
ECOS 630

Biol. Ocean. Processes

Chapter 23

Gallagher home 
Revised: 11/18/08 
©2008 E. D. Gallagher 

THE MICROBIAL LOOP


TABLE OF CONTENTS 
Page: 

List of Text Boxes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 


List of Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 


Assigned Readings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 


Required  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 


Azam, F  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 


Ducklow, H. 2000.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 


Supplemental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 


Fenchel, T. 1988  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 


Fuhrman, J. A. and F. Azam.  1982  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 


Giovannoni, S and M. Rappé. 2000.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 


Hoppe, H.-G., K. Gocke, R. Koppe, and C. Begler. 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3


Jumars, P. A., D. L. Penry, J. A. Baross, M. J. Perry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3


Jumars, P. A. 1993.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 


Jürgens, K. and R. Massana. 2008.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 


Nagata. T. 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 


Rappé, M. S., S. A. Connon, K. L. Vergin, and S. J. Giovonanni. 2002. . . . . . . . . . . . . . . . . . . . . . . . 3


Riemann, B. and R. T. Bell. 1990  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 


Thingstad, T. F. 2000.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 


General Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 


Microbial Standing Stocks and Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 


The Microbial Loop Hypothesis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 


Outline of marine microbiological patterns, processes, and techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7


Terms and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14


Outline of Papers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15


Assigned  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15


Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil, and F. Thingstad.  1983 . . . . . . . . . 15


Ducklow, H. 2000.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16


Supplemental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18


Ducklow, H. W., D. A. Purdie, P. J. LeB. Williams and J. M. Davies.  1986 . . . . . . . . . . . . . . . . . . . 18


Fenchel, T. 1988  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19


Fuhrman, J. A. and F. Azam.  1982  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20


Giovannoni, S and M. Rappé. 2000  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23


Hoppe, H.-G., K. Gocke, R. Koppe, and C. Begler. 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23


Jumars, P. A. 1993  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24


Jumars, P. A., D. L. Penry, J. A. Baross, M. J. Perry, and B. W. Frost. 1989 . . . . . . . . . . . . . . . . . . . 25


Nagata. T. 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25


Riemann, B. and R. T. Bell. 1990  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27


Sherr, E. B., B. F. Sherr, and L. J. Albright.  1987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28


Thingstad, T. F. 2000.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28


http://www.es.umb.edu/edgwebp.htm
IT
Stamp



EEOS 630 
Biol. Ocean. Processes 
Microbes, P 2 of 56 

References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30


Bacterial Standing Stocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30


General References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30


Culturing the unculturable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30


Molecular tracer techniques for estimating bacterial abundance or biomass: . . . . . . . . . . . . . . . . . .  31


Epifluorescence enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32


DNA & RNA probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34


Bacterial Activity, Growth Rates & Production  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35


Microbial diversity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39


Aerobic photoheterotrophic bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42


The Microbial Loop Hypothesis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42


Extracellular release of DOM by phytoplankton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42


Heterotrophic Protist standing stocks & growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44


Grazing on bacteria (especially by heterotrophic nanoflagellates): . . . . . . . . . . . . . . . . . . . . . . . . . .  44


Phagotrophy in photoautotrophs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48


Loop short circuits: mesozooplankton bacterivory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48


The final links:  are protists grazed by mesozooplankton? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48


Models of the loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50


Sloppy Grazing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50


Marine viruses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50


Benthic ciliates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51


Do bacteria and phytoplankton compete for nutrients and Are bacteria really remineralizers of nitrogen? . . . 51


Oceans: net autotrophic or heterotrophic?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52


Miscellaneous  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53


Web Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54


Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55


List of Text Boxes 

Box 1.  Steps in estimating bacterial production using the in situ  tritiated thymidine (TdR) method. . . . . . . . . . . . . . . . . 5


List of Tables 

Azam et al. (1983) Table 1.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15


Ducklow Table 2. Carbon content and carbon density of bacterial cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17


Ducklow Table 5. Bacterioplankton and phytoplankton production in the open sea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18


Assigned Readings 

REQUIRED 

Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil, and F. Thingstad.  1983.  The ecological role of water-
column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-263. [Note the alphabetical authorship.  Fenchel 
experimentally demonstrated the importance of flagellate grazing in controlling bacterial standing stocks] 

Ducklow, H. 2000. Bacterial production and biomass in the oceans. Pp. 85-120 in D. L. Kirchman, ed., Microbial ecology 
of the oceans. Wiley-Liss, New York. 542 pp. 

IT
Stamp



EEOS 630 
Biol. Ocean. Processes 
Microbes, P 3 of 56 

SUPPLEMENTAL 

Fenchel, T. 1988.  Marine plankton food chains.  Ann. Rev. Ecol. Syst. 19: 19-38. 

Fuhrman, J. A. and F. Azam.  1982.  Thymidine incorporation as a measure of heterotrophic bacterioplankton production 
in marine surface waters:  evaluation and field results.  Marine Biology 66:  109-120. 

Giovannoni, S and M. Rappé. 2000. Evolution, diversity, and molecular ecology of marine prokaryotes. Pp. 47-84 in D. 
L. Kirchman, D. L., ed.. Microbial ecology of the oceans. Wiley-Liss, New York. 542 pp. 

Hoppe, H.-G., K. Gocke, R. Koppe, and C. Begler. 2002. Bacterial growth and primary production along a north-south 
transect of the Atlantic Ocean. Nature 416: 168-171. [Meridional tritiated leucine & thymidine assays. The 
equatorial region (8º N to 20º S) is a net heterotrophic region.] 

Jumars, P. A., D. L. Penry, J. A. Baross, M. J. Perry and B. W. Frost.  1989.  Closing the microbial loop: dissolved carbon 
pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals.  Deep-Sea 
Res. 36: 483-495.  [The source of DOM, fueling the microbial loop may be from inefficient (but optimal) grazer 
guts] 

Jumars, P. A. 1993.  Concepts in Biological Oceanography: An interdisciplinary primer.  Oxford University Press, New 
York.  348 pp.  [Read Chapter 10, pp. 179-197 is on ‘microbial loops’] 

Jürgens, K. and R. Massana. 2008. Protistan grazing on marine bacterioplankton. Pp. 383-441 in D. L. Kirchman, ed, 
Microbial ecology of the oceans, 2nd edition. Wiley-Blackwell, New York. 593 pp. 

Nagata. T. 2000. Production mechanisms of dissolved organic matter. Pp. 121-152 in D. L. Kirchman, ed,  Microbial 
ecology of the oceans. Wiley-Liss, New York. 542 pp. 

Nagata, T. 2008. Organic matter - bacteria interactions in seawater. Pp. 207-241 in D. L. Kirchman, ed,  Microbial 
ecology of the oceans, 2nd edition. Wiley-Blackwell, New York. 593 pp. 

Rappé, M. S., S. A. Connon, K. L. Vergin, and S. J. Giovonanni. 2002. Cultivation of the ubiquitous SAR11 marine 
bacterioplankton clade. Nature 418: 630-633. [PCR revealed this clade makes up about 1/4 of marine bacteria, 
but it was unculturable. Using very low-nutrient medium and dilution, 18 isolates were obtained.] 

Riemann, B. and R. T. Bell. 1990.  Advances in estimating bacterial biomass and growth in aquatic systems. Arch. 
Hydrobiol. 118: 385-402. 

Thingstad, T. F. 2000. Control of bacterial growth in idealized food webs. Pp. 229-260 in D. L. Kirchman, ed., Microbial 
ecology of the oceans. Wiley-Liss, New York. 542 pp. 

General Comments 

We will only have one class on the enumeration and production of marine heterotrophic bacteria. 
Dr. Shiaris offers a semester-long graduate course on Microbial Ecology.  I have tried to make 
this handout sufficiently detailed so that those who want additional information on this important 
field can find it. 

IT
Stamp



EEOS 630 
Biol. Ocean. Processes 
Microbes, P 4 of 56 

MICROBIAL STANDING STOCKS AND PRODUCTION 

Brock (1987) stressed that bacterial ecology should be studied in the field.  If you transfer 
bacteria back to the laboratory, you may destroy the micro-environments that control bacterial 
growth rates.  Techniques to study in situ growth and standing stock have emerged within only 
since the early 1970's to study in situ activities and standing stocks. 

