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Figure 4.  Cyclomorphosis in a clone of Daphnia cucullata. Both morphs are genetically identical, but the helmeted 
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predatory phantom midge larva Chaoborus. Figure from Agrawal et al. (1999) . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  
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Assignment 

REQUIRED 

Brooks, J. L. and S. I. Dodson. 1965.  Predation, body size, and composition of plankton. 
Science 150: 28-35. 

SUPPLEMENTAL 

Briand, F. and E. McCauley. 1978.  Cybernetic mechanisms in lake plankton systems: how to control undesirable algae. 
Nature 273: 228-230. [Levins’ Loop analysis is applied to lake systems.  Some simple predictions are verified 
using loop diagrams.  Despite their comment in the text that the model is sign-stable, their simple model 
contains a 3-cycle and cannot be sign stable.  The predictions are ambiguous.] 

Greene, C. H.  1983.  Selective predation in freshwater zooplankton communities.  Int. Revue ges. Hydrobiol. 68: 
297-315.  [A review of the effects of invertebrate and visually feeding predators] 

Kerfoot, W. C.  1975.  The divergence of adjacent populations.  Ecology 56: 1298-1313.  [Size composition of Bosmina 
longirostris populations on the shore and open water of Lake Union are controlled by different intensities of 
vertebrate and invertebrate predation.] 

Miller, C. B. 2004. Biological Oceanography. Blackwell Science, Malden MA. 402 pp. [Read pp. 162-178 on 
zooplankton life history & mortality rates] 

Neill, W. E.  1975.  Experimental studies of microcrustacean competition, community composition and efficiency of 
resource utilization.  Ecology 56:  809-826. 

Paine, R. T. 1966.  Food web complexity and species diversity. Amer. Natur. 100: 493-532.  [Increased predation leads 
to increased diversity.  Later modified by Connell to the intermediate disturbance hypothesis] 

Comments on the Readings 

To what extent is marine ecosystem structure determined by physical forces and nutrient flux 
from below vs. control by top-level predators?  This question has been debated for at least the 
last 25 years and is now referred to as the “bottom-up” or “top-down” dichotomy.  One “top­
down” control hypothesis is called the predator or trophic-cascade hypothesis: control at higher 
trophic levels has cascading effects on lower trophic levels.  By changing the type or quantity of 
predation at the highest levels in an aquatic ecosystem, one can change the quantity, size or 
species composition of the phytoplankton.  In bottom-up control, nutrient supply is the 
overwhelmingly important factor controlling phytoplankton standing stocks.  Brett & Goldman 
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(1997) recently reanalyzed eleven nutrient and predator manipulation experiments, finding that 
nutrient supply does have the major effect on phytoplankton biomass, but that top predators do 
have a strong influence on zooplankton biomass. 

The required papers for today’s class are classics.  Brooks & Dodson (1965) describe a survey of 
fish and zooplankton in Connecticut lakes carried out in 1942, 1962 and 1964.  In some of the 
lakes, planktivorous (plankton eating) fish were introduced 10 years prior to the 1964 sampling. 
Brooks & Dodson (1965) proposed the size-efficiency hypothesis to explain the difference in 
size structure between lakes with and without fish.  This size-efficiency hypothesis has five parts: 

1.	 Planktonic herbivores all compete for the fine particulate matter (1-15 ìm) 
2.	 Larger zooplankton do so more efficiently and can also take larger


particles.

3.	 When predation is of low intensity the small planktonic herbivores will be 

competitively eliminated by large forms (dominance by large Cladocera 
and calanoid copepods) 

4.	 But when predation is intense, size-dependent predation will eliminate the 
large forms, allowing the small zooplankton (rotifers, small Cladocera) 
that escape predation to become dominant. 

5.	 When predation is of moderate intensity, it will, by falling more heavily 
upon the larger species, keep the populations of these more effective 
herbivores sufficiently low so that slightly smaller competitors are not 
eliminated. 

