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by size-fractionated phytoplankton populations
in Antarctic surface waters. Limnol. Oceanogr.
30:1327-1332. [NO; makes up 96% of the N
pool, but on average regenerated production
accounted for 62% for the nanoplankton and
75% for the picoplankton]
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Redfield, A. C., B. H. Ketchum, and F. A. Richards.
1963. The influence of organisms on the
composition of sea-water. Pp. 26-77 in M. N.
Hill (ed.) The Sea, Vol. 2. Interscience, New
York. [The Redfield ratio, originally proposed
by Redfield in the 30's, of C:N:P=106:16:1 is
described]

Ryther, J. H. and W. M. Dunstan. 1971. Nitrogen,
phosphorous, and eutrophication in the coastal
marine environment. Science /77: 1008-1013.
[Phytoplankton added to New York bight
seawater increase in biomass with Nitrogen
spikes, not Phosphorus spikes]

Schuller, K. A., W. C. Plaxton, and D. H. Turpin. 1990.
Regulation of C, phosphoenolpyruvate
carboxylase from the green alga Selenastrum
minutum. Properties associated with
replenishment of TCA cycle intermediates
during amino acid biosynthesis. Plant Physiol.
93:1303-1311.

Sciandra, A, J. Gostan, Y. Collos, C. Descolas-Gros, C.

Leboulanger, V. Martin-Jézéquesl, M. Denis, D.

Lefevre, C. Copin-Montégut, and B. Avril.
1997. Growth-compensating phenomena in
continuous cultures of Dunaliella tertiolecta
limited simultaneously by light and nitrate.
Limnol. Oceanogr. 42: 1325-1399. [Cultures
growing with limiting & non-limiting light and
switched. Cell size and other physiological
traits affected more strongly by N limitation
than light]

Smetacek, V. and F. Pollehne. 1986. Nutrient cycling in

pelagic systems: a reappraisal of the conceptual

framework. Ophelia 26: 401-428. [An odd
collection of natural history observations.
Diatom slime production can lead to high
sedimentation rates. New and regenerating N
systems are discussed]

Smith, S. V. 1984. Phosphorous versus nitrogen limitation

in the marine environment. Limnol. Oceanogr.
29: 1149-1160.

Sugimara, Y. and Y. Suzuki. 1988. A high-temperature
catalytic oxidation method for non-volatile
dissolved organic carbon in seawater by direct
injection of a liquid sample. Marine Chemistry
24: 105-131. [Very high rates of DOC and

DON, which may lead to a reevaluation of new

nitrogen fluxes in marine waters.]
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Sterner, R. W. and J. J. Elsner. 2002. Ecological
stoichiometry. The biology of elements from
molecules to the biosphere. Princeton University
Press, Princeton NJ. 439 pp. [Contains a
thorough treatment of the history of Redfield
ratios and Goldman’s theory of the relation
between Redfield ratios and phytoplankton
relative growth rate] {?}

Takahashi, T., W. S. Broecker, and S. Langer. 1985.
Redfield ratio based on chemical data from
isopycnal surfaces. J. Geophys. Res. 90: 6907-
6924. [The Redfield ratio of P:N:C:O, is
1:16:106:138, their new ratio is
1:16:122(x18):172]

Vanlerberghe, G. S, K. A. Schuller, R. G. Smith, R. Feil,
W. C. Plaxton and D. H. Turpin. 1990.
Relationship between NH," assimilation rate and
in vivo phosphoenolpyruvate carboxylase
activity. Plant Physiol. 94: 284-290. [PEPC
plays a key anaplerotic function. NH,"
assimilation requires carbon skeletons from
TCA cycle intermediates. These TCA
components are replaced by the carboxylation
of PEP to OAA by PEPC.]

