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Assignment

TOPICS

< What factors control primary production in harbors and bays, especially Boston Harbor

and MA Bay?

< What is the Cole-Cloern relationship and why does it work so well in MA Bay?

< What factors control subsurface chlorophyll maxima in MA Bay?

REQUIRED READINGS

Cole, B. E. and J. E. Cloern. 1987.  An empirical model for estimating phytoplankton
productivity in estuaries.  Mar. Ecol. Prog. Ser. 36:  299-305. [Primary production is
linearly related to the product of average water-column Chl a concentration * depth *

olight intensity (I ).]

McGillicuddy, D. J, R. P. Signell, C. A. Stock. B. A. Keafer, M. D. Keller, R. D. Hetland and D.
M. Anderson. 2003. A mechanism for offshore initiation of harmful algal blooms in the
coastal Gulf of Maine. J. Plankton Research 25: 1131-1138.[A model in which red tide
blooms are seeded from offshore sediments, with blooms resulting from upwelling
followed by downwelling winds]{25}
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SUPPLEMENTAL

Adams, E. E., J. W. Hansen, R. L. Lago, P. Clayton, and X. Zhang. 1992.  A simple box model of the Nitrogen cycle in
Boston Harbor and the Massachusetts Bays. Civil Engineering Practice (Fall 1992): 91-103.  [This was an
important early analysis of the effects of the MWRA outfall on Nitrogen cycling in MA Bay.  The conclusion:
with best case estimates, about 5% of the existing MWRA N loading is lost through denitrification in Boston
Harbor sediments.  Another 2.5% is lost through burial.  About 25% of the nitrogen lost through denitrification
comes from the Gulf of Maine or other MA Bay sources.  Moving the outfall should result in only a 6% increase
in nitrogen loading to MA Bay.  Secondary treatment will reduce total N loading by 15%, resulting in a net 9%
reduction in loading, about the same as occurred when sludge stopped being dumped in the harbor in
December 1991]

Cullen, J. J.  1982.  The deep chlorophyll maximum:  comparing vertical profiles of chlorophyll a.  Can. J. Fish. Aquat.

Sci. 39:  791-803.  [This was the best available synthesis and review prior to Longhurst & Harrison (1989). 

This review is more concise, hence we are using it instead of Longhurst & Harrison (1989). ] {30}

Haury, L. R., P. H. Wiebe, M. H. Orr, and M. G. Briscoe.  1983.  Tidally generated high-frequency internal wave packets
and their effects on plankton in Massachusetts Bay.  Journal of Marine Research 41:  65-112.  [See especially
their profiles of fluorescence with depth, which show crisp subsurface chlorophyll maxima [SSCM] in MA Bay
and the effects of internal waves on these SSCM]

Kelly, J. 1997.  Nutrients and human-induced change in the Gulf of Maine — “One, if by land, and two, if by sea”.  Pp.
169-181  in G. T. Wallace and E. F. Braasch, eds., Proceedings of the Gulf of Maine Ecosystem Dynamics
Scientific Symposium and Workshop.  RARGOM Report, 97-1.  Hanover, NH: Regional Association on the
Gulf of Maine.

Kelly, J. R. and P. H. Doering.  1997.  Monitoring and modeling primary production in coastal waters: studies in
Massachusetts Bay 1992-1994.  Mar. Ecol. Prog. Ser. 148: 155-168. [Three years of monitoring data are
described and fit to the Cole-Cloern model]

Lunven, M, J. F. Guillaud, A Youénou, M. P. Crassous, R. Berrie, E Le Gall, R. Kérouel, C. Labry, and A. Aminot. 2005.
Nutrient and phytoplankton distributions in the Loire River plume (Bay of Biscay, France) resolved by a new
fine scale sampler. Est. Coastal Shelf Sci. 65: 94-108. [A fine scale sampler (.10 cm resolution) used to
document remarkable fine scale structure of light, Chl a, pheophorbide, diatoms, dinoflagellates and
nutrients]{?}

Mann, K. H. and J. R. N. Lazier. 1996.  Dynamics of marine ecosystems: biological-physical interactions in the oceans,
2nd Edition.  Blackwell Scientific Publications. [Classifies estuaries and describes tidal fronts]

Nixon, S. W. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199-219.
[A general review of eutrophication, including a new definition, and estimates of nitrogen inputs into
Narragansett Bay ince 1800] [?]

 Officer, C. B. and J. H. Ryther. 1977.  Secondary sewage treatment versus ocean outfalls:  an assessment.  Science 197: 

1056-1060. {12}

Townsend, D. W. 1997.  Cycling of carbon and nitrogen in the Gulf of Maine.  Pp. 117-133 in G. T. Wallace and E. F.
Braasch, eds., Proceedings of the Gulf of Maine Ecosystem Dynamics Scientific Symposium and Workshop. 
RARGOM Report, 97-1. Hanover, NH: Regional Association for Research on the Gulf of Maine.
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Comments

Parker’s 1975 Ph.D. dissertation provides an excellent summary of the seasonal primary
production cycle in MA Bay prior to the MWRA’s intensive MA Bay monitoring program begun
in 1992.  Parker followed phytoplankton species composition at a site just outside the mouth of
Boston Harbor, south of the proposed outfall site for 1 ½ years.  He documented changes in
production with simulated in situ incubations using the C technique and enumerated the major14

net phytoplankton species.

Based on his work, work by Loder, Smayda, Townsend et al., Kelly & Doering (1997), Craig
Taylor, and Keller & Oviatt, we can describe the basics of the phytoplankton seasonal cycle in
the Bay.

THE SEASONAL CYCLE OF PRIMARY PRODUCTION IN MA BAY

Primary production in MA Bay can be divided into five seasonal phases:

! Winter
" From late October until March, the water column is usually strongly mixed by

wind and tidal currents.  Phytoplankton production rates are low and light-limited. 

