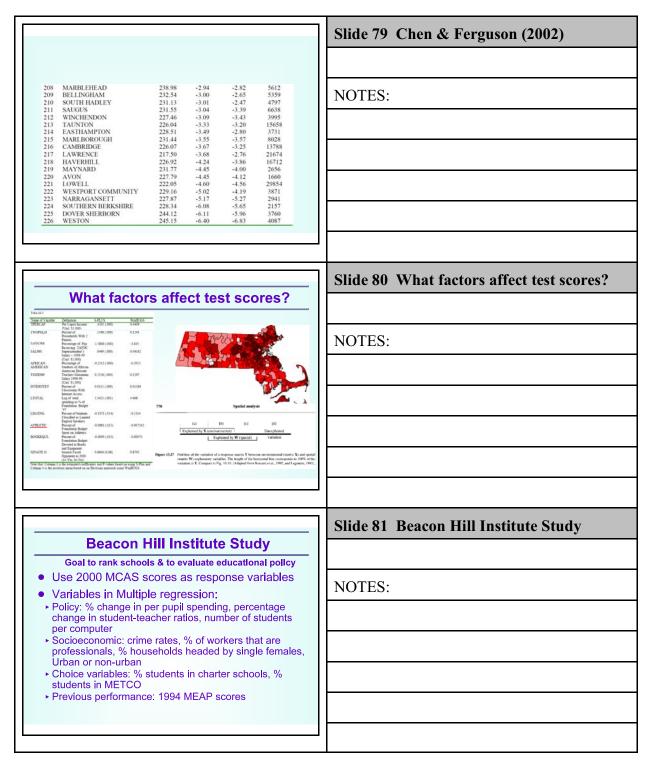


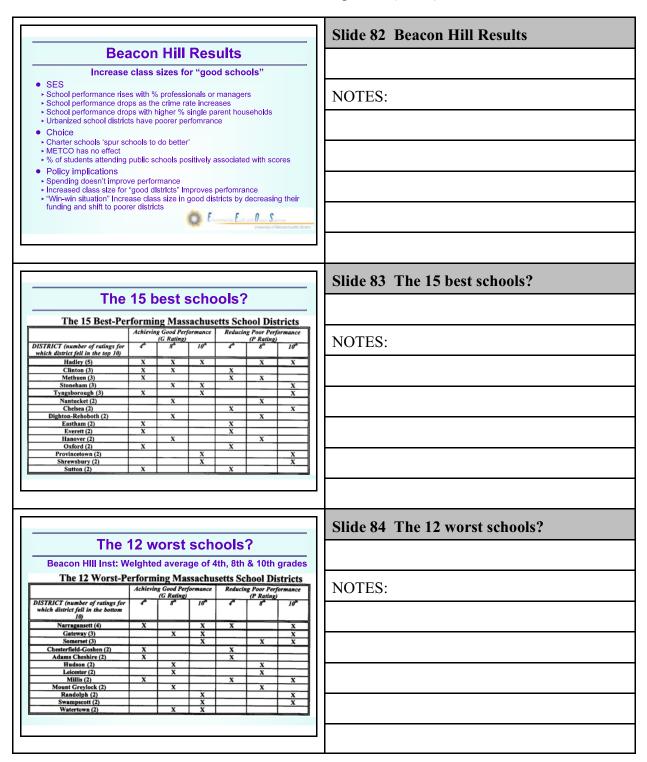


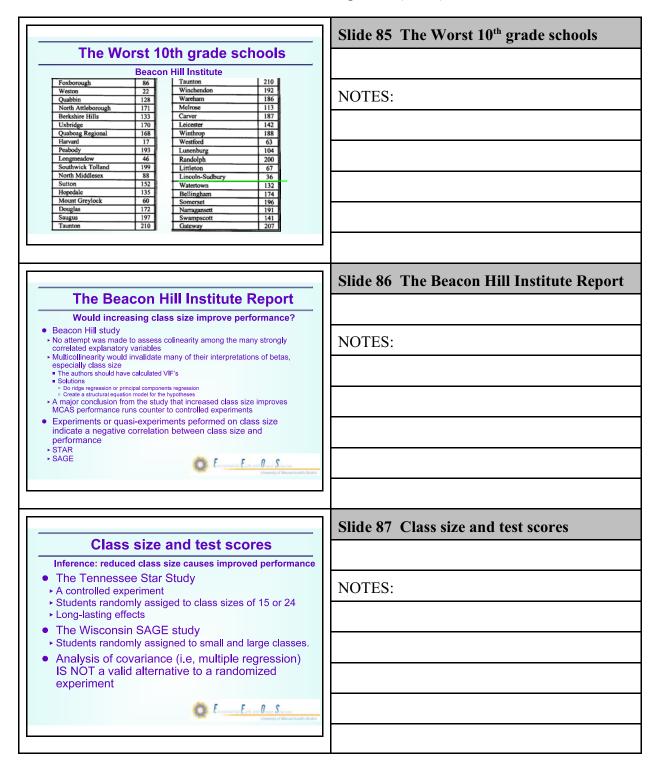











	Slide 70 MCAS Analyses and the thrip fallacy
MCAS Analyses and the thrip fallacy	NOTES:
Applications to SAT & MCAS	Slide 71 Applications to SAT & MCAS
 SAT scores: can be analyzed using SEM % Taking exams and expenditure per students are the most important variabels How should socioeconomic factors be included in evaluating schools with MCAS Strong collinearity among socio-economic variables 	NOTES:
 Gaudet & UMASS Donahue Institute Socioeconomic variables are strongly correlated Used principal component regression (didn't need to) Could have used ridge regression Tuerck, Beacon Hill Institute Class size increases MCAS scores: probably an artifact, but need original data. Chen & Ferguson (2002) simultaneous spatial autoregressive 	
model (SAR)	
Coudet's Denking of MA Schools	Slide 72 Gaudet's Ranking of MA Schools
Gaudet's Ranking of MA Schools 1998 UMASS/Amherst Ph.D. and Donahue Institute Annual reports	
reports Gaudet's method for evaluating school quality Socioeconomic variables from the 1990 census database, per student expenditure from MA DOE, MEAP results 6 variables used in a "Major Axis" or principal components regression average education level, average income, poverty rate, single-parent 	NOTES:
status, language spoken, and percentage of school-age population enrolled in private schools. • 86% of the variation in 1998 MCAS score is due to socioeconomic background of the students	
 Reduced to 85%, 83%, 81% and 81%MA Rerank 240 communities after controlling for 6 socioeconomic factors. 	