The most widely accepted method to enumerate natural bacterial abundances in the field are 
epifluorescent microscopic techniques using either acridine orange (AO) or DAPI DNA stains. 
Staining with AO was introduced by Daley & Hobbie (1975) & Hobbie et al. (1977), and 
staining with DAPI was introduced for pelagic bacteria by Porter & Feig (1981) and for benthic 
bacteria by DeFlaun & Mayer (1983). Both AO and DAPI are fluorescent dyes which react 
with DNA.  DAPI stains adjacent thymine-thymine nucleotides (dimers) in DNA.  DAPI exhibits 
less background staining than AO and is usually preferred.  All DNA stains with AO and DAPI, 
so neither of these stains is specific for heterotrophic bacteria.  The similarly sized autotrophic 
picoplankton will stain too. 

Epifluorescent enumeration of bacteria with AO and DAPI revolutionized the field of microbial 
ecology.  Before these techniques were introduced, microbial ecologists had to rely on laboratory 
culture techniques to estimate field populations.  In the most probable number (mpn) technique, a 
field sample is diluted until the highest dilution factor that produces growth is found.  From this 
dilution factor, the most probable number of bacteria in the original sample can be estimated. 
The most probable number method is still used routinely for enumerating pathogenic bacteria and 
viruses in the marine environment.  Unfortunately, there is no universal medium and set of 
culture conditions for growing marine bacteria.  Only a small percentage of the marine bacteria 
found in a given patch of mud or ml of water will grow in cultures in the laboratory. When the 
AO technique was introduced, microbial ecologists realized that they’d been underestimating the 
abundance of marine bacteria by at least 1000 times.  Now, the next important question to be 
answered was, “What percentage of the bacteria were active, and how fast are they growing?” 

The most widely used technique for estimating bacterial production is  and Azam’s (1980, 1982) 
tritiated thymidine technique.  Moriarty (1986), in his review of the tritiated thymidine method, 
noted that the technique had been used for environmental samples since the early 1970's. 
Fuhrman and Azam were the first to work out the specificity, incubation times, and conversion 
factors sufficiently to apply it to large-scale marine surveys. 

There is still considerable controversy about the tritiated thymidine method.  Riemann & Bell 
(1990), one of the supplemental readings, discusses the assumptions behind the method. 
Thymidine is a precursor to thymine, a nucleotide use only in DNA.  The method relies on the 
assumption that when bacteria encounter thymidine in nature, they curtail their own synthesis of 
thymidine (de novo synthesis) and incorporate the labelled thymidine via a scavenge pathway. 
This external pool of thymidine has a known specific activity (radioactivity/concentration), 
which can be used to calculate the rate of DNA synthesis. If the bacteria continued to synthesis 
thymidine de novo, then an unknown fraction of the thymidine incorporated would have the 
radioactive label and the true rate of DNA synthesis would by underestimated. 
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Box 1.  Steps in estimating bacterial production using the in situ
 tritiated thymidine (TdR) method. 
1. Determine the specific activity [dpm/mole thymidine] of 

the TdR 
2. Add TdR to samples to achieve desired activity: 

a. The concentration should be low enough that 
only bacteria, which have high surface:volume 
ratios, take up significant amounts 
i. 5 nM for water column 
ii. 20 nM or more for sediments 

b. For sediments, the TdR should be injected into 
porewater to achieve uniform labeling 

3. Perform incubation under “natural conditions” 
4. Extract the DNA from samples using cold TCA. 
5. Measure the specific activity of DNA (i.e., the 

radioactivity per gram of DNA) using liquid scintillation 
counting 

6. Using conversion factors, calculate microbial 
production. The calculation usually assumes no isotope 
dilution and that the thymidine incorporated into DNA 
has the same specific activity as the TdR added. 
Conversion factors are essential to estimate production 
or microbial specific growth rate. 
a. Conversion factors: 

i. Thymidine-to-biovolume conversion 
factor:  15.2x10 ìm  mol TdR17 3 -1 

ii. 121-580 fg C ìm  have been used in the -3

literature (Riemann & Bell 1990), with 
350-580  fg C ìm  being used in recent -3

studies. 
b. Calculate microbial carbon production using: 

using: 

Gilmour et al. (1990) discovered 
a major limitation of the thymidine 
method: sulfate-reducing bacteria, 
a major and diverse group of 
heterotrophic bacteria, lack the 
scavenge pathway to utilize 
external thymidine.  The tritiated 
thymidine technique could not 
estimate their production at all. 

A second major assumption is that 
both the external and internal 
pools of thymidine are small 
relative to the amount of added 
thymidine.  If these pools were 
high, the labeled thymidine would 
be significantly diluted and the 
production would be 
underestimated.  All organisms are 
capable of utilizing thymidine. 
The specificity of the thymidine 
technique for microbial production 
relies on the assumption that 
bacteria, with their high surface: 
volume rations are responsible for 
the vast majority of short-term 
thymidine uptake in a sample. 
Thymidine is added at low 
concentrations to increase the 
specificity for microbes.  Rivkin 
(Rivkin & Seliger 1981, 1986a, 
1986b, Rivkin & Voytek 1986) 
uses thymidine addition to 
estimate diatom specific growth 
rates, but he added the thymidine 
at much higher concentrations 
(mM not nM). A final major set 
of assumptions involves the 
factors needed to convert 
thymidine synthesis per sample 
volume to microbial carbon 
production per sample volume. 
Box 1 provides a simplified 
procedure for estimating microbial 
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production using the  thymidine method. 

THE MICROBIAL LOOP HYPOTHESIS 

Bacterial abundances in the ocean are probably largely controlled by heterotrophic nanoflagellate 
grazing, as described by Azam et al. (1983), and reviewed by Fenchel (1988). However, 
substrate limitation and bacteriophage mortality can not be ruled out. 

The microbial loop hypothesis links primary production and trophic transfer through microbes to 
higher trophic levels.  The term ‘loop’ is because the microbial community may be regarded as a 
scavenge pathway for transferring organic matter from primary producers to the 
macrozooplankton. Ducklow (2000) defines the microbial loop as “the bacterial recovery 
through uptake and metabolism of dissolved organic matter (DOM) otherwise “lost” from the 
trophic system via excretion, exudation, and diffusion.” p 88 Pomeroy (1974) was one of the 
first to stress the importance of the microbial loop. 

Azam et al. (1983) described the carbon flow from DOM release by phytoplankton through 
bacteria to heterotrophic nanoflagellates and then perhaps to ciliates and macrozooplankton and 
framed the microbial loop hypothesis: 

1.	 Bacteria utilize dissolved organic matter (DOM) as an energy source [The source of 
DOM is from phytoplankton, perhaps mediated by zooplanktonic grazing or viral lysis] 

2.	 Bacterial numbers are controlled by heterotrophic flagellates which can reach densities of 
3x103 cells/ml. 

3.	 Flagellates are preyed on by the microzooplankton in the 10 to 80 ìm size range (e.g., 
ciliates). 

4.	 DOM is only inefficiently returned to the main food chain. 

The source of organic matter for the microbial loop is controversial.  It could be dissolved 
organic matter release by phytoplankton or release of DOM by grazers (Jumars et al. 1989). 
Bjo/rnsen (1988) argued that small cells must leak low-molecular-weight organic compounds. 
Fogg (1966, 1977, 1983) argued that the leakage of glycolic acid was the result of 
photorespiration.  Sharp (1977) sharply criticized the methods used in many early studies of 
DOM excretion by phytoplankton.  Many of these earlier studies had filtered the phytoplankton 
with filtration pressures that could have ruptured phytoplankton cells producing high apparent 
DOM release rates.  Recent work has shown that viral lysis of phytoplankton can be a major 
source of dissolved organic matter. 

