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Assignment 

TOPIC 

“Why do some macro- and mesozooplankton vertically migrate?” 

REQUIRED READINGS 

Ohman, M. D., B. W. Frost, and E. B. Cohen.  1983. Reverse diel vertical migration:  an escape 
from invertebrate predators.  Science 220: 1404-1407. 

SUPPLEMENTAL 

Dagg, M. J., B. W. Frost and J. A. Newton.  1997.  Vertical migration and feeding behavior of Calanus pacificus females 
during a phytoplankton bloom in Dabob Bay, U.S. Limnol. Oceanogr. 42: 974-980. [During the March 
phytoplankton bloom copepods had full guts only at night.  The majority of copepods remained at depth 
apparently because there ws sufficient food sinking to them] 

Frost, B. W. 1988.  Variability and possible adaptive significance of diel vertical migration in Calanus pacificus, a 
planktonic marine copepod. Bull. Mar. Sci. 43: 675-694. 

IT
Stamp



EEOS630 
Biological Ocean. 
Vert. Mig., P 3 of 39 

Gliwicz, M. Z.  1986.  Predation and the evolution of vertical migration in zooplankton.  Nature 320:  746-748. 

McLaren, I. A.  1974.  Demographic strategy of vertical migration by a marine copepod.  Amer. Natur. 108:  91-102. 

Miller, C. B. 2004. Biological Oceanography. Blackwell Science, Malden MA. 402 pp. [Read pp. 178-185 on diel 
vertical migration] 

Ohman, M. D. 1990.  The demographic benefits of vertical migration by zooplankton.  Ecol. Monogr. 60: 257-281. 

Zhou, M., Y. Zhu, and K. S. Tande. 2005. Circulation and behavior of euphausiids in two Norwegian sub-Arctic fjords. 

Mar. Ecol. Prog. Ser. 300: 159-178.{?} 

Comments 

GOALS 

I have two goals in assigning Ohman et al. (1983). The first is to learn about vertical migration. 
The second is to learn about zooplankton demography.  Demography is the study of the vital 
rates of a population, that is, the birth and death rates.  None of the ecosystem simulation models 
that we will be discussing after the midterm include vertical migration, but all include equations 
describing zooplankton demography (i.e., natality and mortality rates). 

COMMENTS ON THE PAPERS 

Ohman et al. (1983) documents a reverse-diel vertical migration pattern that is the opposite of 
the conventional diel vertical migration pattern.  Ohman (1990) documents that this reverse diel 
migration occurs at only the 185-m deep station in Dabob Bay, WA.  At the shallower 55-m 
station, this same species undergoes a normal diel vertical migration pattern or remains at the 
surface all the time.  The reverse diel migration pattern is the exception that proves the rule. 
Note that the ‘prove’ in the previous sentence means ‘tests’ the rule.  The rule being the 
predation explanation for the adaptive significance of vertical migration. 

Gliwicz (1986) describes a natural experiment in European lakes which offers strong support for 
the predation hypothesis of vertical migration.  In a lake with visually feeding fish, Cyclops, a 
cyclopoid copepod, vertically migrates.  In lakes lacking fish, it doesn’t vertically migrate. 
Ohman (1990) fleshes out the demographic analyses from his earlier paper.  Frost (1988) 
documents a classic vertical migration pattern in the dominant west coast neritic calanoid, 
Calanus pacificus. He provides the field evidence for vertical migration and evaluates the 
theories explaining vertical migration patterns.  Dagg et al.(1997) provide a closer view of the 
vertical migration patterns of C. pacificus in Dabob Bay after the spring bloom.  This paper is 
innovative in that it uses the gut fluorescence method (see Chapter 11) to assess the ingestion 
rate of the C. pacificus population.  Note that C. pacificus doesn’t feed when it has vertically 
migrated to depth.  However, if there is abundant phytoplankton at intermediate depths, the C. 
pacificus adults will migrate only to this intermediate layer of high phytoplankton concentration 
to feed (25-50 m in Dabob Bay). 
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ADAPTIVE SIGNIFICANCE OF VERTICAL MIGRATION 

There has been a long debate waged over the adaptive significance of vertical migration in 
zooplankton. Most would consider the debate now over, with the forces rallying under the 
`predator-avoidance’ hypothesis flag having won the field.  However, Miller (1979) noted that it 
is very difficult if not impossible to refute any of the reigning hypotheses for the adaptive value 
of vertical migration using field data.  It is a good example of the late philosopher of science 
Imre Lakatos’s (1970, p. 45) observation that “It is not that we propose a theory and Nature 
shouts No!; We propose a maize of theories and Nature shouts INCONSISTENT!” 

Even though the debate is largely over, and zooplankton ecologists are well into a phase of what 
Kuhn (1962) called ‘Normal Science’, we will attempt to restoke the fires of the debate in class. 
Ohman et al. (1983) describe a reverse-diel vertical migration pattern in a small calanoid 
copepod. Ohman also describes the fatal flaw in McLaren’s (1974) model of the adaptive value 
of vertical migration.  McLaren (1974) is on reserve as a supplementary reading.  McLaren 
(1963, 1974) proposed that the adaptive significance of vertical migration was to increase growth 
rate by spending part of the day in cold water.  In 1963, McLaren modeled zooplankton 
energetics, and in 1974, zooplankton demography.  Without equations, McLaren’s argument goes 
something like this: 

At colder temperatures, respiration costs are lower and female 
copepods get bigger.  Bigger females produce more eggs.  Thus, by 
residing part of the day in colder water, fecundity is increased. 
However, development time is slowed down in colder water, 
exposing females to predation for a longer period.  However, the 
beneficial effects of cold on increased fecundity exceed the 
harmful effects of reduced survivorship using McLaren’s fitness 
currency.  McLaren assessed ‘fitness’ using the net replacement 
rate,   R  is the expected number of female young o 

born to a female over her lifetime, and l  and m  are the age­x x

specific fecundity and survivorship. 