				Slide 76	Chen & Fergus	son (2002)
Just as in the earlier a	equation we employ spatial mo	dale Hara tha modal i				
		uers, mere une moder i		NOTES:		
	$Y_i = \beta_0 + \sum_{j=1}^n \beta_j X_{ij} + \delta_i + \varepsilon_i$		(A5.2)			
	estimate both a Conditional Sp spatial approach estimated with					
coefficients and p-values are l		r windoos. The cou	inded			
	S-PLUS	WinBuGS				
INTERCEPT AFRICAN	221.54(.00) -0.160(.00)	224.20 -0.162				
PERCAP	0.594(.00)	0.602				
TWOPHLD	0.122(.00) -2.124(.00)	0.125				
			-	Slide 77	Spatially corre	lated residuals
MCAS Three Year Gran	nd Average Scores 1998-	2000		NOTES:		
				NOTES:		
A Metro	34					
And the set of						
		g1102.shp 217.27 - 224.87				
	The second	224.87 - 231.13 231.13 - 235.74 235.74 - 240.05				
	· · · ·	240.05 - 245.6				
	· · · · · · · · · · · · · · · · · · ·	N				
		**				
		****** E == 0				
	5 - C - C - C - C - C - C - C - C - C -	**************************************	n S aman Ny d ^a Masakhaseta Batan			
	2 2 2 2 2 2	w 🔆 t E	er Sienere rely of Hassachustry Briter			
		₩₩ ₽ E	er Stamoop Henselwerts Boder	Slide 78	Chen & Fergus	son (2002)
	* • • •	Une	n Samuel nig of Henselworth Bester	Slide 78	Chen & Fergus	son (2002)
(See Text – Details RANK SCHOOL	Is of Economic/Demographic E GRADV890 RESS	(nor	ayət Məsərbəsəti Botor 3 YR	Slide 78 NOTES:	Chen & Fergus	son (2002)
RANK SCHOOL	GRADV890 RES8	puntion Below) 190 BAYRE890	ay d Beachadt Belor 3 YR TOT TUDS		Chen & Fergus	son (2002)
RANK SCHOOL 1 AMHERST PELHAM 2 LENOX	GRADV890 RES8 237.35 6.7 239.78 6.0	unation Below) (90) BAYRE890 (3) 7.29 (3) 5.37	ay d Beachadt Edde 3 YR TOT TOT TOT TOT TOT TOT TOJ 8709 1701		Chen & Fergus	son (2002)
RANK SCHOOL AMHERST PELHAM LENOX HARVARD 4 WESTBOROUGH	GRADV890 RES8 237.35 6.7 239.78 6.0 245.60 5.5 242.76 5.0	unation Below) 990 BAYRE890 3 7.29 3 5.37 7 6.10 1 5.16	3 VR TOT TOT TOT TOUS 8709 1701 2451 2451		Chen & Fergus	son (2002)
RANK SCHOOL 1 AMHERST PELHAM 2 LENOX 3 HARVARD 4 WESTBOROUGH 5 BELMONT 6 NAUSET 7 NORTH READING	GRADV890 RES8 237.35 6.7 239.78 6.0 245.60 5.5	unation Below) 90 BAYRE890 5 3 5.37 7 6.10 1 5.16 1 4.02 6 3.13	3 YR TOT TUDS 8709 1701 2451		Chen & Fergus	son (2002)
RANK SCHOOL 1 AMHERST PELHAM 2 LENOX 3 HARVARD 4 WESTBOROUGH 5 BELMONT 6 NAUSET 7 NORTH ARPION 8 NORTH ARPION 9 ACTON BOXBOROUC	GRADV890 RES8 237,35 6.7 239,78 6.0 245,60 5.5 242,76 5.0 233,95 4.6 238,97 4.4 241,52 4.4 241,52 4.2 GH 245,52 4.2 GH 245,52 4.2	quation Below) 90 BAYRE890 3 7.29 3 5.37 7 6.10 1 5.16 1 4.02 6 3.13 2 4.32 0 4.21 0 4.49	3 YR 33 YR TOT TUDS 8709 1701 2451 6251 7083 6837 2468 6406 10007		Chen & Fergus	son (2002)