The size-efficiency hypothesis (SEH) is one of the most important hypotheses proposed in 
aquatic science.  However, this bold hypothesis is not an adequate explanation of the changes in 
planktonic size structure even in Connecticut Lakes.  The hypothesis predates and subsumes R. 
T. Paine’s more well-known (1966) keystone predation hypothesis.  Parts of the SEH, 
particularly the negative association between large zooplankton and fish, were confirmed by Reif 
& Tappa (1966), Galbraith (1967) and Wells (1970). Zaret (1972) and Kerfoot (1975) 
broadened the concept to include changes in zooplankton phenotypes being controlled by visual 
predators.  Zaret (1972) studied zooplankton in Lake Gatun in Panama, and Kerfoot studied 
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Lake Union (WA) Bosmina 
phenotypes and the phenotypes were 
vertical migration patterns (Zaret & 
Suffern 1976) and body size, 
especially cyclomorphosis, the 
seasonal increase in cladoceran body 
size and armoring (Dodson 1974a). 
Gliwicz (1986) confirms Zaret & 
Suffern’s (1976) hypothesis for the 
adaptive advantage of vertical 
migration (predator avoidance) and 
provides the clearest demonstration 
of the effect of visual predators on 
vertical migration patterns. Gliwicz’s 
(1986) is on the reading list for the 
next class on vertical migration. 

Figure 1 summarizes Brooks & 
Dodson’s (1965) view of the role of 
visually feeding predators in aquatic 
systems.  Visually feeding fish feed 
selectively on the larger zooplankton. 
Large and small zooplankton 
compete for medium-sized 
phytoplankton cells.  Brooks & 
Dodson (1965) hypothesized that 
large zooplankton grazers would be 
the superior competitors because 
they could ingest large 

phytoplankton cells (part 2 of the S-E hypothesis). 

The size-efficiency hypothesis has been criticized, and no part of the hypothesis is strictly 
correct.  Hall et al. (1970) and Neill (1975a) showed that small zooplankton can outcompete 
larger zooplankton.  Further, Neill (1975b) showed that there was a great deal of resource 
partitioning of phytoplankton on the basis of size (i.e.., part a) of the size-efficiency hypothesis 
was not universal).  Dodson (1974b) failed to find competitive exclusion between large and 
small zooplankton in the field.  Bengtssen (1987a & b) reviewed both laboratory and field 
evidence that tested the hypothesis that large zooplanktonic grazers were competitively superior, 
concluding that large zooplankton are often, but not always, the superior competitor in laboratory 
and field experiments (18 of 30 experiments & 8 of 10 field experiments). 

The key modification of the size-efficiency hypothesis was the discovery of the importance of 
invertebrate predators.  Often, the major prey consumed by visually feeding fish are themselves 
carnivorous.  Many of the large zooplankton that Brooks & Dodson (1965) had assumed to be 

Figure 1. A schematic diagram showing the trophic interactions 
assumed by Brooks & Dodson (1965).  See Fig. 2 for a more 
realistic view of pelagic trophic interactions 
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grazers were predators on smaller zooplankton.  Figure 2 shows a more realistic view of the role 
of visually feeding predators in aquatic systems.  Competitive dominance by large copepods does 
not need to be invoked to explain the change to smaller zooplankton after the introduction of 
fish. Dodson (1970, 1974b) introduced the central importance of invertebrate predators in 

controlling not only zooplankton 
species composition but also 
zooplanktonic reproductive 
phenotypes: 

“In the absence of vertebrate 
predation, D. middendorffiana 
produces a few large offspring which 
are largely unavailable to the 
predacious copepod.  D. 
middendorffiana produces small, but 
more offspring only when Diaptomus 
shoshone is not predacious.” 

Dodson (1974b) can be summarized 
as “The size-efficiency hypothesis is 
dead; long live the importance of 
invertebrate predation!”.  However, 
neither invertebrate nor vertebrate 
predation may be adequate to explain 
the size structure of some 
communities. Neill (1981) among 
others showed that invertebrate 
predation could not explain 
distribution patterns in the field, and 

Figure 2. Pelagic trophic interactions, including the role of competition was intense among 
invertebrate predators.  Invertebrate predators do not feed grazers. 
effectively on large prey.  Fish, and other visually feeding 
predators, feed selectively on large prey. Marine zooplankton ecologists were 

relatively slow in applying the size-
efficiency hypothesis to marine communities.  Rakusa-Suszcewski (1969) was one of the first to 
document the highly size-selective feeding by marine chaetognaths on their calanoid copepod 
prey.  Larger chaetognaths prey on larger (and older) calanoid copepods. 

Steele & Frost (1977) modeled the cascading top-down effects of vertebrate and invertebrate 
predators on zooplankton and phytoplankton community structure, a concept later picked up by 
Carpenter et al. (1985, 1987), who do not cite the earlier Steele & Frost (1977) model. 
Carpenter et al. (1985) proposed the trophic cascade model: the addition of piscivorous (fish­
eating) fish leads to a decrease in planktivorous fish, which leads to an increase in large 
zooplankton, which leads to a decrease in phytoplankton. DeMello et al. (1992) critically 
reviewed the data supporting the hypothesis and found that the coupling between top predators 
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Figure 3. Euchaeta elongata, a predatory 
calanoid copepod that detects calanoid prey 
by mechanoreception (photographed by 
Jeanette Yen).  The long, grasping 2nd 

maxillae are visible. 
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and phytoplankton abundance wasn’t general, depending on the prevalence of intermediate 
trophic links including the importance of invertebrate predation. 