Ohman et al. (1983), Frost (1988) and Ohman (1990) document the fatal flaw in McLaren’s 
(1974) demographic theory.  Their criticism is based on the variable used to measure population 
growth rate.  McClaren (1974)  maximized current return on reproduction, using the variable R o
or net replacement rate,  without considering the long-term effects of reproduction by subsequent 
generations.  The net replacement rate, R , is defined as: o 

(1) 
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Ohman et al. (1983) argued that fitness should be assessed using the instantaneous or per capita 
growth rate, also known as ‘little r’.  It can be estimated using the Lotka-Euler equation: 

(2) 

Excursis: survivorship curves 

Deevey (1947) described different forms of 
survivorship curves, and labeled the archetypical 
patterns Type I, Type II, Type III and Type IV. The 
instantaneous mortality rate, the negative of the 
slope of the survivorship curve on a log scale, is the 
hazard rate. Harrell (2002, p 395) derives the 
instantaneous mortality rate function from the 
survivorship curve l(x) [S(t) in the original]: 

A constant mortality rate ( or hazard rate in Figure 1. Idealized survivorship curves from 
statistical parlance) would would produce a Deevey Deevey (1947). Constant instantaneous 
Type II survivorship and might be modeled with a mortality (a constant hazard function in 
Weibull distribution with Weibull ã parameter = 1 statistical parlance) gives rise to the Type II 
(the Weibull distribution with ã=1 is an exponential curves. Hutchinson (1969) summarizes 
distribution with constant mortality, see Harrell evidence showing that some birds seem to fit 
2002 p 399). Humans and other mammals tend to the Type II Deevey survivorship curve. 
have survivorship curves with bathtub shaped 
instantaneous mortality rates (high at the ends and relatively constant in the middle). These 
mortalities or hazard functions 

Birch (1948) discussed how the Lotka-Euler equation could be solved with field data and 
approximated using: r=ln(R )/Generation time. But as Birch (1948) pointed out, this shortcuto 

doesn’t save any effort in collecting field data, because the generation time requires precisely the 
same data needed to solve the Lotka-Euler equation: 

(4) 
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Lewontin (1965) used both theoretical life tables and real tables for fruit flies to show that the 
most important variable controlling r is the age to first reproduction.  If two populations have 
identical values of the net replacement rate, R , the one with a lower age to first reproduction will o

have a much higher r.  This can be seen most easily in this approximation: r=ln(R )/Generation o 

time. McLaren (1974) failed to realize that females producing large numbers of eggs late in life 
would have a much lower population growth rate than females that turned out fewer eggs earlier 
in life. The difference in growth occurs because the fast reproducer’s progeny are also producing 
young at an earlier age.  It is a compound interest problem.  Think of a real-life example.  The 
Commonwealth of MA pays each of its employees weekly.  What if the Commonwealth of MA 
paid each of its employees at the same rate with a monthly or yearly paycheck?  If you consider 
only the interest that accrues in the bank from depositing these paychecks, a worker paid with a 
weekly paycheck earns more than one being paid with a monthly paycheck because each dollar 
deposited at the beginning of the week will be earning interest.  And this interest will be earning 
more interest the next week.  One measure that could save the Commonwealth tens of millions of 
dollars in the annual budget is to switch all workers to monthly paychecks since the 
Commonwealth would accumulate the interest that is now going to the workers.  A state official 
telling you, “your rate of pay is the same” is analogous to McLaren saying that R  is the same. o

You have to consider the long-term consequences of compound interest, the e-rx in the Lotka-
Euler equation. 

Frost (1988) describes the competing adaptive explanations for vertical migration and tests 
several of the models with his own data on Calanus pacificus vertical migration patterns.  He 
provides an insightful analysis of Enright’s (1977) vertical migration model.  Enright had 
proposed that the ‘starvation response’ (copepods with empty stomachs feed at a high rate) could 
help account for the adaptive significance of vertical migration.  Enright proposed a key test of 
their model: copepods should rise to the surface shortly before sunset.  This prediction was tested 
by Enright & Honegger (1977), with mixed results.  This pair of papers inspired a nasty note by 
Miller (1979), with a spirited defense of the work by Enright (1979)23. 

There are many open questions regarding vertical migration, and many logical and evolutionary 
pitfalls awaiting the unwary.  First one should distinguish between the proximal and ultimate 
causes of vertical migration in copepods.  On a daily or short-term basis, the proximal or 
immediate cause of vertical migration may be a change in light intensity or a change in gut 
fullness (e.g., the midnight sinking of full zooplankters) or the perception (through 
chemoreception perhaps) that members of the population are being eaten.  This proximate cause 
should be distinguished from the ultimate or long-term cause, which may be a response to 
visually feeding or invertebrate predators or perhaps due to a demographic advantage from 
spending part of the day in colder food-poor water (e.g., McLaren’s (1974) energetic-
demographic adaptive explanation).  A seasonal change from a non-migrating to a migrating 
phenotype in the population could be due to either a phenotypic adaptation (e.g., the species 
migrates when there is a strong thermocline) or due to natural selection (e.g., the non-migrators 
are eaten).  The phenotypic selection (e.g., due to predators) may not produce a directional 
change in the population’s gene frequencies (i.e., evolution, see Appendix 1) if the population is 
not reproducing. 

http://www.es.umb.edu/edg/ECOS630/append1-def.pdf
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Mangel & Clark (1988) briefly review some of the theories of the adaptive value of vertical 
migration, which include: 

1.	 A method of population self-regulation (Wynne-Edwards 1962) 
2.	 Prudent grazing (Hardy 1958) 
3.	 Maximizing rate of genetic exchange (David 1961) 
4.	 Maintaining constant food input (Kerfoot 1970) 
5.	 Minimize the effect of competition (Dumont 1972, Lane 1975) 
6.	 Avoiding damaging solar radiation (Hairston 1976, Aarseth & Schram 

2003) 
7.	 Horizontal movement (Mackintosh 1937) 
8.	 Response to prey movement and patchiness (Hardy 1958) 
9.	 Predator avoidance (Hutchinson 1967, Zaret & Suffern 1976) 
10.	 A method to achieve optimal alternation of temperature (Moore &


Corwin 1956)

11.	 Adaptation to bioenergetic requirements (McLaren 1963, 1974, Enright 

1977) 

Several explanations of vertical migration (1-4 above) require group selection.  For example,

Wynne-Edwards (1962) argued that zooplankton vertically migrate to concentrate the

population in one depth stratum (in a social epideictic display) so that the population could self-

regulate reproductive intensity.  Hardy (1958), Kerfoot (1970), McAllister (1969) and Enright

(1977) all argue that the zooplankton would be more prudent grazers of phytoplankton if the prey

population were allowed to grow uneaten during the daylight hours.  Both Wynne-Edwards’

(1962) epideictic display hypothesis and the McAllister-Kerfoot prudent grazer hypothesis imply

group selection and neither is an Evolutionary Stable Strategy (ESS) in Maynard Smith’s

(1982) terminology because cheater genotypes that do not restrain their appetites during the

daytime or reduce reproductive output would always increase in frequency in the population at

the expense of the prudent grazers or prudent reproducers.


Hutchinson (1967) clearly stated the predator-avoidance hypothesis, but Zaret &

Suffern (1976) are credited as the first to describe with comparative field data the effects of

visually feeding predators on the migration phenotype of prey populations.  Their field data from

Connecticut lakes and Gatun Lake were consistent with the visual predation hypothesis. 

Gliwicz (1986) has an interesting paper on the evolutionary effects of fish on cyclopoid copepod

vertical migration in lakes. In lakes with fish, the copepods have a diel vertical migration pattern.