Is the microbial loop an efficient scavenge pathway for the return of photoautotrophic production 
to higher trophic levels (e.g., macrozooplankton)?  This sink-link question was clearly framed by 
Banse (1984) in a book review on marine microbial processes: 

“In any case, the issue of whether the small phagotrophs of the 
open sea are producing much organic matter accessible to 
copepods or are principally mineralizing organic matter in a long, 
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“inefficient” food chain (the link versus the sink in regard to the 
traditional food web) is not adequately addressed.  I note, however 
about ten values of gross growth efficiency (growth over ingestion) 
scattered throughout the book, which seem to all be below 50% (or 
much below).  These low efficiencies would mean large respiratory 
(and fecal) losses on each transfer between the small phagotrophs 
and hence little food for copepods.  So- are we pico-, nano- and 
microzooplanktologists all fascinated by a huge sink?” 

Ducklow et al. (1986) brought the sink-link debate to a boil with a controversial mesocosm 
study, rebutted by Sherr et al. (1987). Ducklow et al. (1986) argued that the microbial loop was 
a sink and did not return significant amounts of photoautotrophic carbon to macrozooplanktonic 
trophic levels.  They found only about 2% of their radioactively tagged carbon, released as 
glucose, ended up in macrozooplankton after 50 days.  Strangely, Ducklow et al. (1989) recanted 
this view, stating the Loch Ewe bag experiment was done during the spring and that later in the 
year, more DOM would have been transferred to macrozooplankton.  They used network 
modeling to show that nearly 70% of the energy of the macrozooplankton might pass through 
heterotrophic bacteria, not directly from phytoplankton: 

“However when recycling is considered, it can be seen from Table 
8.9 that up to 69% of the macrozooplankton input was mediated by 
the bacteria. It has been observed in mesocosm experiments that 
only a few per cent of labeled bacteria pass into large zooplankton 
(Ducklow et al. 1986).  Since the dependency of macrozooplankton 
appears to rise as recycling does, it is tempting to speculate that 
the mesocosm results were due to low recycling.  This was 
probably the case for the early spring experiment in a Scottish sea 
loch described by Ducklow et al. (1986).” 

Fenchel (1988) argues that with gross growth efficiencies of about 30%, less than 10% of 
organic matter released by phytoplankton is returned to zooplankton larger than .100 ìm. 

OUTLINE OF MARINE MICROBIOLOGICAL PATTERNS, PROCESSES, AND 

TECHNIQUES 

1.	 Some BIG questions about the microbial loop: 

a.	 Water column: 
i.	 What is the rate of gross primary production in the world’s oceans and what fraction of this 

gross primary production is released as dissolved organic matter (DOM) to fuel the microbial 
loop? 

ii.	 What processes lead to the release of DOM: 
S Phytoplankton leakage (e.g., photorespiration) 

S Sloppy zooplankton grazing (e.g., Jumars et al. 1989)? 
S Viruses 

iii.	 What are the concentrations of labile dissolved organic matter in the ocean? 
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iv.	 What processes control the abundance of bacteria in the water column? 
S Substrate limitation 

(a)	 Organic carbon 
(b) Nitrogen


S Grazing

S Viruses


v.	 What group of organisms control nutrient regeneration? 
S Bacteria 

(a)	 Goldman et al. (1987) note that for bacteria to remineralize N, the C:N of 
bacterial biomass > (C:N ratio of substrate*(Gross bacterial growth 
efficiency))] 

(b)	 Do bacteria compete with phytoplankton for nutrients (i.e., nitrogen and 
phosphorus)?


S Microzooplankton

S Macrozooplankton


vi.	 What is the C:N ratio of the DOM released by phytoplankton and zooplankton? 
vii.	 What are the gross growth efficiencies (GGE=ingestion/growth) for members of the 

microbial loop (literature values range from .50% {Banse} to over 85% {Paine and Wiebe 
1978}). 

viii.	 Is there a functional relationship between GGE and organism size (Banse thinks not, Caron 
thinks so)? 

b.	 Benthos: 
i.	 What are the major food resources for benthic macrofaunal deposit feeders? 

S bacteria 
S Microphytobenthos 
S detritus & organic coatings on mineral grains 

ii.	 What fraction of organic matter utilization (benthic metabolism) is due to the macrofauna, 
meiofauna and microfauna? 

iii.	 Is dissolved organic matter a significant source of reduced organic carbon for infaunal 
organisms? 

iv.	 Are large deposit feeders better competitors for scarce food supplies? 

2.	 Methods for enumerating microbes in sediments and in the water column 
a.	 Direct-count procedures 

i.	 A list of techniques:

S Electron microscopy.  


(a)	 SEM & TEM 
(b) Can be combined with vital stains to separate living from dead particles 

S CoulterTM  or EPICSTM  counters 
- can’t separate living from dead 

S Fluorescence microscopy or fluorescent activated cell sorting (FACS) 
(a)	 DNA stains 

(i)	 Acridine orange (AO) 
(ii)	 DAPI 

-stains thymine-thymine dimers. 
(b)	 Immunofluorescence 

(i)	 Can be combined with autoradiography to enumerate active cells 
(ii)	 Can be used with Fluorescence activated cell sorter. 

(c)	 INT, respiring bacteria deposit INT intracellularly as dark red spots 
(separates actively respiring bacteria) 

(d)	 autofluorescence of Chl a,  appropriate for cyanobacteria and other 
photoautotrophs 

ii.	 Advantages of direct counting procedures. 
S Don’t require separation of microbes from surrounding particles 
S Two orders of magnitude higher numbers than with culture techniques. 

iii.	 Drawbacks 
S  Do not measure biomass (David White’s criticism) 
S Methods usually don’t distinguish active from inactive. 
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b.	 Indirect or viable count 
i.	 List:


S Plate counts for bacteria

S bacteriophage plaque assays

S Selective enrichment media


(a)	 can separate different components 
(b) alternatives exist for many groups


S Most probable number

(a)	 Some advantages: 

(i)	 permits liquid culture 
(ii)	 can be used for enteric bacteria and viruses 

(b)	 Some disadvantages: 
(i)	 Requires selective enrichment media 
(ii)	 Destroys the micro-environments utilized by both water-column 

and benthic bacteria. 
ii.	 Drawbacks to plate counts: 

S The micro-environment of marine bacteria can’t be duplicated on plates. 
S total viable count is a misnomer 
S agar can contain contaminants 
S bacteria can’t utilize agar 

c.	 Biochemical methods 
i.	 List


S ATP assays

(a)	 Advantages: 

(i)	 All bacteria have ATP 
(ii)	 [ATP] is relatively easy to assay 
(iii)	 [ATP] is related to biomass not cell numbers 

(b)	 Disadvantages 
(i)	 all organisms have ATP 
(ii)	 ATP conversion factor of 250-286 is not constant (ATP to 

cellular carbon, 120 for soil samples). 
S Total adenylate pool 
S chlorophyll (for photoautotrophic bacteria) 

(a)	 Types 
(i)	 chl a 
(ii)	 bacteriochlorophyll 

(b)	 Advantages 
(i)	 all photoautotrophic bacteria have chlorophyll 
(ii)	 Assay is straightforward 

(c)	 Disadvantages 
(i) Conversion factors not constant 
(ii) Only photoautotrophic bacteria assayed. 