RANK SCHOOL 1 AMHERST PELHAM 2 LENOX 3 HARVARD 4 WESTBOROUGH 5 BELMONT 6 NAUSET 7 NORTH READING 8 NORTH AMPTON 9 ACTON BOXBOROUC 10 HAMILTON WENHAM 11 SANDWICH	GRADV890 RES8 237,35 6.7 239,78 6.0 245,60 5.5 242,76 5.0 233,95 4.6 238,97 4.4 244,52 4.2 244,52 4.2 26H 245,52 4.2 GH 245,52 4.2 GH 245,52 4.2 M 241,37 3.8 240,02 3.7 3.4	puntion Below) 90 BAYRE890 3 7.29 3 5.37 7 6.10 1 5.16 1 4.02 6 3.13 2 4.32 0 4.21 0 4.21 0 4.29 9 3.62	3 YR 3 YR TOT TUDS 8709 1701 2451 6251 7083 6837 4468 6101 0007 5026		Chen & Fergus	son (2002)
RANK SCHOOL 1 AMHERST PELHAM 2 LENOX 3 HARVARD 4 WESTBOROUGH 5 BELMONT 6 NAUSET 7 NORTH READING 8 NORTH AMPTON 9 ACTON BOXBOROUC 10 HAMLION WENHAM 11 SANDWICH 12 ARLINGTON 13 NEWTON	GRADV890 RES8 237.35 6.7 239.78 6.0 245.60 5.5 242.76 5.0 243.95 4.6 238.97 4.4 244.52 4.2 244.52 4.2 26H 245.32 240.02 3.7 239.12 3.4 243.60 3.3	puntion Below.) 190 BAYRE890 3 7.29 3 5.37 7 6.10 1 5.16 1 4.02 6 3.13 2 4.32 0 4.21 0 4.49 9 3.64 9 3.04 5 3.26	3 YR 3 YR TOT TOT TUDS 8709 1701 2451 2451 2451 2451 2451 2451 2451 245		Chen & Fergus	son (2002)
RANK SCHOOL 1 AMHERST PELHAM 2 LENOX 3 HARVARD 4 WESTBOROUGH 5 BELMONT 6 NAUSET 7 NORTH READING 8 NORTH AMPTON 9 ACTON BOXBOROUCH 10 HAMLTON WENHAM 11 SANDWICH 12 ARLINGTON	GRADV890 RES8 237.35 6.7 239.78 6.0 245.60 5.5 242.76 5.0 243.95 4.6 238.97 4.4 241.52 4.2 GH 245.32 4.2 GH 245.32 4.2 GH 241.37 3.8 240.02 3.7 29.12	puntion Below.) 190 BAYRE890 3 7.29 3 5.37 7 6.10 1 5.16 1 4.02 6 3.13 2 4.32 0 4.21 0 4.49 9 3.64 9 3.04 5 3.26	3 YR 3 YR TOT TOT TUDS 8709 1701 2451 6251 7083 6837 4468 6610 10307 5926 7946 8153		Chen & Fergus	son (2002)

	Slide 88 Conclusions
Conclusions	
 Regression to the mean will be present whenever an explanatory variable (covariate) exhibits less than perfect correlation with the response variable. The 	NOTES:
higher the variability in the covariate, the more the regression to the mean effect	
 For pre-test vs. Post-test analyses, regressing with pretest score as an explanatory variable DOES NOT remove the effects of pre-test differences. 	
 Better approaches: Repeated measures designs, hierarchical linear longitudinal models, or subtract pretest from posttest (called change score analysis) 	
Encourse Encourse Constants Inter-	