In lakes lacking fish, they stay near the surface.


Mangel & Clark (1988) produce a dynamic stochastic model to explain the vertical migration

patterns of cladocera, Ohman’s Pseudocalanus, and visually feeding fish.  Their most intriguing

model, also described by Clark & Levy (1988) is for the vertical migration of juvenile salmon, a

medium-sized fish. These fish migrate to the surface to feed during a ‘anti-predation window’ of

only an hour or so at dawn and dusk.  At this point there is enough light for them to feed, but

unfortunately there is also sufficient light for their larger fish predators to feed on them.  If the

light intensity is lower, there is insufficient light to feed and at higher light intensity the risk of
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being eaten by large fish is too great.  Mangel & Clark’s (1988) model of Pseudocalanus 
migration predicts that Pseudocalanus should alter its migration pattern as a function of 1) the 
time remaining in the growing season, and 2) the size of the copepods.  Near the end of the 
phytoplankton growing season, Mangel & Clark’s model predicts that Pseudocalanus should 
spend the entire day at the surface feeding. A copepod that is not large enough to overwinter 
should incur more risk of being eaten, because the alternative is the failure to acquire sufficient 
lipid reserves to overwinter. 

The genetic basis for vertical migration is not yet clear.  One simple-minded model would predict 
that macrozooplankton begin the year with a diverse set of phenotypic behaviors including 
vertical and non-vertically migrating populations.  After several generations of selective 
predation on the non-vertically migrating phenotypes, the population will be composed 
predominately of vertical migrators.  This would be a beautiful example of natural selection in 
action. Weider (1984) has documented genetic differences between migrant and non-migrant 
phenotypes.  The problem is, what accounts for the maintenance of phenotypic diversity from 
one year to the next? 

WHAT IS GAME THEORY? 

Rarely has a field been so thoroughly defined from the outset as has game theory.  Von Neumann 
& Morgenstern published their ‘Economic behaviour and the theory of games’ in 1944.  In this 
book von Neumann, who many regard as being the most influential mathematician of the 20th 
century, extended his seminal work on two-person games to multi-person and N-person games. 

Games can be described using a number of formal conventions.  In an extensive form description 
of a game, the moves are described in the form of a decision tree.  In a normal-form game, the 
payoffs from the moves in a game are described in a payoff matrix.  The “payoffs” in a game are 
important. In games of economic behavior, the payoff matrix is often defined as money. 
Von Neumann & Morgenstern (1944) generalized on this concept and used a general utility to 
describe the payoff of the game.  In ecology, the payoff is usually defined in terms of units of 
fitness. 

Lewontin and Maynard Smith & Price (1973) were the first to apply game theory to 
evolutionary and ecological problems.  To date, most of the ecological examples of game theory 
are drawn from the field of two-person games, not from the conceptually more challenging and 
less quantitative n-person cooperative game theory. 

The program GAMBIT is available on the web ( http://econweb.tamu.edu/gambit/) to solve 
two-person and multiperson games in extensive and normal form.  More information on the 
GAMBIT program is provided below. 

http://www.hss.caltech.edu/~gambit
http://econweb.tamu.edu/gambit/
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TWO-PERSON GAMES 

Zero-sum games 

John von Neumann was the first to establish the solution to two-person zero sum games.  This 
solution is embodied in the minimax theorem.  There are two general types of solution to a zero-
sum game: a pure strategy and a mixed strategy.  I will demonstrate this concept using a simple 
game described in Thomas (1986). 

The Hun-in-the-Sun game 

In this game, there are two players: the commander of a bomber squadron and the commander of 
a squadron of fighter pilots.  The payoff matrix in a zero-sum game only needs to show the 
payoffs for one player, usually the player whose strategies are described by the rows in the 
normal form payoff matrix. 

Here is the section from Thomas (1986, p. 32) describing the game: 

In World War II, the normal tactic of fighter planes when attacking 
opposing bomber planes was to swoop down on their target from 
the direction of the sun—known in boys’ comics as the ‘Hun in the 
Sun’ strategy. However, if every plane employs this strategy, the 
bomber pilots put on their sunglasses and just keep staring into the 
sun looking for the fighters. Thus, a second method of attack was 
suggested, which was to attack straight up from below.  This is 
very successful if the fighter is not spotted, but since planes go 
much more slowly when climbing than diving, is likely to have fatal 
consequences for the fighter pilot if he is spotted.  With hindsight, 
we can describe this as the Ezak-Imak strategy (reverse Kami­
kaze). 

Thomas (1986) proposes the payoff matrix for this two-person zero-sum game as the chance of 
survival of the fighter plane when it attacks: 
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Table 1. The fighter payoff matrix for the ‘Hun-in-the-sun’ game (Thomas 
1986). This is a symmetric, 2-person, zero-sum game, so the payoff for the 
bomber crew is one minus the payoff for the fighters 

Bomber Crew 

Solution 
Expected 

Payoff Look up 
Look 
Down 

Fighter 
Pilot 

Hun in the 
Sun 

0.95 1 

Ezak­
imak 

1 0 

Solution 

Expected 
Payoff 

This game can be solved using von Neumann’s minimax theorem as implemented in GAMBIT. 
Von Neumann’s minimax theorem states (Thomas, 1986, p. 33): 

Minimax theorem.  In a two-person zero-sum game, where Player I 
has n strategies and Player II has m strategies (where n and m are 
finite), then 

In words, player 1, the Fighter Pilot above, adopts a strategy that maximizes the minimum payoff 
that he can expect. This is a conservative strategy: you pick the strategy where you can be assured 
the maximum amount, no matter what strategy your opponent uses. That strategy, would be the 
“Hun in the Sun” strategy above, which has a 0.95 payoff, which is far preferable to the Ezak­
imak strategy which might result in a payoff of 0. Player 2 in this zero-sum game (any benefit to 
one player results in a deficit to the other) should adopt the strategy that minimizes the maximum 
payoff to the opponent. 

If there is a cell that is simultaneously the maximum of the minimum values for rows, and the 
minimum of the maximum values for columns, that cell is the ‘pure’ solution to the game. In a 
pure strategy, all individuals should follow one strategy.  Many simple games have pure strategy 
solutions. In this case, there is no clear choice for player 2, since both the Look up and Look 
Down strategy have maximum payoffs to the opponent of 1.0.  The solution to this game is a 
mixed strategy.  In a mixed strategy, the strategy at each play of the game should be governed by 
chance.  In this zero-sum game, the fighter pilot squadron commander should put 20 white balls 
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and 1 black ball in a hat.  If a fighter pilot draws a black ball, he should approach the bomber 
from below; if he draws a white ball, he should play the Hun-in-the-Sun strategy.  Since the game 
is symmetric, the bomber gunners should also play with the same probabilities.  Twenty of 
twenty-one bomber gunners should wear sunglasses to every one that stares down looking for the 
Ezak-imak attack.  The same solution applies if there is a single bomber gunner and a single 
fighter pilot.  The fighter pilot should draw balls from a hat or generate a random number such 
that the odds of using the Hun-in-the-Sun strategy are 20/21. 