3DIN, mainly NO , concentrations are high (.15-20 ìg atm l ).  The increase in- -1

3NO  concentrations is probably due to both nitrification in the sediments and-

water column and the input of nitrate-rich water from the Gulf of Maine.
" As our critical-depth calculations revealed (see Chapter 5), phytoplankton

production is light-limited during the period from December 21, the day with the

clowest solar insolation of the year, to mid-January (if I  is about 40 langleys per
day).  After mid-January, Sverdrup critical-depth concept indicates a bloom
should occur if the basal light attenuation coefficient - i.e., the light attenuation
other than that due to Chl a - is about 0.2 m , but phytoplankton production can-1

increase only slightly before the phytoplankton again become light-limited due to
self-shading.  However, even slight water-column stratification can lead to small
phytoplankton blooms during the November-March period. Water stratification
can occur due to melting snow increasing freshwater input during this period.
During this period, stratification occurs with a temperature inversion. The surface
water is fresher and colder than the saltier and warmer bottom waters.

" The following questions remain unanswered:
- the rate of basal light attenuation (i.e., not due to photosynthetic pigment

absorption).  Parker (1975) found winter-time PAR light attenuation
coefficients of about 0.2 m .  The Massachusetts Bays model, now being-1

run by Meng Zhou and Mingshun Jiang at UMASS/Boston uses a basal
light attenuation coefficient for PAR of 0.15 m  for MA Bay-1

- the rates of wintertime zooplankton grazing and benthic suspension
feeding

- the extent of lateral transport of deposited organic matter by winter storms.
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! Winter-spring blooms
" The spring bloom occurs when the critical depth exceeds bottom depth or the

mixed-layer depth.  If the water-column light attenuation coefficient is k=0.2 and
the compensation light intensity is 40 ly/d, then the spring bloom should occur on
about January 18.  Very little increase in Chl a occurs after a brief period of
phytoplankton increase, average light levels decrease to the point where the
average light intensity through the water column equals the critical depth.  During
January and February, short blooms can occur due to water-column stratification
from snow melt.  This stratification is usually short-lived, being broken down by
the frequent winter storm events.

" The water column can be well-mixed at the time of the spring bloom.  That is, the
bloom could occur when the critical depth exceeds MA Bay bottom depth.  In
Massachusetts Bay, critical depth probably exceeds bottom depth in January or
early February, but the massive “bloom” doesn’t appear until March.  Why?

" In Spring 1990 and 1991, Jim Shine (1993 UMASS/Boston Ph.D. dissertation)
found that the spring bloom in March was associated with a short-term period of
density stratification due to fresh-water input, largely from the Merimack River. 
Parker (1975) also documents a March phytoplankton bloom.  There is no
published explanation of why applying Townsend & Spinrad’s (1986) estimates

zof k  and the compensation light intensity (40 langleys/day)  produce a January
Massachusetts Bay bloom, when field studies show that the bloom doesn’t occur
until March.

" In 1996, the spring bloom appears to have occurred in mid-January.  The Winter
1996 period had the highest snowfalls in recent times, and the input of a lens of
brackish water led to a short-term density stratification of MA Bay.  This period
was characterized by a temperature inversion in the water column, with colder,
fresher water overlying slightly warmer but saltier deep water.  This stratification
led to a short-lived bloom.  In Boston Harbor, turbidity and grazing pressure may
delay the onset of the bloom, despite the shallow water depth.

" Nelson & Smith (1991) applied the critical depth concept to the Southern Ocean
and may have hit on the key explanation for the March MA Bay bloom.  They
explained why Chl a concentrations were low year-round in the Southern Ocean
despite abundant DIN. .  “No need to invoke iron limitations as some had,” they
argued. The Southern Ocean critical depth was only slightly deeper than the
mixed layer depth.  After only a slight increase in phytoplankton  standing stock,
the increased light attenuation reduced the critical depth to equal the mixed-layer
depth.  I would argue that the same analysis works for MA Bay.  The spring
bloom does occur in January or early February in MA Bay, but Chl a
concentrations can only increase slightly before the critical depth, now reduced
because of the chlorophyll-associated light attenuation, again equals the bottom
depth.  However, in March when density stratification due to the Merrimack River
is established, reducing the mixed layer depth from 35 m to only 10-15m, a more
massive bloom can result.  Chlorophyll a concentrations can increase
tremendously when the mixed layer depth is only 15 meters.  It is the second

IT
Stamp



EEOS 630
Biol. Ocean. Processes
Neritic Prod., P. 6 of 35.

bloom, caused by the Merimack River Spring freshening that Parker (1975) and
Shine (1993) observed.

" Nutrient depletion terminates the spring bloom in March, but grazers, especially
meroplankton (the larval stages of benthic invertebrates), could play an important
role.  The role of mass sinking of the large diatoms, described by Smayda,
Smetacek, and Alldredge in other ecosystems remains unknown.  This mass
sinking of diatoms might be due to Si depletion.  The MWRA has documented a
massive sinking event in their 1992 data, when a large Phaeocystis bloom sank to
the bottom.

! Spring transition
" There may be a brief transition period after the termination of the spring bloom,

but before the onset of permanent summer stratification.
" This transition may not be present if the winter-spring bloom occurs late in the

year (March) with the onset of the major density stratification from the spring
runoff from the Merimack river.

" Often there is a bimodal spring bloom, with a large spring bloom in March
followed by a smaller bloom event some weeks later.  There is no adequate
explanation for this phenomenon.  One hypothesis might be that storms mixed the
water column at the end of the first bloom, and then restratification led to the
second bloom event.  This riddle could be easily solved by closely spaced
observations of water column stratification, light attenuation coefficients, primary
production, and phytoplankton species composition.

! Late spring !Fall
" From April through late September, Massachusetts Bay is stratified.  It is stratified

initially by the freshening of the surface water from the Merrimack River plume. 
After the water column has been partially stabilized by salinity differences, the
surface is warmed and further stratifies.  Bernie Gardner and Rocky Geyer have
estimated the vertical eddy diffusion coefficients in MA Bay after density

zstratification has set in.  They are approximately 0.1 cm sec , a very low K  .2 -1

" During this period, the dominant phytoplankton are nanoplanktonic and motile. 
This transition matches the general phytoplankton succession pattern described by
Margalef (1978) & Bowman et al. (1981).