S Lipopolysaccharide (LPS): 
(a)	 advantages:  specificity:  a major fraction of gram negative cell wall is 

composed of LPS.  Limulus amoebocyte lysate reacts specifically with the 
LPS to form a turbid solution 

(b) disadvantage:  doesn’t work for gram positive forms. 
S Muramic acid assay (murein = peptidoglycan=mucopeptides) 

(a)	 advantages: 
(i)	 all bacteria have muramic acid 
(ii)	 not found in other organisms 
(iii)	 directly related to surface area and hence to biomass 

(b)	 disadvantages of muramic acid assay: 
(i)	 analytically difficult; usually requiring gas chromatography to 

assay 
(ii)	 Gram-positive bacteria have a much thicker murein layer.  Must 

assume a ratio of gram positive to gram negative bacteria in the 
field 
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(iii)	 MA:C conversion factor still required 
1) Gram positive:44 ìg MA/mg C 
2) Gram negative:12 ìg MA/mg C 

S	 specific lipid components (White) 
(a)	 Advantage 

(i)	 can separate different microbial components 
(ii)	 can be used with 13C to estimate production 

(b)	 Disadvantage 
(i) must convert to biomass 
(ii) technically difficult, usually requiring gas chromatography 

S protein:  too nonspecific 
S gene probes (DNA or RNA): 

(a)	 List: 

(i)	 16S rRNA or 16s-like RNA probes (Giovannoni et al. 1990) 
(ii)	 specific DNA probes (e.g., ×-Chung Wang’s TDH probe for 

Vibrio parahaemolyticus [Biology M.Sc. dissertation 
UMASS/Boston 1990]) 

(b)	 Advantages 
(i)	 Highly specific for individual groups.  Probes now exist to 

separate eubacteria from archaebacterial and eucaryotic DNA 

(Giovannoni et al. 1990) 
(ii)	 RNA probes have been produced to estimate the abundance and 

activity of marine nitrifying bacteria 
(iii)	 Can be quantitative 
(iv)	 Efficiency not dependent on separation of bacteria from particles 
(v)	 Can be combined with the Polymerase Chain Reaction (PCR) to 

attain very high sensitivity 
(c)	 Disadvantages 

(i)	 Probe must be available for DNA flanking sequences 
(ii)	 Gene copy number must be known for quantitative enumeration 

(a drawback for many groups) 

3.	 Methods of estimating bacterial growth rates or activity 
a.	 List 

i.	 Measure average biomass and assume a production: biomass ratio (P:B) (often with an 
assumed temperature factor, Q ) 10

ii.	 O  flux

S Advantages:


2 

(a)	 relatively simple analytically 
(b) directly related to production 

S Disadvantage: 
(a)	 other terminal electron acceptors can and are used in the sediments (much 

of the respiration can be anaerobic using SO 4
-2 as the terminal electron 

acceptor) 
(b)	 bacterial inhibitors, used to separate bacterial and eucaryotic respiration 

are often not specific and may affect meiofauna more than bacteria 
(Montagna) 
S Examples of oxygen-flux studies: 

(a)	 Smith `82, Castle Island 
(i) Bacteria  42-47% 
(ii) meiofauna 1.6-1.7% 
(iii) macrofauna  1.9-2.6% 
(iv) other microfauna:  51-55% 

(b)	 Fenchel (1969):  estimated the metabolic contributions of microfauna, 
meiofauna, and macrofauna 

iii.	 Monitoring changes in bacterial numbers or particle size classes ( & the dilution method): 
S advantages: 

(a)	 simple and reliable. 
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(b)	 can be used with Landry’s dilution technique to estimate production with 

reduced grazing (e.g., Ducklow & Hill 1985)

S disadvantages:


(a)	 bacterial production may be in steady state with heterotrophic 
nanoflagellate grazers. 

(b)	 bottle effects. 
(c)	 can’t separate active from inactive, or live particles from dead 

S	 empirical relationships can be used to estimate activity from size spectra and 
assumed size-specific growth rate relationships (e.g., Sheldon’s linear biomass 
hypothesis) 

iv.	 Monitoring changes in antibiotic resistant mutants (e.g., Plante et al. 1989) 
Advantages: specific to selected microbial groups 

v.	 Molecular tracers:  change in lipid biosynthesis (David White)  Can be used with 32P to 
estimate production based on phospholipid synthesis. 

vi.	 Radiolabeling procedures 
S Overall advantages: 

(a)	 Autoradiography can be used with any of the radiotracers to estimate 
activity per cell 

(b)	 high sensitivity 
(c) analytically straight forward


S disadvantages

(a)	 “isotope dilution effect”:  The `natural’ concentration of the substrate must 

be known in order to calculate growth rates using techniques like the 
tritiated thymidine procedure [see Pollard and Moriarity 1984, King and 
Berman 1985] 

(b)	 enrichment effects:  addition or a Radiolabeled, rich carbon or nitrogen 
source may produced unrealistically high growth rates.


S A list of radiolabeling techniques.

(a)	 14C-bicarbonate incorporation for chemoautotrophs 

(i)	 generally too non-specific for estimating only chemoautotrophic 
growth rates. 

(ii)	 dark bottle sometimes used. 
(b) 14C-labeled carbohydrates (e.g., glucose)

disadvantages:

bacteria may not grow well on organic substrates having low N:C ratios if they are

nitrogen limited.

(c)	 14C-labeled or tritiated amino acids (e.g., radio-labeled leucine) 

(i)	 incorporation into proteins measured 
(ii)	 advantage:  C:N ratio is often low (. 2) 
(iii)	 disadvantage:  may produce unrealistically high growth rates if 

the population is nitrogen limited 

(d)	 Fuhrman & Azam’s (1982) tritiated thymidine incorporation in DNA 
(i)	 advantages: 

1) specific for bacteria (eucaryotes cannot take up the low 
concentrations added) 

2) Can be quantified 
3) Can be combined with autoradiography 
4) Can be used with frequency of dividing cells equations 

to estimate specific growth rates 
(ii)	 Drawbacks. 

1)	 Many methodological problems (from LaRock and 
Moriarity 1990 AGU presentations) 
a) -added radiolabel may be incorporated into 

other cellular products 
-de novo synthesis of thymidine 

b) -isotopic equilibration 
2) doesn’t work well in anaerobic sediments 
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3) C:DNA ratio must be assumed to estimate specific 
growth or production 

4) C:DNA conversion factors not constant  (40 to 200 
range at least) 

(e)	 Karl’s (1984) adenine incorporation method and Bossard & Karl’s 

(1986) adenine nucleotide pool turnover:  designed to measure the growth 
of the total microbial community 
Problems: 
(i)	 adenine response not uniform 
(ii)	 bacteria dominate adenine uptake 

vii.	 Frequency of dividing cells 
S Developed by many, including: 

(a)	 Hagstrom et al. 1979 
(b)	 Eppley & Weiler 
(c) Penny Chisholm 

S McDuff & Chisholm (1982) provide the correct equations for estimating ì: 
ì (mean over the interval t, +t )= 1/t  ln[1 +f(t)] 
where,  ì  = specific growth rate 

td  = time spent dividing 
f(t) =the frequency of dividing cells in the population 

S	 Ways of estimating frequency dividing 

d d 

(a)	 visual 
(i)	 paired nuclei 
(ii)	 INT zones 
(iii)	 DNA content with fluorescence activation 

(b)	 radioisotopically 
(i)	 Rivkin’s $ (for diatoms only) 

(ii)	 Rivkin’s 14 C (Rivkin & Seliger 1981) 

(iii)	 Rivkin’s (1986a, 1986b, Rivkin & Voytek 1986) tritiated 
thymidine 

viii.	 Adenylate energy charge:  higher in active bacteria, but conversion factors widely varying 
ix.	 Electron transport system (ETS) activities (Packard, Christenson and others) 

S advantage:  works no matter what the terminal electron acceptor 
(a)	 O2 

(b)	 NO3 
-(c)	 NO2 

(d) SO4


S Methods

(a)	 macerate cells 
(b)	 incubate with NADPH , succinate 2 

(c) add tetrazolium chloride, INT

S Problems


(a)	 estimates potential not actual activity 
(b)	 not easily converted to production estimates 

x.	 Heat flux measurements (Pamatmat `82 Science 215;  395) 
S advantage:  all organisms, whether using aerobic or anaerobic respiration (or 

fermentation) produce heat

S disadvantages:


(a)	 placing sediment in a calorimeter severely disrupts sediment structure. 
(b)	 difficult analytically 

(i)	 heat measurements fluctuate wildly initially. 
(ii)	 stabilization 

(c)	 estimates potential respiratory activity, not actual 
xi.	 specific enzyme activities 

S dehydrogenase 
S phosphatase 
S cellulase 
S nitrogenase 
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4.	 Estimates of heterotrophic protist standing stocks. 
a.	 Visual microscopy with vital staining. 
b.	 Epifluorescence microscopy with vital staining.


