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Figure 1 Schäfer’s (1972) drawing of Polydora ciliata. This spionid feeds primarily as a surface deposit feeder, but can 

act as a subsurface deposit feeder, especially when excavating its burrows. Taghon et al. 1980 showed that 
members of this polychaete family can also feed as suspension feeders by dangling their coiled, mucous-covered 

ciliated palps in the near-bed flow to capture suspended particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Assignment 

TOPIC 

What are the fundamental biological units of benthic ecology? Are they species, functional 
groups, guilds or combinations of these categories? 

REQUIRED 

Cammen, L. M. 1980. Ingestion rate: an empirical model for aquatic deposit feeders and 
detritivores. Oecologia (Berlin) 44: 303-310. 

Jumars, P. A. and K. Fauchald. 1977. Between-community contrasts in successful polychaete 
feeding strategies. Pp. 1-20 in B. C. Coull, ed., Ecology of marine benthos. University of 
South Carolina Press, Columbia. [This paper introduced the guild classification scheme 
used later in the comprehensive Fauchald & Jumars Diet of Worms.] 

SUPPLEMENTAL 

Boudreau, B. P. 1994. Is burial velocity a master parameter for bioturbation? Geochim. Cosmochim. Acta. 58: 1243­
1249. [Db%flux of organic matter; flux of organic matter %burial velocity. Mixing depth is 9.8±4.5cm] 
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Boudreau, B. P. 1998. Mean mixed depth of sediments: the wherefore and the why. Limnol. Oceanogr. 43: 524-526. 

[Mixed layer depth has an mean depth of 9.8 cm [documented in Boudreau 1994; BPB’s model predicts 9.7 
cm.] 

Fauchald, K. and P. A. Jumars. 1979. The diet of worms: a study of polychaete feeding guilds. Oceanogr. Mar. Biol. Ann. 
Rev. 17: 193-284. [Read the Introduction (2 pp), the section on spionids, and the theoretical framework and 
description of their guild classification (p. 256-277).] 

Jaksic, F. M. 1981. Abuse and misuse of the term “guild” in ecological studies. Oikos 37: 397-400. [Guilds should be 
recognized by quantitative, non a priori methods,..., and their relationship with deterministic processes such as 
competition should be evaluated rather than assumed.] 

Miller, C. B. 2004. Biological Oceanography. Blackwell Science, Malden MA. 402 pp. Chapter 12. 

Woodin, S. A. and J. B. C. Jackson. 1979. Interphyletic competition among marine benthos. Amer. Zool. 19: 1029-1043. 
[They classify `functional groups' as: `A functional group includes all organisms which use and affect their 
environment in approximately similar ways. (This is rather different from the concept of a guild [Root, 1967] 
which is defined solely on the basis of modes of exploitation of resources). We define functional groups of 
benthos by the ways in which they exploit their substratum environment and the nature of their effects on the 
substratum. Criteria used to define functional groups in sediments and hard substrata differ according to 
apparent differences in the ways such organisms compete.(p. 1030)' Woodin proposes 5 functional categories 
for the soft-bottom benthos.] 

Comments on Guilds 

E. O. Wilson (1992) made the case in his book “The Diversity of Life” that species are the 
fundamental units of ecology and evolutionary biology. He discounts the role of functional 
groups, guilds, trophic classifications based on energy flow and the like. Benthic ecologists need 
to assess whether the biological species is the fundamental unit with which to analyze 
community structure and the effects of the infauna on benthic geochemistry. Warwick (1988), 
the British benthic ecologist, argues that the effects of pollution are evident at the familial and 
generic levels. Species identifications aren’t necessary. Could it be that functional groups, or 
feeding guild classifications, are all that are needed to assess the role of benthos in 
interdisciplinary studies of the benthos? I think not, but feeding guilds and functional groups play 
an important role in understanding benthic communities. 