Gerritsen & Strickler (1977), Pastorek (Ph.D. 
dissertation & 1981), and later C. Greene (1983, 
1986, 1988) produced models, both verbal and 
mathematical, to describe prey detection by marine 
predators.  Jeannette Yen (1982, 1985) showed that 
there was intense invertebrate predation on smaller 
marine calanoid copepods.  Yen studied the large 
predatory calanoid copepod Euchaeta, shown in 
Fig. 3.  Yen’s findings were confirmed by Greene 
& Landry (1985). Ohman (1988, 1990) clearly 
demonstrated that predation controlled the 
abundance and phenotype (e.g., vertical migration 
mode) of Pseudocalanus in Dabob Bay. 

Neill (1975a) is one of the finest studies of 
competition ever published.  It has only one notable 
flaw: it is a laboratory study.  L. C. Birch, the noted 
Australian insect ecologist and more noted critic of 
competition theory, is reputed to have said, 
“Competition occurs, but not in Nature.”  Neill also 
criticized competition theory.  In his first published paper on these laboratory data, Neill (1974) 
showed that competition among microcrustacean could not be adequately modeled using the 
Lotka-Volterra competition equations, because of higher order interactions. 

Neill’s (1975a) study should be viewed as a study of the effects of competition among 
zooplankton if resources (phytoplankton) are limiting.  Neill’s (1975a) study clearly 
demonstrated intense competition between zooplankton species and zooplankton developmental 
stages for size classes of phytoplankton.  Neill (1975a) introduced the “bottleneck hypothesis” 
that states that the growth of a population can be limited by competitive interactions that affect 
only one developmental stage of a species and that ramify through subsequent stages.  In his 
experiments, Daphnia magna was competitively excluded from the microcosms because its 
developmental stages could not survive competition with Ceriodaphnia. Neill (1975a) was able 
to produce superb life tables for each of the species, a remarkable accomplishment in itself. 

Carpenter et al. (1985, 1987) proposed the trophic-cascade or predator cascade hypothesis.  This 
hypothesis states that the size structure of a community can be set by the top-level predators.  In 
the cascade model, as fish predation intensity increases, the planktivore density decreases, 
herbivores increase and Chl a decreases.  Steele and Frost (1977) had shown this pattern with a 
simulation model a decade earlier.  McQueen et al. (1989) proposed an alternate hypothesis, 
which he called the “bottom up:top down model”, in which Chl a is independent of fish 
abundance.  Mazumder et al. (1990) and Murtaugh (1989) provide other analyses on the effects 
of fish on the size composition of lakes. 
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O’Brien (1979) and Greene (1983) summarized the mechanisms used by visually feeding 
predators to ingest prey.  The probability of ingestion, Ð  can be computed from the following 
conditional probabilities: 

(1) 

P  can be computed from the reactive distance of a visually feeding fish and is a strong linear L

function of light intensity and prey size (mm).  O’Brien’s (1979) model, involving spherical 
reactive volumes, indicate that a 2-mm Daphnia is 27 times more likely to be eaten as a 1-mm 
length Daphnia. Gerritsen & Strickler (1977) showed that the Probability of encounter is 
dependent on both predator and prey density and the swimming speeds of predator and prey and 
the encounter volumes.  Invertebrate predators can be divided into cruising (e.g., some cyclopoid 
copepods) and ambush predators (e.g., Chaoborus) based on their motility while encountering 
prey.  In general, ambush predators tend to encounter the larger, more rapidly swimming prey 
items. 

The probability of pursuit, given location is generally close to 1.0, in that fish rarely fail to pursue 
a located prey.  Some exceptions involve prey that are toxic, and some prey are brightly colored 
to signify their unpalatability (Kerfoot (1982) has described the behavioral interactions involving 
an unpalatable, brightly colored mite, which is “Better red than dead”.) 

The probability of attack depends on the mechanism of ingestion, which can include sucking, 
filtering (e.g., through gill rakers), or pump filtering.  Copepods can evade some pumpers.  The 
probability of capture can sometimes be affected by the spacing between gill rakers in fish. 