Using Caron’s technique, the heterotrophic nanoflagellates can

be separated from the autotrophic nanoflagellates by the absence

of autofluorescence in the former group.


c.	 Scanning electron microscopy 
d.	 Specific lipid components:White has found lipid components which distinguish prokaryotes and 

eukaryotes. 
i.	 advantage:  specificity & estimates biomass 
ii.	 disadvantage:  difficult analytically. 
e.	 Serology. 
i.	 advantages:  


S specificity

S sensitivity

S simply analytically (e.g., dot blots)


ii.	 disadvantage:  
S	 protist diversity. 

A `good’ antiserum will react specifically with 
cell surface antigens on only one or a few 
species.  If the heterotrophic protist 
assemblage is diverse, a battery of antisera 
would be required to enumerate the abundance 
of heterotrophic protists. 

S background staining and cross-reactions 
S Estimates abundance, not biomass. 

5.	 Estimates of bacterivory: 
a.	 Field studies: 

i.	 Monitoring predator and prey populations (e.g., with direct counts or CoulterTM counter & 
epifluorescence microscopy) 

ii.	 Experimental removal of grazer population

S filtering


(a) difficult because of size overlap 
(b) Damages phytoplankton cells 

S eucaryotic chemical inhibitors (Fuhrman & McManus 1984) 
(a)	 cycloheximide 
(b)	 colchicine 

iii.	 Dilution methods (with filtration of predator populations) 
S	 Since predation rate is heavily density dependent, the dilution of a bacterial sample 

with natural medium will drastically reduce rates of bacterivory while. supposedly 
leaving bacterial growth rate unaffected. 

S	 Landry 

S	 Ducklow and Hill (1985) 
iv.	 Fluorescently labeled particles


S Caron et al. (1999) apply the method

v.	 Radioisotopic labeling 

S add radiolabel specific for bacteria (e.g., tritiated thymidine, glucose) 

S monitor change in size fractionated activity with time (e.g., Ducklow et al. 1986, 

Fuhrman & McManus 1984). 
S monitor closely through time 

vi.	 Stable isotope analysis (predators resemble the isotopic composition of their prey) 
S In some environments (e.g., hydrothermal vents) bacteria have characteristic ä13C 

and ä15N-signals. 
S	 Laboratory studies: 

S Incubation of predators and known densities of prey. 
S Dilution techniques 

S Chemical inhibition of bacterial growth rate (e.g., penicillin, Fuhrman & McManus 1984). 
Grazing rate can be estimated from the pulsed decrease in bacterial numbers. 
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S	 Chemical inhibition of eukaryotes: cycloheximide, colchicine (Newell et al. 1983, Fuhrman 
& McManus 1984) 

S	 Addition of labeled bacteria

S Radiolabeled bacteria

S fluorescently labeled bacteria.


S	 Addition of bacterial sized particles 
S	 Types of particles 

S Radiolabeled particles 
S fluorescently labeled bacteria. 
S latex spheres 

S	 Examples of studies 

S Caron et al. (1999)


S McManus & Fuhrman (1988)


S Nygaard et al. (1988)


S Pace & Barliff . (1987)


S Sherr et al. (1987)

S	 Problems 

- bacterivores may use 
chemical clues to detect 
prey 

S	 Model approaches 
S Estimate biomass of size classes and assume a P:B ratio 

S Construct ecosystem simulation models (e.g., Frost 1988) 
S Estimate rates of bacterial lysis by phage through estimates of bacterial and phage 

abundance. 

S	 Microbial loop hypothesis: 
S Bacteria utilize DOM, excreted by phytoplankton, as an energy source 
S Bacterial numbers kept (<5 x 106 cells/ml) in check by heterotrophic flagellates 

which can reach densities of 3x103 cells ml. 
S Flagellates are preyed on by the microzooplankton in the 10 to 80 ìm range. 
S The microzooplankton are, in turn, preyed on by the macrozooplankton 
S DOM ineffectively returned to the main food chain. 

Terms and Concepts 

Gram reaction (Stanier et al. 1970): See Appendix 1 
Gross growth efficiency See Appendix 1 
isotope dilution effect Principle of isotope dilution:  “A series of samples are incubated 

with a constant amount of radioactive thymidine to which 
increasing amounts of unlabeled thymidine are added.  The DNA is 
extracted and the reciprocals of the amounts of radioactivity in 
DNA are plotted against the amounts of thymidine present (Fig. 5). 
If there is no dilution of the isotope incorporated into DNA by any 
sources other than the unlabeled thymidine that was added, the 
plot will pass through zero (e.g., Fig. 5A).  A negative intercept on 
the ordinate is an estimate of the amount of dilution by isotope by 
other sources of thymine in DNA (e.g., Fig. 5B).  It is not strictly a 
pool of thymidine, but represents the sum of all pools that dilute 
the tritiated thymidine prior to incorporation into DNA” Moriarty 
(1986, p. 262) 
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Size groups (from Fenchel 1988, Sieburth 1978) 
picoplankton 0.2 -2 ìm 
nanoplankton 2-20 ìm 
microplankton 20-200 ìm 
mesoplankton 200 ìm - 20 mm 

Outline of Papers 

ASSIGNED 

Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil, and F. Thingstad.  1983.  The ecological role of 
water-column microbes in the sea.  Mar. Ecol. Prog. Ser. 10: 257-263. [6, 26, 27] 

S	 Abstract: 
S Bacterial growth coupled to that of phytoplankton 
S Bacteria utilize 10 to 50% of primary production 
S Bacterial numbers controlled by nanoplanktonic heterotrophic grazers 
S Nanoplanktonic bacteriovores preyed upon by microzooplankton 
S microbial loop returned to the food chain. 

S	 Introduction 
S	 Biochemical methods for enumerating bacterial standing stocks:


S ATP

S Muramic acid assay

S LPS assay


S Problems with these biochemical methods:  conversion factors

S direct counts: AO, DAPI, TEM  & SEM

S Bacterial production rates


S frequency of dividing cells

S tritiated thymidine incorporation


S	 Old view:  bacteria as remineralizers. 
S Is this true? 
S If so, how does it occur? 

S	 Bacterial biomass and production: 

Azam et al. (1983) Table 1.  Numbers and 
biomass of heterotrophic bacteria in the 
marine environment. 

Environmen 
t 

Numbers (10 /l)8 

Biomas 
s 

(ìg C/l) 

Estuaries 50 ? 

Coastal waters 10-50 5-200 

Offshore waters 0.5-10 1-5 

Deep waters 0.1 ? 
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4 6S	 Relatively constant bacterial number 10  to 5x10  cells/ml

S Does a homeostatic control exist?

S 10-20% attached to particles


S	 Bacterial production

S 2 to 250 ìg C (l day)-1


S 5 to 30% of primary production

S Conversion efficiencies vary from 40 to 80%

S Proportion of carbon respired ranges from 40% to 90%


S	 Conditions favoring bacterial growth 
S good correlation with Chl a 
S seasonal patterns of abundance 

S	 Factors limiting bacteria in the sea 
S carbon, nitrogen or other nutrients 
S Fenchel showed that heterotrophic microflagellates in the size range 3 to 10 ìm are effective 

bacteriovores in the sea.

S choanoflagellates

S colourless chrysomonads

S these reach densities of 103 cells/ml


Fig. 2.  predator-prey oscillations with a 4-day lag 
S flagellates have 24-h generation times. 

S	 Microbial loop hypothesis 
S bacteria utilize DOM as an energy source 
S bacteria kept in check by heterotrophic flagellates which can reach densities of 3x103  cells ml -1  . 
S Flagellates are preyed on by the microzooplankton in the 10 to 80 ìm range. 
S DOM inefficiently returned to the main food chain. 

S	 Discussion 
heterotrophic flagellates and microzooplankton are the remineralizers of nutrients 

Ducklow, H. 2000. Bacterial production and biomass in the oceans. Pp. 85-120 in D. L. Kirchman, ed., Microbial 
ecology of the oceans. Wiley-Liss, New York. 542 pp. [6] 

1.	 Introduction 
a.	 What is bacterial production? 

i.	 Specific growth rate 
b.	 Is bacterial production Net or gross? 

i.	 14C & O2  methods for primary production 
ii.	 net bacterial production usually measured. 

c.	 Why measure bacterial production? 
i.	 Importance of the microbial loop 

S	 defined as “the bacterial recovery through uptake and metabolism of dissolved 
organic matter (DOM) otherwise “lost” from the trophic system via excretion, 
exudation, and diffusion.” p 88 

S	 Bacterial production is the key process controlling flux through the loop 
ii.	 Quantifying biogeochemical fluxes of carbon and other elements. 