" A pronounced subsurface chlorophyll maximum develops throughout MA Bay
and the Gulf of Maine with the onset of strong density stratification.  This
subsurface Chl a maximum does not exist in the tidally mixed Boston Harbor and
may not exist in weakly stratified water nearer shore.  All forms of DIN are at
nearly undetectable concentrations in the (relatively clear) surface waters of
Massachusetts Bay, but nitrate concentrations increase in subsurface waters during
this period (Loder 1988, MWRA report).  The major unknown during this period
is the level of primary production at and below the subsurface chlorophyll
maximum.  Another major unknown is the percentage of primary production that
sinks to the benthos, and its rate of oxidation; these rates are needed to apply
Officer’s box models of benthic oxygen demand.
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! Fall bloom
" In September, density stratification begins to break down.  This breakdown of the

pycnocline is usually associated with a fall bloom.  It is not known whether the
onset of the fall bloom immediately follows the breakdown of the pycnocline. 
The temporal frequency of samples hasn’t been high enough to resolve the factors
associated with the onset of the fall bloom.  In 1993, the MA Bay fall bloom was
massive, with Chl a concentrations in excess of 20 ìg/l.  With a 35:1 C:Chl a
ratio, some elementary math indicates that the phytoplankton biomass was well
over 7 g C m .   In summer 1994, dissolved oxygen concentrations below 6 mg/l-2

were observed in the Broad Sound area of Massachusetts Bay.  The reasons for
the massive 1993 fall bloom and the low dissolved oxygen levels observed in
Massachusetts Bay in both 1994 and 1995 are huge unanswered and important
questions now.

! Recent MWRA Results
" The latest analysis of the MA Bay seasonal cycle, completed by Howes, Cibik and

Craig Taylor provides the best analysis to date of the patterns and processes
controlling the spring bloom.  These investigators noted that the spring and fall
blooms were associated with dramatic increases in the assimilation number of
phytoplankton.  The assimilation numbers often approached or exceeded 20 mg C
(mg Chl a h) , and were not associated with increases in phytoplankton-1

production or standing stock.  My interpretation of these data is that the onset of
the spring and fall bloom is associated with the “seeding” of phytoplankton which
were senescent or nearly so.  These cells would have a very high C:Chl a ratio and
would could have a very high assimilation number, even with a modest specific
growth rate.  Recall that:

" MacIsaac et al. (1985) call the stage where phytoplankton adapt to new P vs. I
parameters as Stage II, or the “shift-up” phase in the typical upwelling sequence.

THE MALONE, COLE-CLOERN, PLATT REGRESSION

Cole & Cloern (1987) argue that primary production may be estimated with much greater
precision and accuracy in estuaries and bays than in the open ocean.  They review estimates of
primary production from estuaries and produce a regression equation, using the composite

o p euvariable I *B *z , which accounts for 82% of the variance in primary production in estuaries.

Dr Diane Gould applied this relationship for an October 1988 MWRA workshop on MA Bay
eutrophication.  Jim Shine (1993 Ph.D. dissertation) applied this equation to MA Bay and found 
that it gives a reasonable fit to Parker’s (1975) data on MA Bay production.  Kelly & Doering
(1997) were unaware of these earlier applications of the Cole-Cloern model.  They applied it to
the 1992-1994 primary production data they collected during the first three years of the MWRA
monitoring program for the MA Bay sewage effluent outfall.
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Ironically, the Cole-Cloern equation does not include nutrient concentration as an independent
(or predictor) variable.  Thus it would seem to have limited predictive capability in analyzing the
effects of nutrients on eutrophication.  Does this mean nutrients are unimportant?  

There are two  reasons why nutrients don’t need to be included.  I call these the Wofsy and Platt
explanations.  Wofsy (1983) argued that in nutrient-rich lake, bay and estuarine environments,
phytoplankton grow until they become light-limited.  According to Wofsy, phytoplankton grow
until the mixed layer is equivalent to five optical depths.  An optical depth equals (1/k), where k
is the light-attenuation coefficient.  Note that the 1% light depth is equivalent to 4.6 optical
depths.  Production is light- controlled, and nutrients are usually in excess.  Such a process could
account for Cole & Cloern’s high R  in their regression.  2

The regression relationship also applies if nutrients are limiting.  This is the Platt explanation.  
Platt (1986) found that the initial slope of the generalized P vs. I relationship, called Ø
(pronounced psi), was “relatively” constant, certainly less variable than many modelers might
suppose.  If there is a high positive correlation between nutrient supply and Chl a, and most
phytoplankton are growing with high and relatively constant photosynthetic efficiencies (the
initial slope in the P vs. I curve), then the Cole-Cloern relationship results.  Platt (1986)
proposed a similar relationship for the relationship between depth-averaged Chl a and primary
production.  Platt et al. (1988) argue that the Cole and Cloern relationship is identical to that
used by Platt (1986).

Shine (1993) showed that the Cole-Cloern relationship breaks down badly after the end of the
spring bloom.  During this period, there is a large biomass of apparently nutrient-depleted cells
which sinks out of the euphotic zone.  During this period, the Cole-Cloern model predicts
primary production rates that are two to three times too high.

Cullen (1990) reviews mechanistic and descriptive models for phytoplankton growth and
irradiance.  He argues that the standard P vs. I model may be independent of growth rate and
nutrient limitation.  If the phytoplankton are nitrogen starved, they may produce less Chl a.  Such
a pattern could account for the utility of the Cole-Cloern and Platt  relationships.