There are a variety of adaptations, both physiological and genetic for reducing predation 
mortality.  These include escape responses, armored exoskeletons, large body size,  deadman 
sinking responses, and reverse diel vertical migration to avoid invertebrate predation. 
Adaptations in response to visually feeding predators include diel vertical migration, small size, 
lateral compression, and invisibility.  There are often large demographic costs associated with 
adaptations to reduce predation mortality, especially invertebrate mortality.  Larger adult size is 
often associated with a delayed age to first reproduction.  Armoring is associated with reduced 
fecundity (Kerfoot 1977). 

NATURAL SELECTION OF PREDATOR DEFENSE: KAIROMONES 
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Kairomones are chemicals released by the action of 
one organism that have no effect on that organism 
but affect the behavior or physiology of another. 
Both the behavior and morphology of freshwater 
and marine zooplankton populations change in 
response to the presence of invertebrate and 
invertebrate predators.  Cyclomorphosis is the 
change in morphology seasonally, noted especially 
in freshwater daphnid populations.  Figure 4 shows 
the change in morphology of cladocera observed in 
a lake system.  The large helmeted morph is more 
resistant to invertebrate predation than the normal 
morph. Agrawal et al. (1999) document 
‘transgenerational induction’ of predator defense. If 
a mother brooding eggs, late in their development, 
is exposed to kairomone (an as yet unknown 
chemical) from either of the major invertebrate 
predators of this species, the young will develop 
helmets even if they were born and raised in a 
kairomone-free medium.  If the kairomone is added 
only during the early stages of egg development, the 
eggs develop into the normal morph. This behavior 
is not evidence for Lamarckian selection, as it is a 
physiological response, not genetic.  Beaton & 
Hebert (1997) document that the expression of 
different cell types is altered by the presence of the 
kairomone during development. 
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Figure 4. Cyclomorphosis in a clone of 
Daphnia cucullata. Both morphs are 
genetically identical, but the helmeted 
morph (left) is produced in response to a 
kairomone produced by the predatory 
cladoceran Leptodora or the predatory 
phantom midge larva Chaoborus. Figure 
from Agrawal et al. (1999) 
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and with fish kairomone. Fr
& Loose (1992).
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Kairomones from fish induce vertical migration 
behavior in freshwater and marine zooplankton 
populations. Davidowicz & Loose (1992) provide 
a remarkable demonstration of the phenomenon. 
Clones of Daphnia, the freshwater cladoceran were 
isolated and grown in columns. When kairomone 
from fish was dripped in the medium, the clones 
exhibited a phenomenal vertical migration pattern, 
as shown in Figure 5. 

MNEMIOPSIS & THE DESTRUCTION & 
RECOVERY OF THE BLACK SEA 

Kideys (2002) and Finenko et al. (2003) document 
the remarkable story of the destruction of the Black 
Sea and its remarkable recovery due to the predatory 
effects of two ctenophores. In the early 1980s, the 
ctenophore (or “comb jelly”)  Mnemiopsis leidyi, 
common on the East coast of the United States 
including Narragansett Bay and Boston Harbor, was 
introduced into to the Black Sea by accident. It is a 
voracious predator on zooplankton 
and fish. Mnemiopsis reduced the Figure 5. Vertical migration without (top) 

pelagic prey of the dominant fish in 
the black sea, the anchovy, and 
preyed on anchovy larvae.  In 1997, 
another ctenophore appeared in the 
North Sea, and this ctenophore Beroe 
was a predator of Mnemiopsis, see 
Figure 6. Within a year, the Beroe 
had reduced Mnemiopsis abundances 
to low levels and the zooplankton 
and fish stocks had begun to recover. 

om Dawidowicz 

Figure 6. Beroe ingesting a Mnemiopsis from Kideys 
(2002) 
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Outlines of papers 

REQUIRED 

Brooks, J. L. and S. I. Dodson.  1965. Predation, body size, and composition of plankton. 
Science 150: 28-35.[3, 4] 

1.	 Survey of Connecticut lakes. 
a.	 Large cladoceran, Daphnia, not found in lakes containing Alosa 
b.	 Sampled in 1942, 1962, and 1964 
c.	 Alosa became established in Crystal Lake in 1955. 

i.	 1942 survey: pre-fish 
ii.	 1964: about 1 decade after fish 

Figure 7. Brooks & Dodson (1965) Figure 4. 