Wheeler, P. A. and D. L. Kirchman. 1986. Utilization of
inorganic and organic nitrogen by bacteria in
marine systems. Limnol. Oceanogr. 37/: 998-
1009. /4 significant portion of the ammonium
uptake may be due to heterotrophic bacteria.
Confirmed by Lipshultz et al. for the Eastern
Tropical Pacific]

Genetics of nitrogen metabolism

Alan, A. E., M. G. Booth, M. E. Frischer, P. G. Verity, J.
P. Zehr, and S. Zani. 2001. Diversity and
detection of nitrate assimilation genes in marine
bacteria. Appl. Env. Microbiol. 67: 5343-5348.
[PCR approach used to create a library of NAS
{nitrate assimilation} genes for marine bacteria.
Using these gene probes, they isolated and
sequenced NAS genes from three oceanic
regimes. Several different NAS genes are
abundant and widespread.]

PHOSPHORUS

Benitez-Nelson, C. and D. M. Karl. 2002. Phosphorus
cycling in the North Pacific subtropical gyre
using cosmogenic **P and **P. Limnol.
Oceanogr. 47: 762-770. [?].
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Fuhs, G. W. 1969. Phosphorus content and rate of growth
in the diatoms Cyclotella nana and Thalassiosira
fluviatilis. J. Phycology 5: 312-321.
[Demonstrates with marine phytoplankton that
P-limited chemostat cultures show a Michaelis-
Menten relation between u and the internal
phosphorus pool.] {5, 20}

Perry, M. J. 1972. Alkaline phosphatase activity in
subtropical central North Pacific waters using a
sensitive fluorometric method. Marine Biology
15:113-119.

Perry, M. J. 1976. Phosphate utilization by an oceanic
diatom in phosphorous-limited chemostat
culture in the oligotrophic waters of the central
North Pacific. Limnol. Oceanogr. 27: 88-107.
[Only a few gyre samples had detectable
alkaline phosphatase activity]

Safiudo-Wilhelmy et al. 2001. Phosphorus limitation of
nitrogen fixation by Trichodesmium in the
central Atlantic Ocean. Nature 411: 66-69.

Wu, J., W. Sunda, E. A. Boyle, and D. M. Karl. 2000.
Phosphorus depletion in the western North
Atlantic Ocean. Science 289: 759-762./The
Sargasso Sea receives more iron-laden dust
than the N. Pacific gyre. Nitrogen fixing
bacteria are often Fe limited and fix sufficient N
in the Sargasso sea to make P the limiting
nutrient.] [?]

ON ‘PULSED’ OR ‘PATCHY’ NUTRIENT
ADDITIONS, NON-STEADY-STATE
KINETICS AND THE ZOOPLANKTON
MICROPATCH HYPOTHESIS

Comment

Goldman et al. (1979) introduced the argument that
phytoplankton in nature are growing at nearly maximal
relative growth rates and might be utilizing short-lived
patches of nutrients (NH,"), excreted by
macrozooplankton. Jackson (1980) and Williams and
Muir (1981) argued from physical laws that such patches
would be too short-lived to constitute a major nutrient
source for phytoplankton. Lehman and Scavia (1982a, b,
1984) found that freshwater phytoplankton could indeed
take up patches of phosphorous in culture. Currie
(1984a) asked whether the high cell and patch densities
used by Lehman and Scavia could be found in nature. As
summarized in Mann and Lazier’s (1991) text, the
conclusion is no. Phytoplankton can utilize patches of
excreted nutrients from zooplankton, but the densities of
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phytoplankton and patches are too low to make this
process important in nature.

Jackson (1987) shows that chemical patches
will not persist around phytoplankton cells < 5 pm. Cells
smaller than this could not be detected chemically by
either bacteria or macrozooplankton.

Alldredge, A. L. and Y. Cohen. 1987. Can microscale
chemical patches persist in the sea?
Microelectrode study of marine snow, fecal
pellets. Science 235: 689-691.