This Hun-in-the-Sun game points out a seeming flaw in applying the Von Neumann minimax 
solution to the 2-person zero-sum game.  Imagine if you were the pilot that draws the black ball. 
If the gunner is looking down, your probability of survival is 0.0 For those pilots using the “Hun­
in-the-Sun” strategy, their odds of survival are no worse than 0.95, even if the bomber gunner is 
looking up with sunglasses.  Why should that one out of twenty-one pilots risk apparent certain 
death by slowly flying up from beneath the bomber?  The increase in fitness by using the mixed 
strategy over a pure ‘hun-in-the-sun’ strategy is only the difference between 0.95 (all Hun-in-the-
Sun vs. Look up) and 0.9524.  If the bomber gunner is using his ‘optimal’ strategy (20/21 of 
bomber gunners looking up), then the expected fitness using the Ezak-imak strategy is identical 
to using the Hun-in-the-sun strategy (0.9524).  This isn’t a coincidence, the payoff or fitness of 
the different options in a mixed strategy will always be identical.  However, if the bomber 
gunners are using a sub-optimal strategy of looking down more than 20/21 of the time, then the 
probability of survival of the Ezak-imak strategy drops dramatically and is zero if all of the 
bomber gunners are looking down. 

Paulos’s Baseball zero-sum game 

Paulos (1995, p. 30) describes a zero-sum two person game between a pitcher and batter: 

“A pitcher and batter are facing each other.  The pitcher can throw either 
a fast ball or a curve ball.  If the batter is prepared for a fast ball, he 
averages .500 against such pitches but, thus prepared, he only averages 
.100 against a curve ball. If he’s prepared for a curve ball, however, the 
batter averages .400 against them, but he only averages .200 against fast 
balls in this case.” 

Based on these probabilities, the pitcher must decide which pitch to throw and the batter must 
anticipate this decision and prepare accordingly.  There is no ‘pure strategy’ solution for this game. 
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The probabilities and 
strategies for this game can 
be entered into Gambit, 
producing the output shown 
in Figure 2.  The pitcher 
should pitch half fastballs, 
half curves.  The batter 
should look for a fastballs 
and b curves.  This is the 
stable solution for both Figure 2. The batter-hitter game solved by Gambit.  The batter 
players, and would produce a attains a 300 average by looking for fastballs a of the time, while a
0.300 batting average for the pitcher can hold a batter to 300 by pitching ½ fastballs.  If either

batter.  This stable solution is player deviates from these stable strategies, the opponent benefits. 

also known as the Nash The game is described in Paulos (1995, p. 30).

equilibrium and, in biology,

as the evolutionary stable strategy.  If both batter and pitcher are using this optimum strategy, any

deviation would, in Paulos’s phrase, cede an advantage to the other.


This pair of optimal strategies assumes that both players are rational and will adjust their 
strategies in response to their opponent.  In the same article Paulos (1995) poses a seemingly 
related problem dealing with a stupid pitcher. Suppose a stupid pitcher pitches b fastballs and 
a curves no matter how batters respond.  What should the batters do?  Should they ask the 
batting coach to run a gambit solution of the odds?  No. If the stupid pitcher does not modify the 
type of pitch thrown in response to circumstance, the batter should identify the most frequent 
type of pitch and plan to hit only that pitch.  In the case of a pitcher throwing b fastballs, the 
batter can do no better than to prepare for 100% fastballs.  The batter’s average would be: 

0.5 × b + 0.1 × a = a + . 0.367 

If the batter made the mistake of adjusting his batting eye to match the proportion of pitches 
being thrown by the pitcher, i.e., looking for  b fastballs and a curves, here is what the batter’s 
average would be: 

b(0.5×b+0.1×a) +a(0.2×b + 0.4×a) . b×0.367 + a×0.2667. 0.334 

This somewhat strange result can be summarized by saying that if your opponent isn’t rational, 
that is changing in response to changes in the game,  then don’t use a mixed strategy. 

Peter Frank (1981) took this argument one step further: if your opponent isn’t rational and the 
opponent’s behavior is unpredictable, and you’ve had at least one success, then don’t change 
strategies.  Frank asked, “Why are most intertidal organisms sessile or secondarily sessile (i.e., 
returning to the same spot after a period of foraging)?”  If the larva of the intertidal organism has 
metamorphosed in a favorable site, there is little advantage and considerable demographic cost to 
migrating away from that site.  The long-term demographic costs of moving from favorable to 
unfavorable sites are not paid back by the advantages of moving from unfavorable to favorable 
sites. Frank (1981, p. 288-289) summarizes the argument nicely: 
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“If habitat patches differ in risk of death to organisms, and if the latter 
can gain no knowledge of the hazards, natural selection will favor their 
staying put … a sessile strategy evolves whenever variable and 
unknowable hazards dominate the selectional landscape...” 

In terms of the baseball game, if you got a hit when you last batted, while looking for a fastball, 
and you have no way of knowing the odds of the pitcher throwing a fastball again, then look for a 
fastball. However, if the pitcher remembers that you got a hit last time at bat when he threw a 
fastball, would he really throw another?  No, he should throw a curve.  Of course, the pitcher 
knows that you know that he knows that you got a hit the last time he threw a fastball, so you 
should be looking for a curve, and he should throw a fastball.  But you know that the pitcher 
knows that you know that the pitcher knows that you got a hit the last time he threw a fastball, so 
the batter should look for a fastball.  The movie, “The Princess Bride,” mines this logical 
paradox in a battle of the wits between Wally Shawn and Cary Ewes. 

Non-zero sum games 

The classic two-person, non-zero sum game is prisoner’s dilemma, first described by Tucker. 
Thomas (1986, p. 55) describes the game with the following payoff matrix. 

Table 2. The payoff matrix for Prisoner’s dilemma. 

Prisoner II 

Don’t 
Confess Confess 

Confess (-9, -9) (0, -10) 

Prisoner I (-10, 0) (-1, -1) Don’t 
confess 

Two prisoners are being questioned separately after being arrested in possession of stolen goods 
and can either confess or keep quiet.  If both keep quiet, each will only receive a one-year prison 
sentence.  If one confesses and the other does not (e.g., turning state’s evidence), then that 
prisoner will be granted immunity while the other will receive a ten-year sentence.  If both 
confess, each will receive a nine-year sentence.  The Von Neumann-Morgenstern solution to this 
game is Confess-Confess, with each prisoner receiving a nine-year sentence.  Using the criterion 
of individual rationality, each player can assure himself no more than a 9-year sentence no matter 
what the other prisoner does.  The game poses a dilemma because using a principal of group 
rationality, the don’t confess-don’t confess strategies would yield at most a 1 year sentence. 