EUTROPHICATION OF MA BAY

I have listed as a supplementary reading  Officer & Ryther’s (1977) analysis of phytoplankton
biochemical oxygen demand.  The same argument is made in Stumm & Morgan’s (1981, p. 707)
Aquatic Chemistry textbook.  There is a distinct possibility that the proposed MWRA secondary
effluent discharge into MA Bay may produce a long-term and progressively worsening problem
with low dissolved oxygen concentrations in bottom waters.  Don’t get bogged down in the
details of the Officer & Ryther’s (1977)  diffusion model.  The key element in the argument is
that secondarily treated effluent is rich in DIN.  

Both Ryther and Officer were members of the scientific advisory board that advised the MDC. 
This scientific advisory board, which also included Don Harleman from MIT and Willard
Bascum, Director of the S. California Coastal Water Research Project , advised then Governor
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Dukakis and the Secretary of Environmental Affairs Evelyn Murphy that the MDC should apply
for a Section 301(h) waiver from the secondary treatment requirements of the Federal Clean
Water Act.  This advice led to the decision that Michael Deland, the Region I EPA
Administrator, has called the most expensive Public Policy mistake in the history of New
England.  This decision also served as the basis for the influential Bush Boston Harbor
commercial in the 1988 Presidential campaign.

THE PHYSICS OF MA BAY AND ITS EFFECTS ON EUTROPHICATION

The best available description of the physics of MA Bay is an October 1992 technical report by
W. R. Geyer, G. B. Gardner, W. S. Brown, J. Irish, B. Butman, T. Loder and R. Signell, entitled,
“Physical oceanographic investigations of Massachusetts and Cape Cod Bays”.  This report
contains density profiles and nutrient profiles for transects taken throughout MA Bay.

Boston Harbor and MA Bay are a classic tidal front system.  Boston Harbor can be classified as a
well-mixed estuary (Riley 1967).  Inner Broad Sound is also tidally mixed, but MA Bay is highly
stratified during the late spring through early fall.  Haury et al. (1983) and Gardner (in progress)
have documented the stratified nature of the Bay.  The combination of a well-mixed nearshore
zone and a stratified offshore zone gives rise to a tidal-front (Mann & Lazier 1996).

There are two major problems created by the MWRA outfall.  First, the DIN source is being
moved from the well-mixed side of the front to the stratified side of the front.  Second, the DIN
source is being moved from an area with many silty depositional areas to one that is
characterized as being more rocky in nature.  This can have major consequences on the rates of
denitrification in the system.

The net result of these changes could be eutrophication, which can be defined as an increase in
the nutrient load to the system. The major problems associated with eutrophication of the Bay
include anoxia in bottom waters and noxious phytoplankton blooms.  The MWRA and USGS
jointly found the development of a numerical simulation model of the currents and nutrient
dynamics in the Bay.  This model predicts that there will be less DIN available in the euphotic
zone during the summer.  The relatively high input of DIN will be trapped beneath the
summertime pycnocline.

LAKE WASHINGTON EUTROPHICATION

Lehman (1986a) and Edmondson (1991) review the history of the eutrophication and recovery
of Lake Washington.  The example of Lake Washington indicates the extent to which an entire
ecosystem can be affected by a single external variable, phosphorus loading in this case. 
Although canonical analysis hasn’t been formally applied to the Lake Washington eutrophication
dataset, it could be.  The recovery of Lake Washington also provides a striking example of the
limitation of the canonical approach.  Many of the most dramatic changes in the biology of Lake
Washington were driven by biological interactions that would be difficult to explain in terms of
canonical models.  
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Figure 1.  Change in Secchi disk
transparency (top) and phosphorus
loading (bottom, metric tons per
year). (Based on Fig. 1.4 in
Edmondson (1991)).

Figure 2.  Same as Fig. 1, but extended
through 1987 to show the Daphnia era.  The
summer abundance of Daphnia is shown in
the upper right. (Based on Fig. 1.8 in
Edmondson (1991)).

In the early 1950s, Lake Washington began to undergo
changes due to eutrophication from the increased
phosphorus input to the lake.  As shown in Figure 1, Secchi
disk transparency decreased from nearly 4 m to about 1 m
during the period of peak phosphorus loading.  Oscillatoria
rubescens an indicator of eutrophication in European lakes
appeared in Lake Washington in 1955.  Edomondson in
1956 began his participation in the public policy process
that led to the creation of Washington’s METRO.  This
public super agency provided the means for diverting
sewage from Lake Washington to Puget Sound.  When the
sewage effluent was diverted to Puget Sound starting in
February 1963 (with complete diversion by 1968), lake
transparency responded dramatically, increasing to the early
1950s levels.  The Lake Washington recovery from
eutrophication could be hailed as the hallmark of the
Vollenweider approach to understanding aquatic systems.

In 1976, Lake Washington sprang a surprise on the
limnologists by becoming more transparent than it had been
in any time in recorded history (Edmondson 1991,
p. 38).  As shown in Fig. 2, Secchi disk
transparency increased to over 9 meters during some
seasons.  With NSF support, Edmondson and his
graduate students were able to document that the
change was due to the reestablishment of Daphnia
in Lake Washington.  These cladocera grazed the
phytoplankton to low levels, increasing water
transparency.  With NSF funding, Edmondson and
his doctoral students explained the reemergence of
Daphnia in the lake.   The mysid Neomysis
mercedis, a voracious invertebrate predator on
Daphnia, decreased from 10% of its former
abundance between 1962 and 1967.  The Daphnia
populations did not become reestablished until the
disappearance of Oscillatoria in 1976.

The “bottom up” canonical approach could not
explain the drastic decline of Neomysis, the predator of Daphnia.  Neomysis declined because of
the reintroduction in the 1960s of the sockeye salmon and the longfin smelt in the Cedar River. 
But why did the smelt and salmon return to Lake Washington and the Cedar River?  In a chain of
connections that James Burke (host of the PBS series Connections) would be impressed with,
Edmondson (1991, p. 45) describes the chain of events: the smelt and salmon had declined from
1916 on because home owners built homes on the lower reaches of the Cedar River.  To prevent
flooding and erosion of the sediment near the shore, the channel from the Cedar River was
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dredged and the dredged material was deposited on the beds used for fish spawning.  The dredge
broke in 1947 and between 1960 and 1965, revetments were built to reduce erosion and reduce
the need for dredging.