Blackburn, N., T. Fenchel, and J. Mitchell. 1998.
Microscale nutrient patches in planktonic
habitats shown by chemotactic bacteria. Science
282:2254-2256. [Chemotactic bacteria find
nutrient patches excreted by protozoa and
utilize them over a few minute period.]

Bratbak, G. and T. F. Thingstad. 1985. Phytoplankton -
bacteria interactions: an apparent paradox?
Analysis of a model system with both
competition and commensalism. Mar. Ecol.
Prog. Ser. 25: 23-30. [With nutrient limitation,
phytoplankton DOM excretion increases,
leading to enhanced bacterial growth and
nutrient uptake.]

Collos, Y. 1983. Transient situations in nitrate
assimilation by marine diatoms. 4. Non-linear
phenomena and the estimation of the maximum
uptake rate. Journal of Plankton Research 5:
677-691.

Collos, Y. 1984. Transient situations in nitrate
assimilation by marine diatoms. V. Interspecific
variability in biomass and uptake during
nitrogen starvation and resupply. Mar. Ecol.
Prog. Ser. 17: 25-31.

Collos, Y. 1989. A linear model of external interactions
during uptake of different forms of inorganic
nitrogen by microalgae. J. Plankton Res. /1:
521-533.

Collos, Y. and G. Slawyk. 1984, °C and "°N uptake by
marine phytoplankton. III. Interactions in
euphotic zone profiles of stratified oceanic
areas. Mar. Ecol. Prog. Ser. 19: 223-234. [In
some species, the pulsed addition of nitrate
produces cessation of CO, uptake]

Currie, D. J. 1984a. Microscale nutrient patches: Do they
matter to the plankton? Limnol. Oceanogr. 29:

211-214.

Currie, D. J. 1984b. Phytoplankton growth and the
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microscale nutrient patch hypothesis. Journal of
Plankton Research 6: 591-599.

Glover, H. E., B. B. Prezelin, L. Campbell, M. Wyamn,
and C. Garside. 1988. A nitrate dependent
Synechococcus bloom in surface Sargasso sea
water. Nature 337: 161-163. [As discussed by
Platt et al. (1989), intermittent NO; pulses and
blooms may reconcile short-term incubation
results (low P) with bulk measurements of
primary production (high P). A short 3-d
Synechococcus bloom is documented after a
rainfall event.]

Goldman, J. C. 1980. Physiological processes, nutrient
availability, and the concept of relative growth
rate in marine phytoplankton ecology. Pp.
179-194 in P. G. Falkowski, ed., Primary
productivity in the sea. Plenum Press, New
York.

Goldman, J. C., J. J. McCarthy, and D. G. Peavey. 1979.
Growth rate influence on the chemical
composition of phytoplankton in oceanic waters.
Nature 279: 210-215. [Phytoplankton exhibit
Redfield elemental ratios only when growing at

or near ./ {6}

Goldman, J. C. and P. M. Glibert. 1982. Comparative
rapid ammonium uptake by four species of
marine phytoplankton. Limnol. Oceanogr. 27:
814-827.

Goldman, J. C. and P. M. Glibert. 1983. Kinetics of
inorganic nitrogen uptake by phytoplankton. Pp.
233-274 in E. J. Carpenter and D. Capone, eds.
Nitrogen in the Marine Environment. Academic
press. [A very nice review, with a summary of
the micro-nutrient patch hypothesis.]

Goldman, J. C. and M. R. Dennett. 1985. Photosynthetic
responses of 15 phytoplankton species to
ammonium pulsing. Mar. Ecol. Prog. Ser. 20:
259-264.

Harris, R. P. and A. Malej. 1986. Diel patterns of
ammonium excretion and grazing rhythms in
Calanus helgolandicus in surface stratified
waters. Mar. Ecol. Prog. Ser. 37: 75-85.