The solution to this game is relatively simple, using von Neumann’s minimax theorem and the 
concept of dominance. Gambit will solve the game numerically, but one initial step in Gambit 
and the solution to games is to eliminate dominated strategies. A dominated strategy is one that 
has inferior payoffs for every possible strategy used by the opponent. Dominated strategies will 
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not be part of a solution to the game. What should Prisoner 1 do, given knowledge of this payoff 
matrix. Well, he can compare his payoffs for ‘Confess’ and ‘Don’t confess’ for each possible 
response of Prionser II. The payouts are -9 and -10 for confess & don’t confess if Prisoner II 
confesses and 0 and -1 if Prisoner II doesn’t confess since -9 > -10 and 0 > -1, the Confess 
strategy DOMINATES the don’t confess strategy. Prisoner I should always CONFESS. Similarly 
for Prisoner II, the Confess strategy dominates Don’t confess -9 > -10 and 0>-1, so Prisoner II 
should confess.  The stable solution to this game is that both Prisoner I and II should confess. 

The Euchaeta-Pseudocalanus game 

In class, I demonstrated a two-person non-zero-sum game called the Pseudocalanus-Euchaeta 
game.  Ohman et al. (1983) describe the basic ecology underlying this game.  Pseudocalanus is 
a medium-sized calanoid copepod whose primary predator is the larger calanoid copepod 
Euchaeta. Both Pseudocalanus and Euchaeta, are preyed on by fish.  Most macrozooplankton 
are capable of vertical migration to avoid predation.  Euchaeta generally undergoes a classic diel 
vertical migration: up at night and down during the day.  The adaptive value for this behavior is 
obvious: fish must see their prey in order to feed.  Euchaeta does not need to see Pseudocalanus. 
Like many other pelagic invertebrate predators, Jeanette Yen has shown that Euchaeta detects its 
prey through mechanoreception, sensing the vibrations made by Pseudocalanus while swimming 
or suspension feeding. 

The key to describing this game is to produce a payoff matrix for the game.  Following Maynard 
Smith (1982), the payoffs to the organism in evolutionary applications of game theory are 
defined as relative fitness.  In the non-zero-sum two-copepod game, each copepod should 
maximize its own fitness.  If this game were zero-sum, this maximization would be synonymous 
with minimizing the other player’s fitness. As discussed in class, evolution by means of natural 
selection is a battle between predator and prey, but it is also a competition between individuals 
with the same species. The individual with the higher relative frequency will have its genes make 
up a higher proportion of the gene pool in the next generation. 

In the implementation of relative fitness to the Euchaeta-Pseudocalanus game, a fitness of 0 is 
on a relative scale and doesn’t mean that the organism has no fitness. The fitness values range 
from 0 to 100. Euchaeta has 0 fitness if its vertical distribution doesn’t overlap at all with its prey 
Pseudocalanus. If Euchaeta can feed on Pseudocalanus for ½ the day but is exposed to visually 
feeding fish in the euphotic zone, the fitness is 20.  If Euchaeta can feed on Pseudocalanus the 
entire day while being exposed to fish for ½ the day, the fitness is assumed to be 50.  If Euchaeta 
can avoid visual fish predators while feeding on Pseudocalanus half the time, the Euchaeta 
fitness is 150. If Euchaeta avoids visually feeding fish (diel vertical migration), while feeding on 
Pseudocalanus the entire day (Pseudocalanus also performing a diel migration), the Euchaeta 
relative fitness is 200.  Note that there are no ‘costs’ for movement. 

For Pseudocalanus, we’ll assume that all of the food, phytoplankton, is in the surface layer. This 
is not true, especially since both sinking phytoplankton and animal prey could be consumed by 
the omnivorous Pseudocalanus. In this simplified game, Pseudocalanus staying deep is not an 
option. Of the possible strategies, reverse diel with Pseudocalanus exposed to visual predators ½ 
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the day and invertebrate predation due to reverse-diel migrating Euchaeta for the entire day 
would have the minimum relative fitness of 0.  Feeding on surface phytoplankton the entire day 
while being exposed to Euchaeta predation the entire day would produce a relative fitness of 30. 
Feeding on phytoplankton the entire day while being exposed to Euchaeta predation for half the 
day would produce a relative fitness of 40.  Avoiding both visually feeding predators and 
invertebrate predators is worth 100 units of relative fitness, even while only feeding on 
phytoplankton for half the day. 

Table 3.  The payoff matrix for the Pseudocalanus-Euchaeta game.  The first element in the payoff pair (e.g., the 30 
in 30,25) is the relative fitness for Pseudocalanus; the second element is the relative fitness for Euchaeta 

Euchaeta Relative 

Reverse Expected 
Surface Diel Diel Deep Solution Fitness 

Surface 30, 20 40, 150 40, 10 90, 0 0 235/4=58.75 

Pseudocalanus Diel 80, 10 50, 200 ,100 0 ,80 75 d 245/4=61.25 

Reverse 
Diel 

50 10 , 80 0 , ,0 20 ,30 75 e 245/4=61.25 

Solution 0 5/8 0 3/8 

Expected 
Fitness 

10 75 12.5 75 

When analyzed by GAMBIT, the Pseudocalanus-Euchaeta game has a mixed solution for both 
prey and predator populations.  If the assumption of individual rationality is met, then both 
organisms should randomly select a strategy for each day’s vertical migration.  Euchaeta should 
undergo a diel vertical migration 5/8 of the time and stay deep 3/8 of the time.  Pseudocalanus 
should undergo a reverse diel vertical migration pattern 5/8 of the time and stay at the surface 3/8 
of the time. 

Is this an acceptable solution to the game? Both pairs of solutions would be considered 
evolutionary stable strategies in Maynard Smith’s (1982) theory.  That means that if both 
populations were following these pairs of strategies, then no mutant phenotype with a different 
strategy could invade. 

Of course, neither of the coevolving populations could expect to maintain the same strategy for 
long. Van Valen (1973) proposed the Red Queen hypothesis to describe the coevolution of 
predators and prey and strong competitors. Coevolving populations must continually adapt to 
their competitors or predators to maintain their position on the fitness landscape. Like Lewis 
Carroll’s Red Queen, they must evolve as fast as they can to stay where they are. If they ceased to 
evolve in response to the evolution of their predators or competitors, they would be like Paulos’s 
stupid pitcher (described on p. 12) whose failure to change pitch frequencies would allow 
competitors a distinct advantage in the coevolutionary game. 
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In the reference list below, I have included many of the references from the ecological literature 
on the adaptive value of vertical migration.  Mixed strategies appear to be common among 
zooplankton populations.  The evolutionary mechanism driving such patterns is a ripe field for 
theoretical research.  Mangel & Clark (1988) analyzed the Pseudocalanus vertical migration 
pattern with their stochastic dynamic programming approach.  They asked a slightly different 
question: when relative to the onset of diapause should copepods begin to vertically migrate and 
when should they stop? 