… the probable explanation of the success of Daphnia involved a
chain of circumstances.  Between 1933 (the first detailed study of
the lake) and about 1967 Daphnia was suppressed by predation by
Neomysis.  Between 1955 and 1976 Daphnia was suppressed by
interference with its feeding by Oscillatoria.  Between 1955 and
1967 it was suppressed by both.  Oscillatoria decreased between
1964 and 1967 as a predicted result of the diversion of sewage. 
After 1967 -Neomysis was reduced by predation by an increased
population of long-fin smelt.  Both the smelt and the salmon were
able to increase after spawning conditions in the Cedar River
improved.

DID CHANGES IN POLLUTANT LOADING IN LAKE WASHINGTON HARM PUGET

SOUND?

Lehman (1986a) and Edmondson (1991) describe a situation somewhat analogous to Boston
Harbor: the recovery of an impacted ecosystem resulting from the reduction of pollution loading. 
One of the major scientific questions facing scientists studying Boston Harbor and Massachusetts
Bay is whether the diversion of sewage effluent to Massachusetts Bay will cause impacts there.  

Tommy Edmondson (1991) devoted a chapter of his book to the problems of Puget Sound,
concluding “the problems of Puget Sound are more complex, and particularly, the solutions are
less straightforward than those for Lake Washington.”  To give some indication of the
complexity of the processes controlling Puget Sound, there is an interesting pattern documented
for the 100-fathom hole in the deep basin of Puget Sound.

Ulf Lie began sampling the hundred-fathom hole in Puget Sound about 1960.  Fred Nicholls
sampled this site for his M.Sc. and Ph.D. dissertations at the University of Washington in the mid
1960s.  Nicholls continued to sample the 100-fathom hole throughout the 1970s and 1980s,
finally publishing his work in 1985.

Nichols (1985a) concluded that the main basin of Puget Sound had been degraded by the
introduction of sewage since the 1960s.  One of the dominant species during the 1960s, the ice-
cream-cone worm Pectinaria californiensis had declined dramatically since the 1960s.  This
species, which feeds on subsurface deposits, is the type of species that Pearson & Rosenberg
(1976, 1978) and Rhoads et al. (1978) had predicted should decline as the result of increasing
organic enrichment.  After publishing 20 years of long-term data in 1985, Nichols was forced to
retract his major hypothesis when Pectinaria returned.  Nichols (1988) concluded that the
benthic community in the main basin of Puget Sound may change as the result of a long-term
change in the flushing characteristic of the Sound, a process which is now known as the Pacific
long-term oscillation.
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Definitions of terms

Phytoplankton biochemical oxygen demand [PBOD] The oxygen required to respire the
photoautotrophic biomass produced by the addition of a limiting amount of nutrient.
Officer & Ryther (1977) noted that secondary sewage treatment in Boston Harbor and
elsewhere would reduce biochemical oxygen demand [BOD], the amount of oxygen
required to respire the organic matter in sewage effluent, but secondary treatment doesn’t
reduce the amount of dissolved nutrients, which fuel increased primary production. They
defined the oxygen required to respire this new production PBOD.  Hence PBOD remains
high with secondary treatment, and tertiary treatment might be required to reduce both
BOD and the concentration of limiting nutrient that leads to PBOD.

Web pages on Boston Harbor and the Gulf of Maine

Table 1.  Web resources on Boston Harbor, MA Bay, and the Gulf of Maine.

Description URL

Bigelow Laboratory for
Ocean Sciences 

http://www.bigelow.org

Center for Coastal
Studies Provincetown

http://www.coastalstudies.org/

Dartmouth Gulf of
Maine Home Page. 
Includes circulation
models of the Gulf of
Maine

http://www-nml.dartmouth.edu/circmods/gom.html

Dartmouth WWW
Server
www-nml.dartmouth.ed
u 

http://www-nml.dartmouth.edu

Environmental, Coastal
& Ocean Sciences;
UMASS/Boston

http://www.umb.edu

EPA Region 1 MA Bay
Outfall Monitoring
Scientific Advisory
Panel

http://www.epa.gov/region01/omsap/

The Marine Biological
Laboratory 

http://www.mbl.edu

http://www.bigelow.org
http://www.coastalstudies.org/
http://www-nml.dartmouth.edu/circmods/gom.html
http://www-nml.dartmouth.edu
http://www.umb.edu
http://www.epa.gov/region01/omsap/
http://www.mbl.edu
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Table 1.  Web resources on Boston Harbor, MA Bay, and the Gulf of Maine.

Description URL

Massachusetts Water
Resources Authority 

http://www.mwra.com

MIT SEA GRANT http://web.mit.edu/seagrant/

MWRA ENQUAD,
Environmental Quality
Division (Includes a
listing of all MWRA
Technical Reports)

http://www.mwra.state.ma.us/harbor/enquad/trlist.html

NOAA Review of the
Great Whales, including
the Northern Right
Whale

http://spo.nwr.noaa.gov/mfr611/mfr611.htm

Northeast Fisheries
Center, Woods Hole,
NOAA’s National
Marine Fisheries
Service 

http://www.nefsc.noaa.gov/

Stellwagen Bank
National Marine
Sanctuary

http://stellwagen.nos.noaa.gov/

New England Aquarium http://www.neaq.org

Woods Hole
Oceanographic
Institution WWW
Server 

http://www.whoi.edu/

USGS analysis of
Boston Harbor/MA Bay

http://woodshole.er.usgs.gov/project-pages/bostonharbor/index
.html

USGS analysis of
Boston Harbor
sediments (Mike
Bothner)

http://marine.usgs.gov/fact-sheets/fs150-97/

http://www.mwra.com/
http://web.mit.edu/seagrant/
http://world.std.com/~enquad
http://www.mwra.state.ma.us/harbor/enquad/trlist.html
http://spo.nwr.noaa.gov/mfr611/mfr611.htm
http://www.nefsc.noaa.gov/
http://vineyard.er.usgs.gov/
http://stellwagen.nos.noaa.gov/
http://www.neaq.org
http://www.whoi.edu/
http://woodshole.er.usgs.gov/project-pages/bostonharbor/
http://woodshole.er.usgs.gov/project-pages/bostonharbor/index.html
http://woodshole.er.usgs.gov/project-pages/bostonharbor/index.html
http://marine.usgs.gov/fact-sheets/fs150-97/
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Outlines of readings