S bacteria dominate DIM incorporation (Azam & Hodson 1977) 
iii.	 Estimating growth rates 

2.	 Methods: a survey and update 
a.	 Bacterial biomass 
b.	 Epifluorescent microscopy 

i.	 AODC (Hobbie et al. 1977) 

ii.	 DAPI (Porter & Feig 1980; should be 1981) 

iii.	 SYBR Green (Noble & Fuhrman 1998) 
c.	 Flow cytometry 
d. Cell volume and Mass. 

Table 1. Phytoplankton and bacterial biomass in the ocean. 
Table 2. Carbon content and carbon density of bacterial cells 
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Ducklow Table 2. Carbon content and carbon density of bacterial cells 

Region 
Density 
(fg ìm )-3 

Content 
(fg cell­

)1 Method References 

Pure Cultures 160-930 CHN analysis Bratbak (1985) 

Es

Norwegian fjord 7-12 X-ray diffraction Fagerbakke et al. 
(1996) 

Long Island Sound 210-600 15-24 CHN analysis Lee & Fuhrman (1987) 

Otsuchi Bay, Japan 17-53 CHN analysis Kogure & Koike (1987) 

tuarine & Coastal 
Ross Sea Antarctica 7-13 C mass balance Carlson et al. (1999) 

O

Hawaii 10 Biomass constraints Christian & Karl (1994) 

Bermuda 15 Biomass constraints Caron et al. (1995) 

ceani 
Southern Ocean 12 Direct measurement Fukuda et al. (1998) 

3.	 BACTERIAL PRODUCTION 
a.	 Introduction: tritiated thymidine 
b.	 Earlier approaches 
c.	 Thymidine and leucine incorporation 

i.	 Introduced by Fuhrman & Azam 1980, 1982, Fuhrman et al. 1980) 
- ushered in a new era 

ii.	 New developments 
S 1-2 ml samples in microcentrifuge (Smith & Azam 1992) 
S bromodeoxyuridine as a non-radioactive tracer (Steward & Azam 1992) 

3d.	 [ H]-leucine (Leu) incorporation into bacterial protein

i.	 introduced by Kirchman et al. 1985

- required conversion factor


ii.	 variability in Leu:TdR methods 

4.	 GROWTH RATES AND VARIABILITY 
a. Cell kinetics: bacterial abundance and biomass. 

Figure 2 
Figure 3 

b.	 Application to determination of conversion factors 

5.	 THE ECOLOGY OF GROWING AND NONGROWING CELLS 

6.	 BACTERIOPLANKTON STANDING STOCKS AND PRODUCTION RATES 
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Ducklow Table 5. Bacterioplankton and phytoplankton production in the open sea. 

Ber 

mud Ross 

Property N. Atlantic Eq. Pac-Spr Eq. Pac-Spr Sub N Pac Arabian Hawaii a Sea 

Euphotic zone m 50 120 120 80 74 175 140 45 

Bi

Bacteria 1000 1200 1467 1142 1448 1500 1317 217 

Phytoplankton 4500 1700 1940 1274 1248 447 573 1145 

0 

omass mg C m-
B:P 0.2 0.7 0.75 0.9 1.2 3.6 2.7 .02 

Pr

Bacteria 275 285 176 56 257 nd 70 5.5 

Phytoplankton 1083 1083 1548 629 1165 486 465 1248 

oduction 

B:P 0.25 0.26 0.11 0.09 0.22 nd 0.18 0.04 

G

Bacteria 0.3 0.13 0.12 0.05 0.18 nd 0.05 0.25 

Phytoplankton 0.3 0.64 0.8 0.5 0.93 1.1 0.81 0.11 

rowth B:P 1 0.2 0.15 0.1 0.19 nd 0.06 2.3 

Figure 4. 
7.	 Summary 

a.	 Bacterial standing stocks in the euphotic zone average about 0.5-2 g C m-2 across a range of 
environments 
i. The ratio of bacterial to phytoplankton standing stocks from 0.1 to 2.0 in the gyres. 

b.	 Bacterial production maintained at a remarkably constant ratio to primary production (0.15-0.2) 
c.	 Bacterial stocks seem to be limited principally by resource limitation in lower productivity systems, but 

removal processes more intesne in coastal and estuarine systems, suppressing standing stocks to below 
oceanic levels 

d.	 Estimating bacterial biomass using C, or N is still techically difficult and uncertain 
e.	 Better recognigition, detection and understanding of inactive cells are needed to specify rates and 

mechanisms of bacterial growth. 

SUPPLEMENTAL 

Ducklow, H. W., D. A. Purdie, P. J. LeB. Williams and J. M. Davies.  1986.  Bacterioplankton:  a sink for carbon 
in a coastal marine plankton community.  Science 232: 865-867. [7, 19, 28, 48, 49] [See Critique by Sherr 

et al. (1987) with rejoinder by Ducklow] 

I.	 Abstract. 
A.	 Estimates of high production rates implicate free-living marine bacterioplankton as a link in the 

microbial loop. 
B.	 enclosed water column of 300 cubic meters used to test the microbial loop hypothesis 
C.	 followed the fate of 14C-labeled glucose for 50 days. 

1.	 only 2% ended up on larger organisms. 
2.	 20% in particulate fraction 
3.	 most respired by heterotrophic bacterioplankton. 

D.	 secondary production by organisms smaller than 1 ìm may not be an important food source in 

marine food chains. 
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E.	 bacterioplankton may be a sink for carbon in planktonic food webs and may serve principally as agents 
of nutrient regeneration than as food. 

II.	 Introduction 
A.	 bacteria can comprise 20% of carbon biomass 
B.	 growth efficiencies greater than 50% 
C.	 growth rates of 2 per day. 
D.	 do bacterioplankton supplement the diets of microzooplankton 
E.	 Bacterioplankton form the microbial loop. 
F.	 Are bacteria a salvage pathway supplementing primary production for herbivores? (The sink vs Link 

question) 
III.	 The experiment 

A.	 representative coastal marine ecosystems:  Loch Ewe Scotland 
B.	 15-m deep water column, 5-m diameter enclosed bag 

14C.	 added 6 m Ci of [ C]glucose & assumed only bacteria would take of glucose.
D.	 Pools followed: DOC, DIC, POC (divided into 6 size fractions) 

IV.	 Results 
A.	 Two stages of tracer fate 

1.	 4-6 h first phase:  90% of labeled glucose removed 
a.	 90 percent metabolized by bacterioplankton 
b.	 4% in greater than 1 ìm POC size fraction 

2.	 55-d second phase 
a.	 redistribution among the dissolved and to a lesser extent particulate pools. 
b.	 less than 5 percent passed to fractions greater than 1 ìm. 
c.	 recovered 80% of the label as POC, Doc or DIC. 

-missing label due to respiration with the atmosphere. 
B.	 only a small fraction of the tracer was detected in classes larger than 1 ìm (Fig. 2 and Table 1) 
C.	 no evidence for the transfer of carbon through to 10- to 30- to 30 - 100 ìm fractions to the >100 ìm 

fractions. 
V.	 Discussion 

A.	 evidence that the bacterioplankton removed by protozoan grazers. 
B.	 Results do not support the idea of a microbial loop. 
C.	 in some areas up to 80% of PP is by cyanobacteria (Li et al. ) 
D.	 10 to 60% of primary production passes directly through the bacterioplankton 
E.	 results suggest that carbon assimilated by plankton smaller than 1 ìm may not pass into conventional 

food chains leading to metazoan secondary production.  Thus significant fractions of the total carbon 
fixed by organisms smaller than 1 ìm may be lost from the trophic system. 