Harrison, P. J., J. S. Parslow, and H. C. Conway. 1989.
Determination of nutrient uptake kinetic
parameters: a comparison of methods. Mar.
Ecol. Prog. Ser. 52: 301-312.
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Jackson, G. A. 1980. Phytoplankton growth and
zooplankton grazing in oligotrophic oceans.
Nature 284: 439-441. [Jackson argues that the
micro-scale patches produced by moving
zooplankton are too short lived to be utilized by
phytoplankton. 300 seconds after a 100um pulse
of nutrients is released, the concentration is
reduced by molecular diffusion by 4 orders of
magnitude]

Jackson, G. A. 1987. Simulating chemosensory responses
of marine microorganisms. Limnol. Oceanogr.
32:1253-1266. [4 model is produced to show
that bacteria, using tumble and run, can home
in on large phytoplankton (>10 um) excreting
organic matter, but not small phytoplankton
(<<10um)] [11, 37]

Lehman, J. T. and D. Scavia. 1982a. Microscale
patchiness of nutrients in plankton communities.
Science 216: 729-730.

Lehman, J. T. and D. Scavia. 1982b. Microscale nutrient
patches produced by zooplankton. Proc. Natl.
Acad. Sci. U.S.A. 79: 5001-5005.

Lehman, J. T. and D. Scavia. 1984. Measuring the
ecological significance of microscale nutrient
patches. Limnol. Oceanogr. 29: 214-216.

McCarthy, J. J. and J. C. Goldman. 1979. Nitrogenous
nutrition of marine phytoplankton in nutrient
depleted waters. Science 203: 670-672. [In
nutrient-depleted waters, phytoplankton have
higher V]

Mitchell, J. G., A. Okubo, and J. A. Furman. 1985.
Microzones surrounding phytoplankton form the
basis for a stratified microbial ecosystem.
Nature 3/6: 58-59.

Montoya, J. P. and J. Flores. ms. Microscale nutrient
patches and plankton ecology. /4 time-intensive
computer program, developed by Montoya, now
at Harvard, is used to demonstrate the
importance of microscale nutrient patches.
Lehman and Scavia’s 1982 plume model is
used]

Parslow, J. S., P. J. Harrison, and P. A. Thompson. 1985.
Interpreting rapid changes in uptake kinetics in
the marine diatom Thalassiosira pseudonana
(Hustedt). J. Exp. Mar. Biol. Ecol. 91: 53-64.
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Quarmby, L. M., D. H. Turpin, and P. J. Harrison. 1982.
Physiological responses of two marine diatoms
to pulsed additions of ammonium. J. Exp. Mar.
Biol. Ecol. 63: 173-181.

Scavia, D., G. L. Fahnestiel, J. A. Davis, and R. G. Kreis.
1984. Small-scale nutrient patchiness: some
consequences and a new encounter mechanism.
Limnol. Oceanogr. 29: 785-793.

Turpin, D. H. and P. J. Harrison. 1979. Limiting nutrient
patchiness and its role in phytoplankton ecology.
J. exp. mar. Biol. Ecol. 39: 151-166. [Pulsed
NH," additions lead to increased abundance of
Skeletonema and populations with higher V.
for nutrient uptake]

Turpin, D. H. and P. J. Harrison. 1980. Cell size
manipulation in natural marine planktonic
diatom communities. Can. J. Fish. Aquat. Sci.
37: 1193-1195. [Pulsed additions of ammonium
leads to larger diatom species]

Turpin, D. H., J. S. Parslow, and P. J. Harrison. 1981. On
limiting nutrient patchiness and phytoplankton
growth: a conceptual approach. J. Plankton
Research 3: 421-431. [4 model based on the
Droop equation is proposed to explicate the role
of patch nutrients on u]

Williams, P. J. and L. R. Muir. 1981. Diffusion as a
constraint on the biological importance of
microzones in the sea. Pp. 209-218 in J. C. J.
Nihoul, ed., Ecohydrodynamics. Elsevier
Oceanography Series, Vol. 5. Elsevier, New
York. [A nutrient patch generated by a
stationary zooplankter would diffuse away
before it could be utilized]