ASSIGNED

Cole, B. E. and J. E. Cloern.  1987.  An empirical model for estimating phytoplankton productivity in estuaries. 
Mar. Ecol. Prog. Ser. 36:  299-305. [Primary production is proportional to Chl a conc, depth, and light
intensity.]

1. Abstract
a. Primary production in San Francisco Bay is highly correlated with phytoplankton biomass B, and an

p oindex of light availability in the photic zone Z I  (photic depth times surface irradiance)
b. compared the generality of this relation with 5 other estuaries

p oc. daily production regressed against the composite parameter B*Z I
d. One regression line fit all 4 estuaries.
e. Physiological variability is a secondary control on phytoplankton productivity in nutrient-rich estuaries.

2. Introduction
a. Contention: Photosynthetic carbon assimilation may be more amenable to prediction in estuaries

than in oligotrophic areas. 
b. Evidence:

i. many estuaries have horizontal gradients of increasing productivity with decreasing turbidity
ii. estuarine sites with low suspended sediments have areal production
iii. in many estuaries phytoplankton biomass and production increase during stratification events
iv. productivity of the whole phytoplankton and 3 size fractions in San Francisco bay is highly

correlated with biomass and light availability.
c. phytoplankton can exhibit short-term variability in production which may not be important long term.
d. Cites Platt’s remote sensing paper.
e. 6 diverse estuaries fit the picture.

3. Methods
a. 27 sites in 6 US estuaries of 3 types:  fjord, river-dominated (partially mixed), and lagoon, as well as

an estuarine plume.

p o ob. total production regressed against B Z *I , where Zp is the photic depth and irradiance I  (variable
units).

pc. Photic depth = 1% light depth, calculated from light attenuation coefficient.  Z =4.61/k; k = 0.4 +
1.09/Secchi depth., data derived from SF Bay.
i. assume phytoplankton homogeneously distributed in the photic zone.
ii. B = mean Chl concentration in the photic zone.

piii. B and Z  are not totally independent variables, because phytoplankton can control the
attenuation coefficient
1. contribution to k of phytoplankton small relative to sediments
2. 5% of light attenuation in SF bay due to chlorophyll a concentration

iv. Chl a measured fluorometrically or spectrophotometrically.
v. PAR measured (350 - 700 nm ??)
vi. 0.47 conversion factor to convert Puget sd and Hudson River data to PAR
vii. radiometric PAR (gcal cm  d ) converted to quantum values E m  d ) using a conversion-2 -1 -2 -1

factor of 0.192 Colijn (1982)
4. Results

a. A linear relation was found from each of 6 systems 
b. there were no significant differences with seasons.
c. mean r  = 0.822

d. for pooled data, there was a highly significant relationship.  r  = 0.822

e. Thus, a single regression equation can be used to estimate production in a wide range of temperate
estuarine environments.

5. Discussion.
a. There is a strong correlation between production and light.
b. Fits with Wofsy (1983) and Platt (1986) that primary productivity, normalized to phytoplankton

biomass is largely dependent on light availability
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c. Wofsy (1983): developed a mechanistic model to estimate water-column primary production in
rivers and estuaries based on light attenuation partitioned between phytoplankton
and detritus.

d. Platt (1986) explains the mechanistic basis of such an approach
concludes that biomass-specific production in the ocean is a linear function of light intensity.

me. We know that P  and á of the P vs I curve vary with B

i. recent light history
ii. spectral quality of light
iii. temperature
iv. salinity

f. Such studies may not be relevant over time scales of weeks to years.
g. Model implications and utilities:

i. Because a single formulation gives reasonable estimates of productivity, large-scale spatial
variability of productivity can be determined from a few measures of productivity and many

pmeasures of B and Z  over a large geographic area.
ii. Remote sensing.
iii. Airborne color imager.  sensors for wavebands specifically required for turbidity and

chlorophyll
iv. the model is also useful for determining when factors other than biomass and light are

important controls on productivity.
v. Predictions in Table 2 assume nutrient-replete systems.
vi. Hudson River plume estimates where quite high.  

h. Summary:
i. the linear relation and high degree of similarity between regressions of productivity has 2

implications
1. a simple empirical equation can be used to estimate daily production
2. instances when measured productivity differs widely from that predicted using the

composite parameter model m may indicate that secondary factors are significantly
affected in the measured rates.

p o6. Overall conclusion: Z *I *B explains 82% of the variation in estuarine production
“This implies that physiological variability is a secondary control on phytoplankton
production in nutrient-rich estuaries, and that one empirical function can be used
to estimate seasonal variations in productivity or to map productivity along
estuarine gradients of phytoplankton biomass and turbidity.”

SUPPLEMENTAL

Cullen, J. J.  1982.  The deep chlorophyll maximum:  comparing vertical profiles of chlorophyll a.  Can. J. Fish. Aquat.

Sci. 39:  791-803.  [This was the best available synthesis and review prior to Longhurst and Harrison (1989). 
This review is more concise, hence we are using it instead of Longhurst and Harrison (1989).  I will refer to

Longhurst & Harrison in class.] {30}

Haury, L. R., P. H. Wiebe, M. H. Orr, and M. G. Briscoe.  1983.  Tidally generated high-frequency internal wave packets
and their effects on plankton in Massachusetts Bay.  Journal of Marine Research 41:  65-112.  “See especially
their profiles of fluorescence with depth.”