d.	 Size-efficiency hypothesis. 
i.	 Planktonic herbivores all compete for the fine particulate matter (1 to 15 ìm) 
ii.	 Larger zooplankters do so more efficiently and can also take larger particles. 
iii.	 When predation is of low intensity the small planktonic herbivores will be competitively 

eliminated by large forms (dominance of large Cladocera and calanoid copepods) 
iv.	 But when predation is intense, size-dependent predation will eliminate the large forms, 

allowing the small zooplankters (rotifers, small cladocera) that escape predation to become 
the dominants. 

v.	 When predation is of moderate intensity, it will, by falling more heavily upon the larger 
species, keep the populations of these more effective herbivores sufficiently low so that 
slightly smaller competitors are not eliminated. 
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SUPPLEMENTAL 

Greene, C. H.  1983. Selective predation in freshwater zooplankton communities.  Int. 
Revue ges. Hydrobiol. 68: 297-315. [A review of the effects of invertebrate and 
visually feeding predators] 

Figure 7. Green Figure 1. 

Figure 7. Green Figure 2. 

Figure 7. Green Table 1 
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Figure 7. Green Table 2. 

Kerfoot, W. C.  1975.  The divergence of adjacent populations.  Ecology 56: 1298-1313.  [Size composition of 
Bosmina longirostris populations on the shore and open water of Lake Union are controlled by different 
intensities of vertebrate and invertebrate predation.] 

Neill, W. E.  1975a.  Experimental studies of microcrustacean competition, community composition and efficiency 
of resource utilization.  Ecology 56: 809-826. 

Conclusions: 
a. In controls, Ceriodaphnia competed with the young of other planktonic species for smaller cells. 

Increased juvenile survivorship and earlier ages of first reproduction indicated that the young animals 
are able to get more resources under predation conditions. 

b. The prolongation of adult life in (several larger species) despite improved juvenile survivorship 
indicated conditions for adults were worse in communities with reduced predation. 

c. Age-specific competition for limited resources implies that bottle-necks in the life cycles of these 
species could have readily affected the efficiency with which given resources were exploited and the 
number of species that were supported. 
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Figure 7. Neill Figure 1
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Figure 7. Neill Figure 2 

Figure 7. Neill Figure 3 
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Figure 7. Neill Figure 4 
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Oligotrophication as a result of planktivorous 
fish removal with rotenone in the small, 
eutrophic Lake Mosvatun, Norway. 
Hydrobiologia 200/201: 263-274. 

IT
Stamp



EEOS 630 
Biol. Ocean. Processes 
Predation,  P. 21 of 32 

Sarnelle, O. 1994.  Inferring process from pattern: trophic 
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Zaret, T. M.  1972.  Predator-prey interaction in a tropical 

lacustrine ecosystem.  53: 248-257.[3] 
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HOW ZOOPLANKTON PREDATORS, 
ESPCIALLY CALANOIDS, DETECT & 
INGEST PREY
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the cannibal. J. Plankton Res. 26: 937-948. 
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cannibalism on eggs and young nauplii is an 
important factor controlling the population 
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cannibalistic feeding rates on eggs and nauplii 
of Calanus helgolandicus in the laboratory.”]
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calanoid copepod, Skistodiaptomus 
oregonensis, attacking prey-sized, non-motile, 
inert particles entrained in the feeding current 
before the particles contact the copepod's 
sensory appendages.... The results of this study 
show how copepod swimming behaviour, 
coupled with a low-velocity feeding current, not 

only increases copepod encounter rates with 
inert prey by increasing direct contact rates, but 
also increases the probability of detecting and 
capturing remotely located prey that have 
well-developed escape responses.”] 

Caparroy, P.,   Uffe Høgsbro Thygesen , and André W. 
Visser 2000.  Modelling the attack success of 
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[Lab experiments & videotape show that the 