‘PIGEON HOLES’ FOR SOFT-BOTTOM BENTHIC FEEDING 

An important early stage in any science is the development of conventionalist theories, or 
effective “pigeon holes” for classifying observations. In soft-bottom benthic ecology, there are a 
variety of pigeon holes for benthic organisms: 

I.	 Early attempts at classification, old but still accepted dichotomies: 
A.	 Meiofauna vs Macrofauna 

1.	 Meiofauna: 
a.	 Permanent. 

-The mesopsammon or interstitial 
fauna are a subset of the permanent 
meiofauna. 
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b.	 Temporary: most juvenile stages of the macrofauna start life as 
members of the meiofauna. 

2.	 Macrofauna 
a.	 Infauna 

(1)	 microphages (feed on many food items simultaneously. In 
the older literature detritivore was used to describe both 
surface and subsurface deposit feeders) 
(a)	 surface-deposit feeders 
(b)	 subsurface deposit feeding=burrower 
(c)	 suspension feeders 
(d)	 interface feeders (switch readily from surface 

deposit feeding and suspension feeding) 
(2)	 macrophages (feed on one food item at a time) 

(a) scavengers 
(b) predators 
(c) herbivores 
(d) omnivores 

b.	 Epifauna 
(1)	 mobile 

(a) scavengers 
(b) predators 
(c) deposit feeders 

(2)	 sedentary 
B.	 Sedentary vs. mobile (The polychaete families used to be divided into the 

functional groups Sedentaria and Errantia, but this dichotomy does not correspond 
to the known morphological or molecular phylogenies.) 

II.	 The Fauchald & Jumars guild classification for polychaetes: 
A.	 Macrophage vs. microphage 

1.	 macrophages take particles one at a time. 
a.	 plant 
b.	 animal 
c.	 carrion 

2.	 Microphages handle food particles in bulk: 
a.	 suspension = filter feeders 

(1)	 tentaculate feeders 
(2)	 mucous web feeders. 

b.	 surface deposit feeders take food from the surface 
c.	 subsurface deposit feeders = burrowers. 
d.	 subgroups of each 

(1)	 jawed 
(2)	 unarmed eversible pharynges 
(3)	 tentaculate structures. 

B.	 Motility 
1.	 Sessile: Throughout their life span do not move sufficiently to feed in an 

area different from that in which they settled as larvae 
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2.	 Discretely motile: capable of moving between bouts of feeding. 
3.	 Motile: move independently of feeding, or in which efficient use of the 

feeding apparatus requires locomotion 

THE GUILD CONCEPT IN BENTHIC ECOLOGY 

The primary definition of guild from a dictionary is: ‘An organization of persons with related 
goals and interests.’  Root (1967), in a study of bird feeding, introduced the term ‘guild’ to 
ecology: 

“[A guild is] a group of species that exploit the same class of 
environmental resources in a similar way. This term groups 
together species, without regard to taxonomic positions, that 
overlap significantly in their niche requirements.” 

Terborgh & Robinson (1986) and Hawkins & MacMahon (1989) provide nice reviews of the 
applications of the guild concept in ecology in general. Most applications of the guild concept 
follow Root (1967) and restrict the usage to taxon-guilds, or members of the same higher taxon 
which utilize resources in similar ways. 

Fauchald & Jumars’ Polychaete Guilds 

The concept was first applied to polychaetes by Jumars & Fauchald in 1977 and in expanded 
form in their 1979 magnum opus on polychaete feeding biology, ‘The Diet of Worms’. One 
major difference between Fauchald & Jumars’ (1979) guilds and others is that Fauchald & 
Jumars do not include the presence of a tube as an important character. The Jumars-Fauchald 
feeding classification is cited often, but there have only been a few explicit applications of the 
scheme at the community level. Maurer et al. (1981) applied the Fauchald-Jumars scheme to the 
analysis of the effects of drilling fluids on marine benthos (he didn’t see much of an effect). 
Trueblood (1985) applied a slightly modified version of the Fauchald-Jumars scheme to the 
analysis of the recruitment of tropical polychaetes around worm tubes in a Puerto Rican Bay. 