SILICATE

Brzezinski, M. A. 1985. The Si:C:N ratio of marine
diatoms: interspecific variability and the effect
of some environmental variables. J. Phycol. 27:
347-357. [Si ratios to C and N vary as a
function of light and nutrient growth history.
For netplankton, the Si:C ratios (with 95% CI)
and Si:N ratios are 0.15+0.04 and 1.2+0.37.
For nanoplankton the ratios are 0.09+0.03 and
0.80+0.35]
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Brzezinski, M. A., R. J. Olson, and S. W. Chisholm.
1990. Silicon availability and cell-cycle
progression in marine diatoms. Mar. Ecol. Prog.
Ser. 67: 83-96. [Phaeodactylum tricornutum
doesn’t require silicon for growth. Silicon
uptake linked to specific components of the cell
cycle]

Davis, C. O., N. F. Breitner and P. J. Harrison. 1978.
Continuous culture of marine diatoms under
silicon limitation. 3. A model of Si-limited
diatom growth. Limnol. Oceanogr. 23: 41-52.
[The model proposes that there is a rapid
uptake to fill the internal nutrient pool and a
slower internally controlled rate afterwards]

Flynn, K. J. and V. Martin-Jézéquel. 2000. Modeling Si-
N-limited growth of diatoms. J. Plankton Res.
22:447-472. [A modeling of N and S uptake is
coupled with a model of the diatom cell cycle.
The authors predict leakage of DOM when Si is
limiting. Excellent discussion of the Silica cell
quota in diatoms.]

Jennings, J. C., L. I. Gordon, and D. M. Nelson. 1984.
Nutrient depletion indicates high primary
productivity in the Wedell Sea. Nature 309: 51-
54. [cited by Kamykowski and Zentara (1986)
for a Si:N ratio of about 2.5.]

Kamykowski, D. and S-J. Zentara. 1985. Nitrate and
silicic acid in the world ocean: patterns and
processes. Mar. Ecol. Prog. Ser. 26: 47-59.
[Regression analyses are used to analyze the
intercepts of N vs. Si plots using 217 GEOSECS
and 11,576 NODC stations. In the Southern
ocean, both N and Si remain high year-round.
Fig. 12 indicates that the relative amount of new
production can be crudely assessed from the
intercept of NO;vs silicate. If new production is
not particularly important, then the intercepts
will fall on the silicic acid part of the curve.
Silicic acid positive intercepts occur throughout
the Pacific and Atlantic, and south of 60° S.
Nitrate excess occurs North of the Antarctic
divergence |

Nelson, D. M. J. J. Goering, S. S. Kilham, and R. R. L.
Guillard. 1976. Kinetics of silicic acid uptake
and rates of silica dissolution in the marine
diatom Thalassiosira pseudonana. J. Phycol. 12:
246-252.
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Nelson, D. M. and J. J. Goering. 1978. Assimilation of
silicic acid by phytoplankton in the Baja
California and Northwest Africa upwelling
systems. Limnol. Oceanogr. 23: 508-517. [*’Si
uptake was measured. The diatoms were not Si
limited, probably due to rapid Si dissolution
rates]

Paasche, E. 1973. Silicon and the ecology of marine
plankton diatoms. 1. Thalassiosira pseudonana
(Cyclotella nana) grown in a chemostat with
silicate as limiting nutrient. Marine Biology /9:
117-126.

Raven, J. A. and A. M. White. 2004. The evolution of
silification in diatoms: inescapable sinking and
sinking as escape? New Phytologist /62: 45-61.
[Do they sink to escape from eukaryotic
parasites?] {?}

COMPETITION FOR NUTRIENTS &
PARADOX OF THE PLANKTON

Arthur W (1988) Mechanisms of coexistence. Nature
333:597 [Summary of Rothaupt’s test of
Tilman’s model.]