GAMBIT 

GAMBIT is a C++ program that implements most of the algorithms for solving 2-person and 
multi-person games, but not n-person cooperative games.  I used GAMBIT to solve the 
Pseudocalanus-Euchaeta and “Hun in the Sun” games.  Here is the URL: 

http://econweb.tamu.edu/gambit/ 

GAMBIT is a C++ program that has been compiled into executable versions for a variety of 
platforms, including Linux, and all versions of Windows. 

GAMBIT has a nice GUI (Graphical User Interface) that allows you to input the payoff matrix 
for two person games and analyze the solutions.  These algorithms could be programmed in 
MATLAB™, but the solution of 2-person non-zero sum games involves linear programming.  The 
classic algorithm for linear programming problems is the minimax algorithm, but this algorithm 
is only available in the  MATLAB™ optimization toolbox. 

The only type of problem for which GAMBIT is not suited is the solution of games described 
symbolically.  For example, Maynard Smith (1982) provides fitness values for some games in 
numerical form: this can all be solved using GAMBIT.  Maynard Smith (1982) then provides 
payoffs in symbolic form, e.g., (1-x +d).  GAMBIT cannot solve symbolic equations. 

Outlines 

REQUIRED READING 

Ohman, M. D., B. W. Frost, and E. B. Cohen.  1983. Reverse diel vertical migration:  an 
escape from invertebrate predators.  Science 220: 1404-1407.[3, 4, 5, 22] 

I.	 Introduction: 
A.	 Diel vertical migration extremely common. 
B.	 Reverse diel vertical migration observed in freshwater. 

II.	 The site and pattern 
A.	 Dabob bay in WA:  185 m 
B.	 Pseudocalanus underwent a reverse diel vertical migration in Aug. '73. 
C.	 Euchaeta elongata, Sagitta elegans and Euphausia pacifica, invertebrate 

predators all,  exhibit classic diel vertical migration Fig 1c. 

http://www.hss.caltech.edu/~gambit
http://econweb.tamu.edu/gambit/
http://econweb.tamu.edu/gambit/
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1.	 All 3 are predators on Pseudocalanus. 
2.	 Euchaeta and Sagitta are obligate predators. 
3.	 Euphausia pacifica is an omnivorous. 
4.	 feeding rates are higher at night then during the day 

D.	 Pseudocalanus females descend rather than ascend at night 
E.	 Explanation incompatible with standard models. 

III.	 Analysis of McLaren’s model. 
A.	 Table 1:  because of increased development time, a non-migrating 

Pseudocalanus has a higher r than a migrating population.  A 16% reduction 
in adult mortality rate results in a demographic advantage for the migrant. 
1.	 13 to 9 degree temperature difference 
2.	 a 16% reduction in adult mortality rate produces a demographic advantage. 

B. McLaren (1974) failed to use r in his calculations: he used R , the wrong o 

demographic currency 

SUPPLEMENTAL 

Dagg, M. J., B. W. Frost and J. A. Newton.  1997.  Vertical migration and feeding behavior of Calanus pacificus 
females during a phytoplankton bloom in Dabob Bay, U.S. Limnol. Oceanogr. 42: 974-980. [During March 
phytoplankton bloom copepods had full guts only at night.  The majority of copepods remained at depth 

apparently because there was sufficient food sinking to them][3] 

Frost, B. W.  1988.  Variability and possible adaptive significance of diel vertical migration in Calanus pacificus, a 
planktonic marine copepod.  Bull. Mar. Sci. 43: 675-694[3, 4, 6] 

1.	 Abstract 
a.	 Calanus pacificus 
b.	 Seasonal and interannual variability 

i.	 unrelated to food availability 
ii.	 in situ female growth 
iii.	 thermal stratification 

c.	 population growth model 
d.	 differential mortality between migrants and non-migrants. 

2.	 Introduction 
a.	 circumstantial evidence for mortality 
b.	 Two testable hypotheses 

i.	 foraging behavior optimizing individual growth rate (McLaren 1963, Enright 1977) 
ii.	 Habitat selection models optimizing population growth rate 

(1)	 McLaren (1974) 

(2)	 Ohman  et al. (1983) 

c.	 Metabolic models can’t cut it theoretically (Ohman  et al. 1983) or experimentally (Stich & Lampert 

[1984], Orcutt & Porter [1983]) 
d.	 Temporal and geographic variability in some species.  These species provide clues as to the origins 

and causal mechanisms {Endler’s book} 
i.	 Calanus pacificus 

ii.	 Koslow & Ota (1981), food availability determines vertical migration 

iii.	 Enright & Honegger (1977) 
strong vertical migration of CV and adults in late spring and early summer. 

3.	 Materials and methods 
a.	 quantitative paired zooplankton hauls 
b.	 Chl a 
c.	 egg production rate 
d.	 Gulf of Alaska populations 
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4. Results 
a. seasonal and interannual variability in diel vertical migrations 

i. spring females were migratory or non-migratory 
ii. summer always vertically migratory. 

Fig. 1. vertical distribution of adult females in 1985 and 1986 

Fig. 2. Vertical distribution of adult females in 1979 and 1982 
iii.	 variable spring pattern 

b.	 Vertical distributions in spring 
i.	 no association with food availability (Table 1) 
ii. no association with thermal stability 

Fig. 3. Vertical structure of Calanus pacificus females and Chl a and vertical structure 
c.	 Vertical distribution in summer and autumn 

i.	 strong subsurface Chl maximum 
ii.	 migrated whether food is high or low 
iii. females always vertically migrate no matter what the food or thermal stratification. 

Fig. 4. Vertical distribution of adult C. pacificus in 4 years 

Fig. 5. vertical temp. distribution.  Vertical migration even though the water column was isothermal. 
d.	 Vertical distribution in the Gulf of Maine. 

- remained in the upper mixed layer day and night (Fig. 6) 

Fig. 6. Vertical distribution in the Gulf of Me. 
e.	 Model of population growth 

i.	 Behavior is not genetically fixed 
ii.	 simple life table approach 
iii.	 r of 0.149 d-1 for non-migrant, 0.103 for migrant due to delay in development time. 

Table 4. Life Table analysis. 
iv.	 Assumptions 

(1)	 Vidal 1980a used to calculate adult body size at different temperatures. 
(2)	 Clutch size related to prosome length using range 1980, 1984. 
(3)	 For migrant: 

(a)	 females are nonmigratory until CIII 
(b)	 CIV on migrate 
(c)	 Development time according to Thompson’s equations. 