Tables 1 and 2 show the classification of common Boston Harbor and Massachusetts Bay 
families and genera using Fauchald & Jumars’ (1979) feeding guilds. I have added a few new 
categories to include the abundant molluscan and crustacean fauna in the feeding guild scheme. 
Surface deposit feeders are defined as deposit feeders that obtain their food at the sediment-water 
interface; these organisms can live within the sediments. Subsurface deposit feeders feed on bulk 
sediments located beneath the sediment-water interface. 
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Table 1 Fauchald & Jumars’ (1979) microphagous 
feeding guilds. Feeding guilds not found in Fauchald & 
Jumars are listed in italics. Common Boston Harbor taxa 
listed. � indicates a classification containing no Boston 
Harbor taxa. Shading indicates groups responsible for 
bioturbation. 

MOTILITY 

Motile 
Discretely 

Motile 
Sessile 

MICROPHAGES 

(HANDLE FOOD 

ITEMS IN BULK) 

Subsurface 
Deposit 
Feeders 

Jaws or 
maxillae 

Dorvilleidae 
Eunicidae 
Glyceridae 
Hesionidae 
Lumbrineridae 
Nephtyidae 

� � 

Unarmed eversible 
pharynges 

Capitellidae 
Cossuridae 
Cossura 
Opheliidae 
Orbiniidae 
Pectinaridae 
Phyllodocidae 
Scallibregmidae 
Oligochaetes 

Capitellidae Maldanidae 

Tentacles, palp 
proboscides 

Spionidae 
Nuculanidae 
Nucula 
Yoldia 

� � 

Surface 
Deposit 
Feeders 

Jaws, 
radulae 

Dorvilleidae 
Lumbrineridae 
Gastropods 

Nereidae 
Onuphidae � 

Unarmed eversible 
pharynges, 

Inhalant siphons 

Capitellidae 
Capitella 
Paraonidae 
Aricidea 
Protodrilidae 
Oligochaeta 

Arenicolidae 
Tellinid bivalves � 

Tentacles or 
antennae 

Cirratulidae 
Flabelligeridae 

Cirratulidae 
Flabelligeridae 
Magelonidae 
Oweniidae 
Sabellidae 
Spionidae 
Terrebellidae 
Amphipods 

� 

Suspension 
Feeders 

Mucous webs, 
Lamellibranch � Mya spat Mya adults 

Tentacles � Sabellids 
Spionids 

Sabellids 
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Table 2 Fauchald & Jumars’ (1979) macrophagous 
feeding guilds. Feeding guilds not found in Fauchald & 
Jumars are listed in italics. Common Boston Harbor taxa 
listed. � indicates a classification containing no Boston 
Harbor taxa. Shading indicates groups responsible for 
bioturbation. 

Motile 

MOTILITY 

Discretely 
Motile 

Sessile 

Herbivores 

Jaws 
or Maxillae 

Dorvilleidae 
Lumbrineridae 
Lumbrineris 
Nereidae 
Nereis 
Syllidae 
Harpacticoid 
copepods 
Isopods 
Cyathura 
Ostracods 

Eunicidae 
Onuphidae 
Amphipods � 

MACROPHAGES 

(HANDLE FOOD 

ITEM S ONE AT A 

TIME) 

Carnivores 

Non-Jawed 

Jaws, 
maxillae, 
radulae 

Paraonidae 

Dorvilleidae 
Eunicidae 
Hesionidae 
Lumbrineridae 
Nereidae 
Onuphidae 
Syllidae 
Shrimp 
Crangon 
Gastropods 
Acteocina 

� 

Eunicidae 
Glyceridae 
Goniadidae 

Lumbrineridae 
Nereidae 

Onuphidae 
Polynoidae 

� 

� 

Non-Jawed 
Phyllodocidae 
Eteone � � 

Criticism of Fauchald & Jumars’ polychaete feeding guilds 

Fauchald & Jumars (1977, 1979) based their feeding guilds on observations of thousands of 
polychaete worms and reviews of the entire polychaete feeding biology literature, but their 
classification system was designed to be applied a priori. Jaksic (1981), without referring 
specifically to Jumars & Fauchald, said that this was abusing the guild concept. He argued that 
guilds could only be identified after the study of the groups in their natural environment to 
determine if they were utilizing the same resource. Fauchald & Jumars devote too much 
emphansis on morphological features that may not correspond to differences in the resource 
utilized. 