Ebernoh, W (1988) Coexistence of an unlimited number
of algal species in a model system. Theor Pop.
Biol. 34: 130-144

Fujimoto N, Ryichi S, Sigiura N, Inamori Y (1997)
Nutrient-limited growth of Microcycstis
aerouginosa and Phormidium tenue and

competition under various N:P supply ratios and

temperatures. Limnol. Oceanogr. 42: 250-256
[The Droop model provided an accurate fit to u
and the ratio of N:P controlled the outcome of
competition, matching the field]

Harris GP (1986) Phytoplankton ecology: structure,
function and fluctuation. Chapman and Hall,
London [Competition is discussed on pp. 107-
111. The steady-state conditions required by
Tilman’s model [20-50 d] may not persist long
enough for competitive exclusion to occur in
nature. On p227 GPH argues a la Andrewartha
& Birch (1954) that competition occurs among
phytoplankton bur rarely in Nature]

Hutchinson, G. E. (1961) The paradox of the plankton.
Amer. Natur. 95: 137-145
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Hutchinson, G. E. (1969) An introduction to population
ecology. Yale University Press, New Haven.
260 pp. [Discusses the paradox]

Kalff J, Knoechel R (1978) Phytoplankton and their
dynamics in oligotrophic and eutrophic lakes.
Ann. Rev. Ecol. Syst. 9: 475-495 [A4 nice
review, and a critique of Tilman’s Monod-type
competition models.]

Kilham P, Hecky RE 1988. Comparative ecology of
marine and freshwater phytoplankton. Limnol.
Oceanogr. 33 (4, part 2): 776-795 [Application
of Tilman’s competition models]

Peterson R (1975) The paradox of the plankton: an
equilibrium hypothesis. Amer. Natur. /09: 35-
49

Pimm SL (1983) Review of Tilman’s book. Limnol.
Oceanogr. 28: 1043-1044

Prairie YT (1990) A comment on “nutrient status and
nutrient competition of phytoplankton ins a
shallow hypertrophic lake” (Sommer) Limnol.
Oceanogr. 35: 778

Reynolds CS (1984) The ecology of freshwater
phytoplankton. Cambridge [Critical of Tilman
1981]

Reynolds CS (1992) Eutrophication and the management
of planktonic algae: what Vollenweider couldn’t
tell us. Pp. 4-29 in D. W. Sutcliffe and J. G.
Jones, eds, Eutrophication: Research and
application to water supply. Freshwater Biol.
Assoc. [Resource ratios not useful for
management, cited by Fujimoto]

Richerson P, Armstrong R, Goldman CR (1970)
Contemporaneous disequilibrium, a new
hypothesis to explain the “paradox of the
plankton” Proc. Natl. Acad. Sci. 67: 1710-1714

Rothhaupt KO (1988) Mechanistic resource competition
theory applied to laboratory experiments with
zooplankton. Nature 333: 660-662 [Tests of
Tilman’s models]

Sommer U (1986) Phytoplankton competition along a
gradient of dilution rates. Oecologia 68: 503-
506

Sommer U (1988) The species composition of Antarctic
phytoplankton interpreted in terms of Tilman’s
competition theory. Oecologia 77: 464-467
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Sommer U (1989) Nutrient status and nutrient
competition of phytoplankton in a shallow
hypertrophic lake. Limnol. Oceanogr. 34: 1162-
1174 [A test of Tilman’s theory]

Sommer U, Kilham SS (1985) Phytoplankton natural
community competition experiments: a
reinterpretation. Limnol. Oceanogr. 30: 436-439

Sommer, U., J. Padisak, C. S. Reynolds, and P. Juhasz-
Nagy. 1993. Hutchinson’s heritage: the
diversity-disturbance relationship in
phytoplankton. Hydrobiologia 249: 1-7.

Tilman D (1977) Resource competition among planktonic
algae: an experimental and theoretical approach.
Ecology 58: 338-348. [Includes a critique of L-
V predictions.]