1. Abstract
a. internal waves form at Stellwagen bank and propagate into MA Bay.
b. dominant wave packets have lengths of 300 m, period of 8-10 min, and have amplitudes of up to 30 m
c. Longhurst-Hardy plankton recorder used.
d. light levels from 0.1% to 26% of surface light, 30 m displacement
e. the nutrient input to surface layers can be enhanced (so too, can oxygen flux

2. Materials and Methods:
- sampling locations A & P located far away form inner Mass. Bay.

3. Results
a. New wave packet generated every 12.4 hours
b. Wave packets dissipate on the shoal waters of the Western side of the Bay
c. some internal waves can break in 80 m of water.

IT
Stamp



EEOS 630
Biol. Ocean. Processes
Neritic Prod., P. 16 of 35.

d. Figure 7 documents the passage of an internal wave, 15 - 20 m displacement of the Chl maximum
4. Discussion

a. at depths less than 30 m, the breaking internal waves are capable of scouring the bottom.  
b. intense mixing at the pycnocline.

Kelly, J. R. and P. H. Doering.  1997.  Monitoring and modeling primary production in coastal waters: studies in
Massachusetts Bay 1992-1994.  Mar. Ecol. Prog. Ser. 148: 155-168. [Three years of monitoring data are
described and fit to the Cole-Cloern model]

I. Abstract
A. 1992-1994 sampling.
B. P vs. I approach

1. 6 surveys per year
2. 10 stations, 2 depths in 1992-1993
3. 2 stations in 1994 4 depths.

C. Annual primary production estimated 386-486 gCm d-2 -1

D. Cape Cod 527-613 gCm d-2 -1

E. Production coupled directly to irradiance, less to Chl a 
II. Introduction

A. Outfall 15 km offshore in 32 m water
B. Cole & Cloern (1987), Keller

p o1. B Z I
a. B average chlorophyll concentration in the photic zone

pb. Z =depth of the photic zone

oc. I  =daily incident PAR
III. Methods

A. Field procedures
1. In situ fluorescence was regressed against chlorophyll concentration.
2. R =0.72

B. 1994 studies
1. P vs. I incubations doen at 2 stations.
2. C method14

a. 4 depths
b. Temperature maintained to 3ºC
c. 15 300-ml BOID bottles
d. 3 dark bottles
e. DIC

C. 1992-1993 studies
1. 10 stations

22. 1992: O  method used
D. Analyses.

1. Subract dark bottles
a. Remove outliers using the Dixon criterion

2. Dark-corrected values normalzed to Chl a 
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3. For 1992 data, used Platt & Jassby (1976)
4. Determined extinction coefficient
5. Used 2-5 day average light

o6. Euphotic zone: 0.5% I  
7. Multiply mid-day rates by 7 (Vollenweider 1966)
8. For 1992-1993 data, calculated the average production

IV. Results & Discussion
A. Production measurement and modeling in 1994

1. P-I incubations.
a. 83% #12 ìg C ìg Chl a h-1

maxb. Summer, decrease in P between surface and deep samples
c. Progressive increase from 2 to 11-14 in October
d. á:   78% # 0.1

2. Integrated C production rates at the 2 stations.14

3. Modeling depth-integrated production
4. Fig. 5a 22 data for 1994: Very high production in March 
5. Common formulation for both stations

B. Annual production in W. MA Bay in 1994
1. 1994: Late bloom prodction might be overestimated.

C. Empirical production model for 1994
1. Comparison to previous formulations
2. Y=0.073X+15 (R =0.82)2

3. Y=0.70X+220 (R =0.82)2

4. Cole & Cloern and IKeller used 12%, they used 0.5%
a. Only 3% change
b. Y=0.79X+285

D. Interannual comparisons of measurements and modeling in our study region.
1. Fall 1993 bloom 10-12 ìg Chl a l-1

2. 1992: daily production 1.06 gCm d , 386 gC m y-1 -2 -1

3. Used a PQ of 1 
4. Model based on 1994, fits 1992 data if PQ near 1

E. Modeling uncertainty and sensitivity analysis
1. P-I modeling

a. Anomalously high alfph values.
b. Model not sensitive to imprecisions of alpha
c. Light intensity is the prime determinant of production
d. Chl a and N are strongly related

2. Production remains about 1 across MA Bay
F. Comparison of annual production ranges

Lunven, M, J. F. Guillaud, A Youénou, M. P. Crassous, R. Berrie, E Le Gall, R. Kérouel, C. Labry, and A.
Aminot. 2005. Nutrient and phytoplankton distributions in the Loire River plume (Bay of Biscay, France)
resolved by a new fine scale sampler. Est. Coastal Shelf Sci. 65: 94-108. [A fine scale sampler (.10 cm
resolution) used to document remarkable fine scale structure of light, Chl a, pheophorbide, diatoms,
dinoflagellates and nutrients]{?}
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Figure 3. Lunven Fig. 4

Figure 4. Lunven Fig. 7

Figure 5. Lunven Fig. 4

Nixon, S. W. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:
199-219. [A general review of eutrophication, including a new definition, and estimates of nitrogen inputs
into Narragansett Bay ince 1800] [?]

Officer, C. B. and J. H. Ryther.  1977.  Secondary sewage
treatment versus ocean outfalls:  an assessment. 
Science 197:  1056-1060.

1. Environmental scientists and engineers alike
have argued that secondary treatment of
wastewater is unneeded and ineffective if
discharges are made into open coastal waters,
where there is adequate mixing.