IT
Stamp



intermediate sized Calanus are most vulnerable, 

and adult sizes of Pseudocalanus. See Yen 

(1982)] {6} 
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or below their neighbours. The results of the 
velocity magnitudes and deformation rates 
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between two copepods generates the 
hydrodynamic signals detectable by the setae on 
each copepod's antennules. Based on the 
threshold of Yen et al. (1992), the results show 
that the detection distance between two 
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Rakusa-Suszczewski, S.  1969.  The food and feeding 
habits of chaetognaths in the seas around the 
British Isles.  Pol. Arch. Hydrobiol. 16: 
213-232. [Copepods are the main prey items of 
the arrow worm, Sagitta. An individual Sagitta 
can't eat the full array of copepod sizes present. 
Larger Sagitta eat larger copepods.  Guts of 
each Sagitta contain only a single copepod] 
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anchor station in the northern North Sea. ...The 
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among the highest ever recorded, 0.57 ± 0.10. 
Total gut content was independent of ambient 
prey concentration, suggesting that feeding rate 
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rates up to an order of magnitude higher than 
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differences in swimming behaviour. Sagitta 
elegans is an ambush predator that perceives its 
prey by hydromechanical signals. Faster 
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concentrations of prey, the dinoflagellate 
Gymnodinium dominans. Prey encounter rate 
increased with prey concentration...prey 
reaction distance was consistent with that 
estimated from a ... model of hydromechanical 
prey perception. ...Our observations are thus 
inconsistent with remote chemodetection in 
O.similis. ... ambush-feeding copepods, unlike 
cruisers and suspension feeders, cannot utilize 
chemical signals for the detection of individual 
prey, but rely on either hydromechanical 
detection or direct interception of prey.”] 

Yen, J.  1982.  Sources of variability in attack rates of 
Euchaeta elongata Esterly, a carnivorous 
marine copepod.  Journal of Experimental 
Marine Biology and Ecology 63: 105-117. [Lab 
studies of predation on Dabob Bay calanoid 

copepods, especially Psudocalanus] [6] 

Yen, J. 1983. Effects of prey concentration, prey size, 
predator life stage, predator starvation, and 
seasons on predation rates of the carnivorous 
copepod Euchaeta elongata. Marine Biology 75: 
69-77. 
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Bull. Mar. Sci. 43: 395-403. 
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Invertebrate Biology 115: 191-205. 

KAIROMONES, VERTICAL MIGRATION 

& PREDATOR DEFENSE 

Agrawal, A. A., C. Laforsch & R. Tolrian. 1999. 
Transgenerational induction of defenses in 
animals and plants. Nature 401: 60-63. [See 

commentary by Haukioja 1999]{8, 25} 

Baumgartner, D., U, Koch and K. O. Rathhaupt. 
2003.Alteration of kairomone-induced 
antipredator response of the freshwater 
amphipod Gammarus roeseli by sediment type. 
J Chem Ecol. 29(6):1391-401. [Amphipods 
switch habitat preference in response to 
kairomones: “G. roeseli preferred coarse 
substrates; the highest preference was shown 
for the most coarse sediment. In the presence of 
kairomones, the amphipods preferred the 
less-coarse substrate pebbles over gravel. This 
difference is an effective antipredator response; 
G. roeseli is able to hide efficiently in the 
interstices of the pebbles.”] 

Beaton, M. J. and P. D. N. Hebert 1997. The cellular 
basis of divergent head morphologies in 
Daphnia. Limnol. Oceanogr. 42: 346-356. [?] 

Black, A. R. 1993. Predator-induced phenotypic plasticity 
in Daphnia pulex: Life history and 
morphological responses to Notonecta and 
Chaoborus. Limnol. Oceanogr. 38: 986-996. [A 
variety of behaviors and morphologies induced 
in lab studies by kairomones from the water 
strider and phantom midge larvae, including 
rapid increases in body size and, surprisingly, 
big-bang reproduction] 

Boersma M. , P. Spaak, and L. De Meester. 1998. 
Predator-mediated plasticity in morphology, life 
history, and behavior of Daphnia: the 
uncoupling of responses. Amer. Natur. 152: 
237-248. [A variety of traits followed in 12 
clones from lakes with and without fish. The 
clones from lakes with fish showed more 
induction of prey defense behaviors and 
morphologies, but there was considerable 
genetic variation.] 

Boersma M. , L. De Meester, and P. Spaak. 1999. 
Environmental stress and local adaptation in 
Daphnia magna. Limnol. Oceanogr. 44: 393­
402. [16 clones from lakes with and without fish 
studied and modeled. Adaptations to fish 
increase fitness only in lakes with fish relative to 
the phenotype in the absence of fish.] 