Tilman D (1980) Resources: a graphical mechanistic
approach to competition and predation. Amer.
Natur. 7/6: 362-393

Tilman D (1981) Test of resource competition theory
using four species of Lake Michigan algae.
Ecology 62: 802-815.

Tilman D (1982) Resource competition and community
structure. Princeton University Press, Princeton
[Reviews and updates his influential theory of
resource limitation, including definitions of
resource types.]

Tilman D (1987a) Further thoughts on competition for
essential resources. Theor. Pop. Biol. 32: 442-
446. [Contrasts with Abrams. critiques applying
L-V models naively.]

Tilman D (1987b) The importance of the mechanisms of
interspecific competition. Amer. Natur. /29:
769-774

Tilman D (1989) Discussion: population dynamics and
species interactions.Pp. 89-100 in Roughgarden
J, May RM and Levin S (eds.) Perspectives in
Ecological Theory. Princeton University Press,
Princeton

Venrick E L (1990) Phytoplankton in an oligotrophic
ocean: species structure and interannual
variability. Ecology 71: 1547-1563 [Contains an
excellent discussion of species diversity and
stability in the oligotrophic Pacific and
difficulties in resolving the paradox of the
plankton]
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Williams TG, Turpin DH (1987) Photosynthetic kinetics Jumars, P. A. 1993. Concepts in Biological
determine the outcome of competition for Oceanography: An interdisciplinary primer.
dissolved inorganic carbon by freshwater Oxford University Press, New York. []
microalgae: implications for acidified lakes.

Oecologia 73:307-311. Mann, K. H. and J. R. N. Lazier. 1996. Dynamics of

marine ecosystems: biological-physical
interactions in the oceans, 2nd Edition.
Blackwell Scientific Publications. [?]

MISCELLANEOUS

Web Resources

Table 1. Nutrient limitation resources on the web
URL Site Description
http://www.anammox.com/ Anammox online resource
http://www.mpi-bremen.de/en/A | Max Planck Institute Press release about
nammox_Bacteria_produce_ Nitr Kuypers et al. (2005)
ogen_Gas_in_QOceans_Snackbar.
html
http://www.ozestuaries.org/indic | Denitrification Denitrification in coastal
ators/Def_denitrification.html systems.
Index
Anaerobic ammonia oxidation (anammoX) . ... ... ... 10, 27
ANAMINOX . . ot e 3,10, 11, 27,53
Assimilatory nitrate reduction
definition . ... ... 8
ASSOCIALION .« . ot ettt e e e e e 26
Autoradiography .. ... ... 27,29
Bacteria ........... .. .. ... ... 4, 8,10, 11, 16, 20, 23-25, 27-30, 32, 36-38, 50, 53
BIOIrTigation . . . ...t 50
biological interactions
amenSaliSM . . . ..o 32
commensaliSM . ... ... 37
COMPEHIION . ..ttt e e 21, 22, 32,37, 48, 49
Bioturbation . ... ... 22-24, 26, 28, 31, 51
Boston Harbor . . ....... .. 3,16, 24
Brandt . ... ... 4,7,12, 14, 16, 23, 25
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Calanus . . ... .. 38
Cell NULTICNT ZOME . . . . .o oottt e e e e e e 12
Cellquota . ... 5,6,12, 15, 16, 18, 20, 39
Cell QUOLIENL . . . . ottt e e 12
Chemostat . ........... .. 5-7,12, 13, 18, 21, 33, 37, 40
Community StIUCLUIE . . ..ottt ettt e e e e e e ettt 22,49
Conversion factors
GOl .. 16, 42
GNP 21
L7073 01 o 41, 44, 48
Deposit feeders . . . ..o 49
Diffusion . ....... ... 10, 13, 23, 38, 39, 41
Dilution method . . ... ... .. . 46
Disturbance . ... ... e 49
DIVeTSILY . o oottt 28, 29, 36, 49
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