2. Secondary treatment removes 80 - 90 % of BOD
3. WBOD = 400 mg O2/l
4. Oxygen to N ratio is 276:15.5 by atoms or 20:1 by

weight (RKR ratio)
5.
PBO
D : 
phyto

plankton biochemical oxygen demand
6. WBOD has organic nitrogen of 20 mg/l
7. Thus, secondary effluent may have twice the

oxygen demand of a straight waste effluent
8. Assimilation characteristics of rivers, estuaries

and coastal waters.
9.
ô=`ta
u’ is
the
resid
ence
or
flushing time [d]

9.1.1. volume averaged concentration is
given in terms of ô as C/(V/ô) where
C is the input

9.1.2. enters the first order reaction terms
in the form of k*ô, where k is first-
order reaction constant
9.1.2.1. large k*ô: complete

reaction
9.1.2.2. low k*ô:  incomplete reaction

9.2. Table 1 residence times for various rivers, with dilution potential.

10. Waste oxidation model
10.1. W is the combined waste discharge oxygen demand
10.2. WDOD  waste dissolved oxygen demand
10.3. oxygen replenishment proportional to the Oxygen deficit.

2- k  is the reaeration coefficient.

pPDOD = [(P/V)/ô] * (1 - (1- (e ) /k ô) * (â/á) (3)[-kpô]

where, 
PDOD= Phytoplankton dissolved oxygen deficit (in bottom waters) [g O2 m ]-3
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2P is the oxygen utilization rate [g O  d ]-1

V total volume [m ]-3

ô (tau) is the flushing time. [d]

p pk phytoplankton production coefficient, assumed to be [1 d ]  [k =ì/0.693]-1

â (Beta)is the fraction of the phytoplankton bloom that is retained and
decays within the system out of the euphotic zone (assumed to be 0.5 for
Fig. 1)

á (alpha) is the ratio of the volume of the bottom waters to the total volume,
V. (assumed equal to 0.5 for Fig. 1)

pFor large values of k *ô, Equation (3) approaches (P/V)*ô*(â/á).
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HARBOR/MASS. BAY1
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model was later refined by Cole & Cloern

(1987)]
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HARMFUL ALGAL BLOOMS

[I’m just starting this listing of papers on noxious species
with an emphasis on those known to occur in MA Bay. 
Most of the key papers are listed on the harmful algae

web page: http://www.redtide.whoi.edi/hab/.  Volume 42,
No. 5, part 2 is a full issue of Limnol. Oceanogr. devoted
to harmful algal blooms]
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SUBSURFACE CHLOROPHYLL

MAXIMA

Comments

Massachusetts Bay has a well developed subsurface

chlorophyll maximum in the summer (Haury et al.,

1983).  Holligan et al. (1984) have shown that this
maximum is found throughout the Gulf of Maine and is a
phytoplankton carbon maximum as well.  Subsurface
chlorophyll maxima occur in many areas of the world’s

ocean.  Longhurst and Harrison (1989) provide the
most recent summary.

Subsurface chlorophyll maxima (SSCM’s) in Southern
California waters have been shown to be critical for the

first-feeding larvae of the Northern anchovy (Lasker

1975).  They are particularly dependent on the
abundances of the large (40-50 ìm) dinoflagellate
Gymnodinium splendens, which is often dominant in the
SSCM.  Lasker proposed the “stable-ocean hypothesis” to
explain the Interannual variability in larval anchovy.  In
years with high wind stress during the key 1-wk feeding
period of the first-feeding larvae, the SSCM is weak and
the fish starve.
This short reading list contains some very difficult papers. 

The key paper in the list is Haury et al. 1983, which
describes the subsurface chlorophyll maximum in Mass.
Bay, detected by pump sampling water through a Turner

fluorometer.  Cullen (1982) provides a good summary of
the literature on subsurface chlorophyll maxima.  Cullen
points out that a subsurface chlorophyll maximum does
not necessarily mean that there is a subsurface
phytoplankton carbon maximum.  Harrison, Platt & Lewis
(1985) provide an exceptionally powerful approach to
estimating primary production in the field.  

Understanding the MA Bay SSCM

Harrison, W. G., T. Platt, and M. K. Lewis.  1985.  The
utility of light-saturation models for estimating
marine primary productivity in the field:  a
comparison with conventional simulated in situ
methods.  Can. J. Fish. Aquat. Sci. 42:  864-872. 
[Their P vs I model breaks down at the 1% light
depth.  In their subarctic sites, little total
production occurs at the subsurface Chl
maximum, but that is probably not the case in
MA Bay.  There may also be a physiologically
different assemblage of phytoplankters
(probably different species) at the subsurface
chlorophyll maximum]

Haury, L. R., P. H. Wiebe, M. H. Orr, and M. G. Briscoe. 
1983.  Tidally generated high-frequency internal
wave packets and their effects on plankton in
Massachusetts Bay.  Journal of Marine Research
41:  65-112.  [See especially their profiles of
fluorescence with depth.]

Holligan, P. M., W. M. Balch, and C. M. Yentsch.  1984. 
The significance of subsurface chlorophyll,
nitrite, and ammonium maxima in relation to
nitrogen for phytoplankton growth in the
stratified waters of the Gulf of Maine.  J. Mar.
Res. 42:  1051-1073.  [The SSCM is a biomass
maximum, sometimes contains toxic Gonyaulax
tamarensis, and may be a new production
maximum.  Primary production above the SSCM
is heavily dependent on regenerated N. The
importance of pelagic nitrification is discussed;
benthic nutrient regeneration is impeded by a
layer of G. of Me intermediate water.]

Townsend, D. W., T. L. Cucci and T. Berman.  1984. 
Subsurface chlorophyll maxima and vertical
distribution of zooplankton in the Gulf of
Maine.  J. Plankton Res. 6:  793-802.

Other readings on subsurface chlorophyll

maxima

Abbott, M. R., K. L. Denman, T. M. Powell, P. J.
Richerson, R. C. Richards, and C. R. Goldman.
1984.  Mixing and the dynamics of the deep
chlorophyll maximum in Lake Tahoe. Limnol.
Oceanogr. 29: 862-878.
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comparing vertical profiles of chlorophyll a. 
Can. J. Fish. Aquat. Sci. 39:  791-803.  [This
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Cullen, J. J., F. M. H. Reid, and E. Stewart. 1982. 
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