Cousyn C, De Meester L, Colbourne JK, Brendonck L, 
Verschuren D, Volckaert F. 2001.  Proc. Natl. 
Acad. Sci. USA 98: 6256-6260. [“The 
population studied experienced variable and 
well documented levels of fish predation over 
the past 30 years and shows correlated genetic 
changes in phototactic behavior, a 
predator-avoidance trait that is related to diel 
vertical migration. The changes mainly involve 
an increased plasticity response upon exposure 
to predator kairomone, the direction of the 
changes being in agreement with the hypothesis 
of adaptive evolution. Genetic differentiation 
through time was an order of magnitude higher 
for the studied behavioral trait than for neutral 
markers (DNA microsatellites), providing 
strong evidence that natural selection was the 
driving force behind the observed, rapid, 
evolutionary changes.” ] 

De Meester, L. and  C.  Cousyn. 1997. The change in 
phototactic behaviour of a  Daphnia magna 
clone in the presence of fish kairomones: the 
effect of exposure time, Hydrobiologia 360: 
169-175. [“Using a clone that responds to the 
presence of fish kairomones by a pronounced 
change in phototactic behaviour, we determined 
how fast a change to more negatively 
phototactic behaviour occurs in Daphnia magna 
adults that are exposed to a high concentration 
of fish kairomones. Kairomone exposed animals 
showed an approximately linear decrease in the 
value of the phototactic index with time...We 
conclude that the predator-induced change in 
diel vertical migration of zooplankton is fast, 
and is fully developed in less than a day.”] 
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De Meester, L. and L. J. Weider. 1999. Depth selection 
behavior, fish kairomones, and the life histories 
of Daphnia hyalina × galatea hybrid clones. 
Limnol. Oceanogr. 44:1248-1258. [Clones 
isolated showing great genetic variability with 
strong adaptive responses to fish kairomones] 

Dodson, S. 1988. The ecological role of chemical stimuli 
for the zooplankton: predator avoidance 
behavior in Daphnia. Limnol. Oceanogr. 33: 
1431-1439. [Eight clones {7 species} of 
Daphnia tested with chemical stimuli from 3 
predators. Each clone reacted to at least one 
and some to a short-lived {<7 h} water soluble 
chemical] 

Doksæter, A., and J. Vijverberg. 2001 The effects of food 
and temperature regimes on life-history 
responses to fish kairomones in Daphnia 
hyalina x galeata.  Hydrobiologia 442: 207-214 
[“Life-history responses to two concentrations 
of fish released info-chemicals at two 
temperature and food regimes were investigated 
for one clone of Daphnia hyalina × galeata. The 
presence of fish kairomones had a negative 
impact on size at maturity, carbon allocation to 
individual eggs and size of neonates in all 
treatments. Food concentration and 
temperature had positive effects on size of adult 
stages, independent of kairomone treatment. 
However, kairomone treatment were not found 
to interact with food or temperature”] 

Gool, E. V. and J. Ringelberg. 2002. Relationship 
between fish kairomone concentration in a lake 
and phototactic swimming by Daphnia. J. 
Plankton Res. 24: 713-721.[“ It was shown that 
water from the epilimnion layer increasingly 
enhanced light-induced swimming reactions 
until the second week of June, then the effect 
gradually disappeared. Water from the 
hypolimnion had no such effect. In 1998, these 
changes in signal strength correlated with the 
relative biomass of the 0+ perch, but in 1999, 
the maximum of the enhancement lagged 2 
weeks behind the maximum of the biomass of 
the 0+ perch. This lag may be due to a different 
development of the thermocline. We conclude 
that kairomone concentration may well 
correlate with 0+ perch biomass and thereby 
might inform Daphnia not only about the 
presence, but also about the abundance, of 
juvenile perch.”]{?} 

Haukioja, E. 1999. Bite the mother, fight the daughter. 
Nature 401: 22-23 [A Nature commentary on 

Agrawal et al. 1999]{24} 

Hessen, D.O. & E. Van Donk, 1993. Morphological 
changes in Scenedesmus induced by substances 
released from Daphnia. Archiv für 
Hydrobiologie, 127: 129-140. 

Hülsmann, S, J. Vijverberg, M Boersma1 and W. M. 
Mooij. 2004.Effects of infochemicals released 
by gape-limited fish on life history traits of 
Daphnia: a maladaptive response? Journal of 
Plankton Research 26: 535-543. [“Life history 
shifts in daphnids in response to fish 
infochemicals are generally interpreted as an 
adaptive response to positive size-selective 
predation. This interpretation does, however, 
not hold for larval and small juvenile 
planktivorous fish, which due to gape limitation, 
feed on small and medium sized prey. In a life 
table experiment we show that daphnids 
exposed to infochemicals excreted by small 
gape-limited perch and larger perch changed 
their life history in the same direction, 
irrespective of the contrasting size-selection of 
the fish. However, responses to fish 
infochemicals were strongly influenced by food 
conditions for daphnids.... Under low food 
conditions, size at maturity was generally 
smaller compared with the high food situation, 
but unaffected by fish infochemicals. By 
contrast, age at maturity, which was increased 
at low food levels, was significantly lower in fish 
treatments compared with the control. We 
conclude that life history responses of daphnids 
to gape-limited fish can indeed be maladaptive, 
but only in situations of high food availability.”] 