F.	 Heterotrophic flagellates may be important for the regeneration of nutrients. 

Postscript:  See explanation in Ducklow et al. 1989.  “However when recycling is considered, it can be seen from Table 
8.9 that up to 69% of the macrozooplankton input was mediated by the bacteria.  It has been observed in mesocosm 

experiments that only a few per cent of labeled bacteria pass into large zooplankton (Ducklow et al. 1986).  Since the 
dependency of macrozooplankton appears to rise as recycling does, it is tempting to speculate that the mesocosm results 
were due to low recycling.  This was probably the case for the early spring experiment in a Scottish sea loch described 

by Ducklow et al. (1986).” 

Fenchel, T. 1988.  Marine plankton food chains.  Ann. Rev. Ecol. Syst. 19: 19-38.[6, 7, 15] 
I.	 Introduction: the classical view of plankton food chains. 

A.	 change in paradigm Williams (1981) 
B.	 linear food chains out 
C.	 early history of biological oceanography 

II.	 A new picture of plankton communities 
A.	 The composition of plankton communities


picoplankton, nanoplankton, microplankton, mesoplankton

1.	 picoplankton: coccoid cyanobacteria 
2.	 nanoplankton: photosynthetic and phagotrophic forms. 

a.	 phagotrophs: choanoflagellates, cryptomonads, chrysomonads, bicoecids, and 
helioflagellates. 
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b.	 autotrophs: cryptomonads, chrysophytes, haptophytes, prasinophytes, some 
euglenoids and dinoflagellates, chlorophytes, some tiny diatoms 

3.	 microplankton 
a.	 autotrophs: dinoflagellates and diatoms 
b.	 phagotrophs: ciliates  (aloricate and loricate “tintinnid” oligotrichs dominate 

B.	 Plankton food chains and the microbial loop 
1.	 nano- and picoplankton dominate production, but are inefficiently grazed by 

macrozooplankton 
2.	 10-50% of primary production may be leaked. 
3.	 estimates of high bacterial production 
4.	 stable bacterial numbers, but large zooplankton can’t graze them 
5.	 heterotrophic nanoflagellates graze cyanobacteria and the smallest eucaryotic primary 

production 
6.	 ciliates and heterotrophic dinoflagellates graze heterotrophic nanoflagellates 
7.	 “microbial loop” Fig. 1 

III.	 Properties of plankton organisms and food chains 
A.	 Steady state phagotrophic food chains 

1.	 prey: predator sizes are constrained 
2.	 types of feeding 

a.	 raptorial 
b.	 filter feeding 
c.	 diffusion feeding 

3.	 typical prey: predator ratios are 1:10 with 1:1 to 1:100 ratios possible 
4.	 planktonic tunicates can retain bacteria King et al. 1980 
5.	 allometry 
6.	 Sheldon size spectrum 
7.	 Lotka-Volterra type predator-prey cycles. 

B.	 Uptake and excretion of dissolved materials

Bjornsen: being small means you leak


C.	 Remineralization and mineral cycling 
D.	 Microscale patchiness 
E.	 Symbiosis and mutualism 
F.	 The “sink or link” problem 

1.	 non-sensical question 
2.	 only 3-9% of primary production to larger animals 

G.	 Sedimentation and the supply of food for benthic organisms 
1.	 spring sinking of diatoms 
2.	 late summer sinking of dinoflagellates 

IV.	 Current and future problems 
Gross growth efficiency of 30% (10% too low) 

Fuhrman, J. A. and F. Azam.  1982.  Thymidine incorporation as a measure of heterotrophic bacterioplankton 
production in marine surface waters:  evaluation and field results.  Marine Biology 66: 109-120 [4, 17, 

39] 
I.	 Abstract 

A.	 Technique uses tritiated-thymidine 
B.	 autoradiography used to test accuracy


specific for active bacteria

C.	 Measurement of: 

1.	 isotope dilution effect 
2.	 DNA content of natural bacteria 

D.	 conversion factor documented 
II.	 Introduction 

A.	 Method introduced by Fuhrman & Azam 1980 
B.	 Questions: 

1.	 Do organisms other than bacteria incorporate tritiated thymidine from nM concentrations in 

seawater? [some benthic diatoms may, but at low rates Rivkin 1986a] 
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2.	 What proportion of natural bacteria are “active” and what portion incorporate tritiated 
thymidine in seawater? 

3.	 How is the specific activity affected by isotope dilution, both inside and outside cells? 
4.	 How specifically does tritiated thymidine label DNA compared to other macromolecule? 
5.	 What is the DNA content of natural marine bacteria? 

C.	 Microbial groups overlap in size, making the separation of heterotrophic bacterial processes difficult. 
III.	 Materials and Methods 

A.	 tritiated thymidine from New England Nuclear 
31.	 methyl H-thymidine

2.	 >50 Ci /mmole 
B.	 Incubation and processing 

1.	 Seawater samples collected by 5 l Niskin bottles 
2.	 kept in dark 

3.	 in situ incubations with 5 nM tritiated thymidine 
4.	 Samples processed after 1 and 3 h 
5.	 10 % TCA used to extract soluble pools from the cells 
6.	 cold-TCA insoluble material collected by filtration using 0.45 ìm MilliporeTM filters 
7.	 Filters rinsed 5 times with 1 ml ice cold 5% TCA 
8.	 Placed in scintillation vial 
9.	 1 ml ethyl acetate used to dissolve the filter. 
10.	 Radioactivity assayed by liquid scintillation spectrometry 

311.	 Efficiency determined with internal H toluene standard
Moles of thymidine incorporated  	= dpm * (SA)-1 4.5 x10-13.


dpm = disintegrations per minute

SA = specific activity of the thymidine

4.5 x 10-13 is the number of curies per dpm.

Blank values from formalin or mercury killed controls subtracted.


C.	 Autoradiography. 
1.	 Simultaneous measurement with AO epifluorescence 
2.	 developed silver grains 
3.	 Methods for 

a.	 gelatin covered filters 
b.	 in situ incubations 
c.	 AO incubation 
d.	 Autoradiogram using nuclear track emulsion 
e.	 slides placed in the dark 

D.	 Extraction of specific molecules by hydrolysis. 
1.	 Acid-base hydrolysis used to extract specific macromolecule 
2.	 RNA 
3.	 mitomycin C, a DNA inhibitor, added to stop DNA synthesis 

E.	 Incorporation of radioactive phosphate and thymidine into DNA 
1.	 Water samples divided into 4 subsamples 
2.	 radioactive 32P or 33 P added 
3.	 after 1-5 h incubation, the water was filtered through Nucleopore filters. 

F.	 Bacterial DNA content 
1.	 microfluorometric method 
2.	 80% acetone extraction 

G.	 Field measurements: sample locations in Southern California Bight 
IV.	 Results and Discussion 

A.	 Specificity of tritiated thymidine for bacteria 
1.	 silver grains almost never associated with larger organisms 
2.	 1% of silver grains associated with some pennate diatoms but might be due to leakage of 

DOM by bacteria and heterotrophic uptake by larger organisms 
B. Generality of tritiated thymidine incorporation for all non-photosynthetic bacterioplankton. 

1.	 Compared various measures of activities (e.g., 15 tritiated amino acids, glucose) 
2.	 different sensitivities a problem 
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3.	 No significant differences between the percentages of bacteria labeled with amino acids, 
thymidine and a combination of both even though there is a slight trend that the percentage of 
cells utilizing thymidine may be 3% smaller than the percentage using the amino acids. 

Latent image fading:  p. 114 fading with time of the images caused by the earliest disintegrations 
C.	 Macromolecular specificity of thymidine labeling 

1.	 TCA-insoluble easier to measure than labeling in total pure DNA 
2.	 80-90% of TCA-insoluble fraction is DNA, but can be as low as 65% 
3.	 Assumed 65% to 80% of TCA-insoluble fraction is DNA. 

D.	 Labeling of precursor pools by exogenously added thymidine

i.e., What is effect of isotope dilution?


Isotope dilution	 p. 115.  Without correction for isotope dilution, the synthesis rate will be underestimated by 

an unknown amount. For example if the extracellular thymidine pool is large, most of the 
thymidine fixed will not be labeled. 