(4)	 realized rate of increase is 0.141 per day 
v.	 “the nearly 3-day delay in development more than counterbalances their increased body size 

and fecundity.” 
vi.	 differences in r are not particularly great, therefore, enhanced population growth of the 

migrators at the expense of the non-migrators 

Table 5. The value of r was calculated over 10 clutches as described in Table 4. 
assuming simple exponential growth, stable age distribution and equal initial 
populations, after only 30 days, the migratory population would be more than twice 
as large as the non-migratory population.  A 12% reduction in adult mortality will 
give the migrant the same population growth as the non-migrant. 

5.	 Discussion 
a.	 predation can not be discounted: 
b.	 predation removes nonmigratory genotypes 
c.	 replacement rates could be very rapid 
d.	 phenotypic responses of prey to predator contact 
e.	 thermal retardation of development time 
f.	 Food availability hypotheses 

i.	 starvation-enhanced ingestion 
nocturnal feeders have the same ration 

ii.	 assimilate ingested food with high efficiency 
iii.	 Energetic costs of swimming and feeding 

g.	 Life-table assumptions. 
i.	 10-day spawning.  increasing this has little effect on r. 
ii.	 50:50 sex ratio. 

h.	 nocturnal occupation of the surface layer. 
-Enright’s model provided for nocturnal ascent. 
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i.	 deus ex machina explanations of predator abundance. 
j.	 Why does the population continue to have vertical migration response. 

Gliwicz, M. Z.  1986.  Predation and the evolution of vertical migration in zooplankton.  Nature 320: 746-748[3, 7] 
I.	 Abstract 

A.	 Hypotheses for vertical migration 
B.	 Does predation select for traits of migratory behavior? 

II.	 Figure 1: a) non migratory population in Lake Czarny and Morskim [no salmon] b) migratory 

population in lake Mrskie Oko 
III.	 Predation hypothesis: 

A.	 exploitation of rich food at night 
B.	 predator avoidance during the day 
C.	 Fitness of a migratory individuals should be enhanced 
D.	 Migratory behavior should be of selective advantage in habitats where food resources are significantly 

higher in the upper strata and where predation is higher in the upper strata 

IV.	 The presence of C. abyssorum in lakes with different fish stocking histories provided an opportunity to 

study the effects of predation and the length of time that vertical migration behavior takes to evolve. 
-Migration is most pronounced in lakes with natural fish populations. 

V.	 The evolution of migratory behavior combined with the evolution of resistance of eggs to digestion might 
explain why Cyclops is the sole crustacean survivor in lakes stocked with planktivorous fish. 

McLaren, I. A.  1974.  Demographic strategy of vertical migration by a marine copepod.  American Naturalist 
108: 91-102.[4, 6, 7, 17, 22, 25] 

I.	 History of adaptive explanations for vertical migrations: 
A.	 [Wynne-Edwards, V.C.] Animal dispersion in relation to social behavior] 

B.	 McLaren (1963) proposed that there was a metabolic advantage from life at cold temperatures. 

C.	 Prudent grazing hypothesis of McAllister (1969) 
-“study suggests that vertical migration may give the additional advantage of better 
utilization of the growth potential of the phytoplankton, as well as permitting the unimpeded 
growth of plants during the daylight hours.” 
a.	 implies group selection 
b.	 invertebrate predators migrate too 

D.	 Kerfoot’s (1970) explanation:  vertical migration optimizes the transfer of phytoplankton production 
to zooplankton population 

1.	 Criticized by Miller et al. (1972) as implying group selection and not being supported by 
field data. 

2.	 Kerfoot’s (1972) response. 

E.	 Avoidance of visual predators, Hutchinson (1967), Zaret & Suffern (1976).  Predator avoidance. 

F.	 Navigation hypothesis (Hardy 1958) Problems:  no test. 

G.	 Demographic energetic advantage from living in cold water.  McLaren 1963  & 1974 
1.	 The earlier hypothesis was energetic rather than demographic. 
2.	 The McLaren effect: lowered metabolism in deeper, colder water. 
3.	 The present model operates on realized rates of increase involving natural mortality. 
4.	 The energetic costs of vertical migration are minimal 
5.	 Required no feeding at depth 
6.	 Ignored increased development times. 

II.	 Experimental methods: 
1.	 Pseudocalanus minutus is the test organism 
2.	 Females collected near Halifax Nova Scotia. 

B.	 Effects of temperature on the development rate of P. minutus 

1.	 All organisms development times can be described by Belehradek’s temperature function 
D = a(T-á)-b 

where, D is the development time to hatching. 
a.	 fit by least squares. 

b.	 the Isochronal rule Development time to any given younger stage occupies the 
same proportion of the time taken to reach adulthood at all temperatures.  (see 
critique by Landry) 
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Figure 1:  Development time a decaying exponential function of temperature 
C.	 Effects of temperature on the size of Pseudocalanus minutus 

1.	 Size differences controlled by temperature but not food 

2.	 Field data: Field-caught stage III copepodites much larger at lower temperatures (Lock & 

McLaren 1970) 

Figure 2: Effects of temperature on the size of adult female P. minutus. 
a. At lower temperature, larger body sizes of P. minutus 
b. However, this was not found in lab populations (Table 1) 

Table 1:  It was somewhat surprising to find no effect of temperature on size of stage II animals raised in the 
laboratory from eggs. 
D.	 Effects of temperature on fecundity. 

Corkett & McLaren (1970) 
1.	 established the characteristics of egg production. 

2.	 Fig. 3.  Mean egg number per clutch and body size of adult females.  E = 20.78(L)3.58 

- Egg number a positive function of body size (Fig. 3). 

III.	 The model 
A.	 Assumptions: 

1.	 Number of eggs produced is predictable from cephalothorax length. 
2.	 length predictable from temperature during development from stage III through maturity 
3.	 time to reach stages or maturity and production of 10 successive clutches, can also be 

determined from temperature. 
4.	 50:50 sex ratio 
5.	 Model assumes that migration does not begin until CIII 

B.	 The demographic model (P. 97) 
-rx 1.	 r : Ó e  mx = 1 

a.	 assumes no mortality 
b.	 temperature-dependent egg production and development 

-rx 2.	 m * Ó e  = 1
a.	 assumes egg production constant for females of age x raised at a given temperature 
b.	 r increases monotonically with temperature. 
c.	 adding mortality leads to different conclusions. 

C.	 (p. 98) If the non-migrant population is at equilibrium, the instantaneous mortality matches the 
potential rate of increase and we may write: 

-dx m Ó e  = 1
1.	 solve for d as a constant mortality rate 
2.	 Because of delayed development times, a migrant population will experience more mortality 

and decline. 
D.	 Further assumptions required. 