Hunter, K, and G. Pyle. 2004. Morphological responses 
of Daphnia pulex to Chaoborus americanus 
kairomone in the presence and absence of 
metals. Environ Toxicol Chem. 
23(5):1311-1316. [“These results suggest that 
metal inhibition of neck tooth induction 
probably occurs along the signal transduction 
pathway. Impairment of chemosensory response 
to predatory chemical cues may have 
widespread ecological consequences in aquatic 
systems contaminated by metals.”] 
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Lass, S, M. Boersma, K H Wiltshire, P Spaak, H Boriss. 
2001. Does trimethylamine induce life-history 
reactions in Daphnia?  Hydrobiologia 442: 
199-206. [“We, therefore, conclude that 
trimethylamine is not the primary causative 
chemical agent in fish induced life-history 
adaptations in Daphnia.”] 

Lass, S. and  P. Spaak. 2003. Chemically induced 
anti-predator defences in plankton: a review. 
Hydrobiologia 491: 221-239. [Abstract: “...Prey 
organisms have been found to sense such 
predators via predator-derived 
kairomones....synthetic chemicals or heavy 
metals, have been found to potentially disturb 
natural chemical communication in aquatic 
predator-prey systems. ...Substantial progress 
has been made recently, especially with respect 
to the identification of predator kairomones that 
are important for planktonic ciliates...”] 

Lürling, M. & E. Van Donk, 1997. Morphological 
changes in Scenedesmus induced by 
infochemicals released in situ from zooplankton 
grazers. Limnology and Oceanography, 42: 
783-788. 

Pohnert, G. and E. Von Elert. 2000. No ecological 
relevance of trimethylamine in fish -Daphnia 
interactions. Limnol. Oceanogr. 45: 1153-1156. 
[trimethylamine not concentrated enough, nor 
does it affect the true kairomone response.] 

Roozen, F. and M. Lürling. 2001. Behavioural response 
of Daphnia to olfactory cues from food, 
competitors and predators. J. Plankton Res. 23: 
797-808. [“No avoidance of medium from 
Chaoborus cultures was found, but D. magna 
significantly avoided medium that had been 
inhabited by ides (Leuciscus idus L.).”] 

Rose, R. M. , M. St. J. Warne , and R. P. Lim. 2001.   
Factors Associated with Fish Modify Life 
History Traits of the Cladoceran Ceriodaphnia 
cf. dubia J. Plankton Res. 23: 11-17.[“A 
significant (P < 0.05) increase in the mean 
generation length occurred at a fish density of 
16.7 l fish–1. Fish densities of at least 5.9 l 
fish–1 had a significant(P < 0.05) positive effect 
on mean brood sizes, population growth rate 
and net reproductive rate. Increased fish density 
appeared to increase the length of time during 
which the cladocerans reproduced significantly 
(P < 0.05). None of the tested fish densities 
affected (P > 0.05) cladoceran survival. The 
observed effects are ascribed to the presence of 
unidentified substances in the water that 
previously contained fish. These substances are 
thought to be ‘fish kairomones’.”]{} 

Stirling, G. 1995. Daphnia beahaviour as a bioassay of 
fish presence or predation. Functional Ecology 
9: 778-784. [The substance causing defensive 
response is from fish that are feeding {not other 
Daphnia being eaten}] 

Tollrian, R. 1995.  Predator-induced morphological 
defenses; costs, life history shifts, and maternal 
effects in Daphnia pulex. Ecology 76: 1691­

1705.  [Kairomone, a chemical cue released by 
a predator - Chaoborus (phantom midge) here, 
causes morphological changes leading to larger 
size and armor.] 

Van gool E, Ringelberg J.1998. Light-induced migration 
behaviour of Daphnia modified by food and 
predator kairomones. Anim Behav. 1998 
Sep;56(3):741-747 [“We studied downward 
swimming of D. galeataxhyalina in response to 
stepwise accelerations of relative increases in 
the intensity of light at several food and fish 
kairomone concentrations. Both had a 
modifying, additive, although independent 
effect.”] 

Von Elert, E. & G. Pohnert, 2000. Predator specificity of 
kairomones in diel vertical migration of 
Daphnia: a chemical approach. Oikos, 88: 
119-128. 
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Weber, A. and S. Declerck. 2001. Phenotypic plasticity of 
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