Pianka (1980) argued that guilds were arenas for competition. Terborgh & Robinson (1986) 
defined guilds as species deriving sustenance from shared resources and argued that guilds could 
be used to compare the functional similarity of communities that shared no species. It is the 
shared resource that defines members of the guild, not the mouthparts or other morphological 
features used to acquire the resource. Brown et al. (1986) applied the guild concept to their 
studies of competition between seed-gathering rodents and ants. This interphyletic competition 
could not have been inferred from the body plans of these organisms, as Fauchald & Jumars 
(1979) described guilds. They discovered that by increasing rodent density, ant density declined 
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(and vice versa) and that the growth rate of both rodents and ants was affected by the supply of 
their shared scarce resource, seeds. 

Alternatives and extensions to Fauchald-Jumars guilds 

Conveyor-belt feeders 

There are some viable alternatives to the Fauchald & Jumars (1979) guild classification. 
Rhoads in a series of papers described the action of stabilizing and destabilizing deposit feeders. 
A subset of the latter group is made up of conveyor-belt species, species which feed at depth and 
defecate at the surface. Jumars & Fauchald (1977) made the bold assertion that virtually all 
polychaetes that feed at depth defecate near the surface, so all subsurface deposit feeders might 
be conveyor-belt species. Their observation is now known to be false. Subsurface and surface 
deposit feeders can defecate at depth. One of the characteristic features of this group is that they 
produce feeding cavities at depth, so they are in some ways different from (and probably a subset 
of) Fauchald & Jumars’ (1979) burrower guild. Powell (1977) divided deposit feeders into 
surface feeders, funnel feeders and conveyor-belt feeders. Funnel feeders often live in U- or 
J-shaped burrows with a funnel extending to the surface. Typical examples include pectinarid 
and arenicolid polychaetes. Cadee (1979) & Robbins (1986) introduced another category, 
deposit feeders that defecate at depth. Some capitellids may defecate at depth. 
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Reverse conveyor-belt feeders 

Reverse conveyor-belt feeders are organisms 
that pick up particles at the surface and 
rapidly move them deep below the sediment-
water interface. This feeding could entail 
organisms that feed at the surface and 
defecate at depth, or those that transport 
particles from the surface to deep feeding 
voids for later ingestion. These are 
sometimes called subductive feeders, but I 
don’t care for that term. Subduction carries 
with it the plate-tectonics connotation of 
slabs of sediment being moved to depth. 
Reverse conveyor-belt feeding could be just 
a worm picking up a particle at the surface 
and moving it to the base of its tube..  Figure 
1 shows reverse conveyor-belt feeding by 
the spionid polychaete Polydora. The 
spionid polychaete might transport particles 
to depth simply to keep its surface feeding 
area clear of recently ingested sediments. 
Jumars et al. (1990) proposed that surface 
deposit feeders may create subsurface food 
caches, particularly if the food resources are 
patchy and in short supply. 

Functional groups 

Figure 1 Schäfer’s (1972) drawing of Polydora ciliata. Woodin & Jackson (1979) contrasted their 
This spionid feeds primarily as a surface deposit feeder, but functional groups with guilds: 
can act as a subsurface deposit feeder, especially when 
excavating its burrows. Taghon et al. 1980 showed that “A functional group includes all organisms 
members of this polychaete family can also feed as which use and affect their environment in 
suspension feeders by dangling their coiled, mucous- approximately similar ways. (This is rather 
covered ciliated palps in the near-bed flow to capture different from the concept of a guild [Root, 
suspended particles. 1967] which is defined solely on the basis of 

modes of exploitation of resources). We define functional groups of benthos by the ways in which 
they exploit their substratum environment and the nature of their effects on the substratum.(p. 
1030)” 

Woodin & Jackson (1979) divided the soft-bottom benthos into five functional groups: 

I. Mobile burrowing organisms, a.k.a. Thayer’s (1979) bulldozers 
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II.	 Destabilizing sedentary organisms (e.g., Molpadia oolitica, described in 
Rhoads & Young (1971)). Rhoads’ (1974) conveyor-belt species would 
fall in this category. 