1.	 Model assumes that migration does not begin until CIII (observed for P. minutus) 
2.	 egg bearing females nonmigratory 

a.	 egg development times are therefore not retarded 
b.	 subject to faster developmental rates 

3.	 Juveniles experience higher mortality. 
-Two mortality rates d  (before CIII) and d  (after CIII).  d  is up to 4 x d . 1	 2 1 2 

IV.	 “A worked example, with some steps added for easier consideration is given in the Appendix.” 

A. Even though he uses the Euler-Lotka equation, which implies he is working with r, McLaren 

plots the rate of increase per generation (=R = net replacement rate) in Figure 4. o

B.	 Solutions expressed as rates of increase per generation of migrants compared with non-migrants. 

C.	 Figure 4: Effects of lower temperature on rate of increase per generation. 
oTop panel, 2 temperature difference.  2.5 x mortality required.


Bottom panel.  With a 4x difference in mortality, the effects on finite rate of increase of

different temperature changes.


V.	 The assumption of equilibrium over 1 generation can be relaxed.  Adding variability in mortality can increase 
the demographic advantage of the migrating individuals. 

VI.	 Small temperature differences may be quite important in nature. 

VII.	 Summary 
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A.	 Demographic advantage if early mortality >> later 
B.	 Demographic advantage if there are temperature differences. 

VIII.	 Appendix: the mortality rates are right but the survivorship lvI  is wrong. 

Ohman, M. D. 1990.  The demographic benefits of vertical migration by zooplankton.  Ecol. Monogr. 60: 257­
281.[This paper is a detailed version of the arguments presented in Ohman et al.’s Science paper.  The 
demographic arguments are presented in more detail and the field data supporting these arguments are fleshed 

out.][3, 4] 
1.	 Abstract 

a.	 3 types of diel vertical migration in Pseudocalanus newmani 
i.	 reverse 
ii.	 normal 
iii.	 none 

b.	 reverse only at 185 m deep station containing predators Euchaeta elongata, Sagitta elegans and 
Euphausia pacifica 

c.	 At 55-m station, no reverse migration 
d.	 normal migration observed at shallow station. 
e.	 theoretical life-table analyses. 
f.	 vertical migration is a dynamic trait. 

2.	 Introduction. 
Tolstoy (1889) 

Fig. 1. Temporal variation of Pseudocalanus and predators. 
Fig. 2.  Bathymetric map and sample locations. 

a. 

b. 
3. Methods 

a. 
b. 

4. Results 
a. 

hypotheses tested by natural experiment. 

review of McLaren (1974) 

Sampling 
Life-table analyses 
i. Embryonic development time 

(1) Inverse function of temperature (Corkett & McLaren 1978) 
ED=1845(T+11.45) -2.05 (1) 
(2) Expected development time as a function of DT, day temperature and night 

temperature. 
EDAV=1/[(0.5/EDDT)+(0.5/EDNT)] (2) 

ii. equiproportional rule = isochronal rule, a given developmental stage occupies the same 
proportion of the total development time at any constant temperature (Corkett et al. 1986) 

iii. PL=0.597[1+10.82*(13.4+T) ]-0.99 (3) 
iv. Fecundity –=10.39*PL 3.58 (4) 

(1) This is a slightly higher fecundity than McLaren’s 
v. Mortality rates. 

(1) 1d  from NI to CIII 
(2) 2d  from CIII to adults 

vi. 10 successive clutches 
vii. Euler equation solved: 

x x xÓ  e l  m-rx 

Comparison of Station D and Station S 
oFig. 4	 Temperature profiles: surface temperature increased to 20 C

i.	 SCM from May to September. 
ii.	 predators excluded from the shallow station. 

(1)	 Each Euchaeta can eat 16-19 Pseudocalanus (Yen 1983) 
(2)	 S. elegans can eat 5 Pseudocalanus females per day 
(3)	 Euphausia pacifica can eat 2.4 females /d 

iii.	 Fish more abundant in shallow station. 
3-spine stickleback eat Pseudocalanus, which would be among the larger 
zooplankton at the shallower station. 

b.	 Comparative migrations. 
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Fig. 5.  Reverse migration of Pseudocalanus females at Station D on 1 August.  No evidence for reverse diel vertical 
omigration in September even though the temperature gradient was nearly as large [3.9 C].  The females 

remained in the surface in September [note that Pseudocalanus overwinters as CV.  Are these Mangel & 
Clark’s foragers risking all to get a final clutch in.  Note the low abundances.] 

Fig. 6 No reverse diel vertical migration ever at Station S.  At Station S, classic normal vertical migration pattern.  In the 
spring of the next year, the population remained at the surface during January through March [Note low 
abundance of predators during this period] 

Fig. 7.	 Classic reverse diel vertical migration at station D by July through August 
Fig. 8	 Normal vertical migration pattern at station S in July 
Fig. 9	 Summary figure. 

c. Predator migration patterns at Station D 
Fig. 11.  Vertical migration patterns of Sagitta and Euphausia. 

d.	 Food limitation effects. 

i.	 Ohman (1985) : Chl a met or exceeded P max 

ii.	 Food limitation during period of pronounced reverse migration, but as food concentration 
increased reverse migration persisted. 

e.	 Variations in migration behavior by developmental stages and by other species. 
i.	 Most adult male and CV stages migrated, but little evidence for reverse migration of CIII, CII 

or CI. 
Fig. 15.  Developmental stages stay in the surface.  CV stages and adults migrate. 

f.	 Life table analyses 

i.	 Most of the assumptions made by McLaren (1974) have been borne out by subsequent data. 
ii.	 Mortality higher in younger stages. 

iii.	 d1:d2 is 2, Ohman et al. (1983) used 4. 
iv.	 Eggs borne on a sac cross the thermocline. 
v. non-migrant population is at equilibrium, R  = 1 

Fig. 17.  Migrants have a disadvantage compared to non-migrants. 
o 

vi.	 p. 274 left.  Ohman’s explanation of the demographic advantage of a migrant using little r is 
not quite right.  A migrant can have a higher r even though R  (=Ó  lx  m )  is lower than the 
non-migrant. 

Fig. 18. 

o x x 

oFig. 19.	 A 12% reduction in mortality at 4  C produces a demographic advantage for the migrant.
5.	 Discussion. 

a.	 Predatory zooplankton don’t track Pseudocalanus at the deep station because they have alternative 
food. 

b.	 Enright (1977): migrants reduce diurnal grazing pressure on phytoplankton to permit maximal 
photosynthesis and prey growth by day. 

c.	 Life table analyses 
i.	 the 3 phenotypes may represent different genotypes 

ii.	 Ohman (1985) found that as many as 8-9 generations of Pseudocalanus may occur during a 
year. 
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