III.	 Sedentary organisms which project above and below the sediment surface 
(e.g., sea grasses). 

IV.	 Tube builders 
V.	 Sedentary organisms which don’t destabilize or stabilize. 

This five-part classification is an elaboration of Woodin’s (1976) tube-builder, burrower, 
suspension-feeder triad. 

DISTRIBUTION OF FEEDING GUILDS IN NATURE 

Jumars & Fauchald (1977) shows how deposit feeding guilds are distributed along the depth 
gradient off Southern California. The ratio of motile to sessile species reaches a mid-depth peak 
due to the interaction of two depth-related variables: sediment mobility and organic matter flux 
to the sediments. Sessile strategies are relatively infrequent in shallow water sediments, where 
wave action can move sediments to depths of about 100m. There is a strong selective advantage 
to being able to move. The sessile strategy increases in frequency to about 1000 m, where it again 
declines. At deeper depths, the input of organic matter to the sediments from the overlying water 
is low and variable. There is a strong selective advantage to being able to move to new areas to 
feed. 

One of the surprises in the Jumars & Fauchald (1977) analysis is the nearly equal abundance of 
surface and subsurface deposit feeders in the deep sea. Except for hydrothermal vent areas, the 
food input to deep sea communities will be from the overlying water column. On the large 
abyssal plains in the deep sea, the organic matter input is low. How then can subsurface deposit 
feeders survive? Wouldn’t the food be consumed long before it could be buried to depth. Food 
caching, which was first demonstrated by Graf (1989) and proposed as a deep sea feeding 
strategy by Jumars et al. (1990) might provide the answer. Graf (1989) observed that the Chl a 
from the sedimenting spring bloom did not remain at the sediment surface in the deep sea. It was 
quickly buried. Since the sedimentation rates are very low in the deep sea (millimeters per 
hundred or thousand years), the benthic infauna must be responsible. Jumars et al. (1990) 
proposed that surface deposit feeders in the deep sea may transport organic material from the 
sediment surface to the subsurface. This behavior may involve feeding behavior similar to that 
shown in Fig. 1 above. 

Jack Word (1978, 1979a, 1979b, 1979c) incorporated the Fauchald & Jumars (1979) feeding 
guild classification in his Infaunal Trophic Index. This index was designed to assess the effects 
of pollution on benthic communities. Areas near sewer outfalls are dominated by shallow surface 
deposit feeders. Subsurface deposit feeders tend to occur in areas of lower organic carbon input. 
While it is true that organic enrichment does affect the types of infaunal organisms present and 
does change the relative contribution of feeding modes, Word’s index is severely flawed. Word 
misclassified many of the dominant species, turning surface deposit feeders into suspension 
feeders and scavengers into suspension feeders in order to make the index work. Anyone who has 
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a copy of Fauchald & Jumars (1979) will recognize the errors in Word’s classifications. I 
mention Word’s index because it did play a role in Boston Harbor benthic studies. The MDC 
proposed to the EPA to use Word’s Infaunal Trophic Index in their monitoring plan to assess the 
effects of their proposed MA Bay sewer outfall on MA Bay benthos. 

OPTIMAL FORAGING DEPOSIT FEEDERS 

Chemical reactor theory was used to explain the functional morphology of deposit feeder guts by 
Penry and Jumars (1986, 1987, 1990, Jumars & Penry 1989). They also extended their analysis 
to explain digestion in calanoid copepods and a variety of other organisms. Natural selection will 
tend to favor those organisms that maximize the acquisition of energy or essential nutrients per 
unit time. Penry & Jumars proposed that evolution follows some of the same design principles 
used in designing industrial chemical reactors. One of the major predictions from this body of 
theory is that inefficient animal guts have produce higher rates of assimilation than efficient ones. 
Jumars et al. (1989) applied chemical reactor theory to zooplankton grazing, predicting that 
inefficient zooplankton guts are a major source of the dissolved organic carbon fueling the 
microbial loop. Jumars et al. (1990) applied chemical reactor and optimal foraging theory to 
deep-sea deposit feeding. 

Outlines 

ASSIGNED & SUPPLEMENTAL 

Cammen, L. M. 1980. Ingestion rate: an empirical model for aquatic deposit feeders and detritivores. Oecologia 
(Berlin) 44: 303-310. 

Fauchald, K. and P. A. Jumars. 1979. The diet of worms: a study of polychaete feeding guilds. Oceanogr. Mar. 
Biol. Ann. Rev. 17: 193-284.[5, 6, 8, 10, 11] 

I. Introduction 
II. The feeding biology of some selected polychaetes [I’ll tabulate species that are found locally] 

FAMILY SPECIES FEEDING GUILD PAGE & REF 

Cirratulidae Chaetozone 
{Surface} deposit feeders 
C. setosa may be selective 

207-208 

Hesionidae 
Microphthalmus 
aberrans 

Diatom feeder 
216-217, Westheide 1967, 

Wolff 1973 

Lumbrineridae 

Lumbrineris 
-Carnivores or carrion feeders 
-herbivores 
-deposit feeder 

218 

Ninoe nigripes 
selective surface deposit 
feeder 

218, Sanders et al. (1962) 
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FAMILY SPECIES FEEDING GUILD PAGE & REF 

Nephtyidae Nephtys incisa 

-mobile carnivores 
-motile subsurface deposit 
feeder in Buzzards Bay & LIS 
(Sanders) 

222-224, Sanders (1956, 1960) 

Jumars, P. A. and K. Fauchald. 1977. Between-community contrasts in successful polychaete feeding strategies. 
Pp. 1-20 in B. C. Coull, ed., Ecology of marine benthos. University of South Carolina Press, Columbia.[5, 

8, 10] 
I.	 Data set: Olga Hartman’s orange-peel grab 
II.	 Results 

A.	 Shallow-water 
1.	 Increasing proportion of motile species with depth to approximately 400 m, followed by a 

decreasing proportion 
2.	 Ratio of sessile individuals to discretely motile reaches peak at less than 1000 m. 

-Explanation is the interaction of two depth-related variables: 
(1)	 Sediment stability 

(a)	 shallow sediments far more susceptible to erosion and deposition. 
(b)	 storm events felt beyond 100 m 
(c)	 sessile individuals increase with depth during the first 100 m. 

(2)	 flux of food to the benthos. 
(a) lower flux of food to depth 
(b) lower community respiration 

3.	 Filter feeders are relatively rare in shallow-water as elsewhere. 
B.	 Deep-sea samples, Figure 6 

1.	 General lack of sessile species (Figure 6, left) 
2.	 Almost complete lack of filter feeders (Figure 6, right) 
3.	 proportion of subsurface deposit feeders is less at abyssal depths than on the outer shelf and 

slope. 

Web Resources 

URL NAME DESCRIPTION 

http://imagequestmarine.com/stock/index.htm ImageQuest 
Marine 

Wonderful 
photographs 

http://www.mbayaq.org/efc/living_species/defa 
ult.asp?hOri=1&group=2 

Monterey Bay 
Aquarium 

Invertebrates 

Wonderful 
photographs 

http://biodiversity.uno.edu/%7Eworms/annelid 
.html 

Annelid Resources Annelid resources 

http://www.tmbl.gu.se/libdb/taxon/taxa.html North East Atlantic 
Taxa 

Just lists 

http://tolweb.org/tree?group=Annelida&contgr 
oup=Bilateria 

Rouse et al. (2003) 
Annelida tree of 

life page 

Taxonomy & 
photos 

http://imagequestmarine.com/stock/index.htm
http://www.mbayaq.org/efc/living_species/default.asp?hOri=1&group=2
http://www.mbayaq.org/efc/living_species/default.asp?hOri=1&group=2
http://biodiversity.uno.edu/%7Eworms/annelid.html
http://biodiversity.uno.edu/%7Eworms/annelid.html
http://www.tmbl.gu.se/libdb/taxon/taxa.html
http://tolweb.org/tree?group=Annelida&contgroup=Bilateria
http://tolweb.org/tree?group=Annelida&contgroup=Bilateria
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URL NAME DESCRIPTION 

http://depts.washington.edu/fhl/zoo432/falseba False Bay Fauna Species that thrive 
y/fbspecies/fbspecies.htm in False Bay, on 

San Juan Island, 
WA (near the UW 
Friday Harbor Lab) 
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