1.	 Extracellular concentration < 1 nM 
2.	 Km  is a few nM so uptake rate is nearly constant 
3.	 the addition of 5 nM results in little isotope dilution. 
4.	 Intracellular specific activity 

a.	 dTTP is the precursor of DNA 
b.	 dTTP contaminated by algal dTTP 

5.	 Moriarty and Pollard suggest that the total extracellular and intracellular pool sizes of 
thymidine and its derivatives can be measured by an isotope dilution approach.  They assume 
that the rate-controlling step in DNA synthesis occurs after the synthesis of dTMP and 
therefore all the extracellular and intracellular precursor pools up to dTMP are in isotopic 
equilibrium.  

6.	 F & A do not directly test for isotopic equilibrium.  They estimate thymidine incorporation 
and use supposedly independent methods and compare results. 

7.	 Compared methods using 32P and tritiated thymidine

- assumed a 4:1 molar ratio


8.	 Thymidine incorporation underestimates DNA synthesis by factors of  2.7 to 7.1 
a.	 multiply by 3 to 6 for nearshore 
b.	 multiply rates by 6 to 7 for offshore 

E.	 Bacterioplankton DNA content 
“The amount of DNA in the bacteria must be known if one is to convert the quantity 
of DNA synthesized into the number of bacteria produced” 
1.	 2.4 x 10-15 g DNA per bacterium 

a.	 10% of bacterial dry weight 
b.	 earlier estimates by Holm-Hansen were low 

F.	 Application to production rate estimates


Conversion factors:


Thymidine per cell:

Moles thymidine incorporated x 1.7 x 1018 = cells produced (nearshore) 
Moles thymidine incorporated x 2.4 x 1018 = cells produced (offshore) 

These estimates do not necessarily apply to different environments or with different methods. 
G.	 Test of the method:  Figure 6 thymidine vs. change in cell numbers 

2Moles thymidine incorporated x 1.618 = cells produced (nearshore) r =0.69
H.	 Application to field data 

1.	 bacterial growth doubling every 1 to 4 days 
2.	 offshore, bacterial doubling greater than 1 week 
3.	 Bacterial secondary production is from 5% to 25% of primary production 
4.	 Bacteria consuming from 10% to 50% of primary production, assuming a growth yield of 

50% 
5.	 In general, the bacterioplankton consume from a third to half of the primary production. 
6.	 Growth is density dependent. 

I.	 Role of bacteria in food chains 
1.	 Are bacteria consumed by grazers? 
2.	 Links between DOM and bacterioplankton and (2) between bacterioplankton and 

bacteriovores significant. 
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Giovannoni, S and M. Rappé. 2000. Evolution, diversity, and molecular ecology of marine prokaryotes. Pp. 47-84 
in D. L. Kirchman, D. L., ed.. Microbial ecology of the oceans. Wiley-Liss, New York. 542 pp. 

I.	 Introduction 
II. Ribosomes: deciphering the evolution of life on earth 
Figure 1. Consensus phylogenetic tree illustrating the major lineages of the domain bacteria 
Figure 2. Composite phylogenetic tree displaying relationships among the most widespread SSU rRNA gene clusters 
from marine prokaryotic plankton 
III.	 Molecular sleuths: solving the riddle of marine bacterioplankton diversity 
IV.	 Why culturable and nonculturable? 
V.	 The major bacterioplankton groups 

A.	 Systematics and the culturable heterotrophic bacterioplankton 
1. Culturable gamma proteobacteria 

Figure 3. Phylogentic dendrogram of the gamma subclass of the Proteobacteria 
2. Culturable alpha proteobacteria: the Roseobacter and Sphingomonas clades 

Figure 4. 
B.	 Marine Methyltrophs 
C.	 The cytophaga-Flavobacterium-Bacteroides group 
D.	 Planctomycetales 
E.	 Oxygenic phototrophs: the cyanobacteria 

1.	 Synechococcus, Prochlorococcus 
F.	 The dominant uncultured bacterioplankton groups 

1.	 The upbiquitous SAR11 Cluster 
2.	 The SAR116 cluster 
3.	 the uncultivated gamma proteobacteria: SAR86 
4.	 Gram-positive bacterioplankton: the marine actinobacteria clade 
5.	 SAR202 and the mesopelagic non-sulfur species 
6.	 The marine Group A clade 
7.	 The Marine Group B/SAR324 clade 
8.	 The marine Archaea 

VI.	 Gene clusters and bacterioplankton population genetics 
VII.	 Coastal versus open-ocean bacterioplankton species 
VIII.	 Bacterioplaknton population dynamics 

A.	 The stratification of bacterioplankton populations 
IX.	 Link between community structure and biogeochemical cycles 
X.	 Research Horizons 
XI.	 Summary 

A.	 The most abundant bacterioplankton have never been cultured 
B.	 The major marine prokaryotic groups appear to have cosmopolitan distributions 
C.	 A relatively small number of uncultured marine bacterioplankton clades (9)_ accoutn for 80% of 

marine Bacteria 16S rRNA gene clones recovered from seawater 
D.	 Marine Archaea are abundant and almost invariably fall within two phylogentic groups 
E.	 High genetic diversity; unknown ecological specialization but some groups distributed differently with 

depth 
F.	 Particle-associated and freely suspended bacteria are different 
G.	 Stratification of bacterioplankton typical of ocean surface. 

Hoppe, H.-G., K. Gocke, R. Koppe, and C. Begler. 2002. Bacterial growth and primary production along a north-
south transect of the Atlantic Ocean. Nature 416: 168-171. [Meridional tritiated leucine & thymidine assays. 
The equatorial region (8º N to 20º S) is a net heterotrophic region.] 
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Figure 1. Meridional transect of Chl a (left) A. 

and bacterial production (leucine 19 

incroporation 

Figure 1. Bacterial & primary production 
using leucine (red) and thymidine (blue) 

Jumars, P. 

Figure 1.Bacterial production vs. Primary 
production. The equator is a zone of net 
heterotrophy. 

93.  Concepts in Biological Oceanography: An interdisciplinary primer.  Oxford University Press, New York.  348 
pp.  [ Read Chapter 10, pp. 179-197 is on ‘microbial loops’] [?] 
X. Many microbial loops 

A. The loop hypothesis 

1. key questions poised by Pomeroy (1974) 
Fig. 10.1  Azam et al. like-Loop diagram 

2. restatement of linear biomass hypothesis (see his chapter 7) 

3. Pomeroy’s (1974) questions remained unanswered until Fenchel (1984) 
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4.	 Fenchel’s 1984 review developed the mechanistic arguments of chapter 4:  “From them he 
concluded that neither flagellates nor larger organisms could make net energetic profit by 

5  -1  ingesting picoplankton of cell densities below 10 ml
a.	 due to mechanical constraints 
b.	 small ciliates can be bacterivores too (Sherr and Sherr (1987) 

5  -1  5.	 Bacterivores can’t reduce picoplankton cell densities which fall below 10  ml  due to the 
physical constraints of Brownian motion 

6.	 Proctor and Fuhrman (1990) on marine viruses. 
B.	 Sources of labile, dissolved organic matter.


“Measurements of bacterial production with new radionuclide techniques often

reveal bacterial production .. in excess of 10% of primary production and as high

as 40% or even more.  thus, it seems unlikely from mass balance that the source of

the organic fuel for this secondary production is very far in the food web from the

phytoplanktonic source of the organic fuel.”


1.	 Fogg (1983): glycolate excretion [But see Colman 1989] 
2.	 Only 0.4% of the fluid volume experiences exudate concentrations>10% background (see 

Chapter 4 and Azam and Ammerman (1984) 
a.	 Clever use of the Poisson distribution to calculate the distances between bacteria 

and phytoplankton cells. 

b.	 Fig. 10.2:  Probability of a bacterium being within 90 ìm of a phytoplankton cell is 
.0.003 

3.	 Jackson (1989) analyzes large phytoplankton cells with high leakage rates. 
4. Calculation of encounter rates per bacterial cell. 

Equation 10.2. 220 ìm phycosphere from Azam and Ammerman:  “One encounter of a [phytoplankton] diffusional 
shell per bacterium every 10 min.


Phycosphere distorted by shear

5.	 Sloppy grazing 

a.	 Raised by Pomeroy (1974) 

b.	 Jumars et al. (1989) 
C.	 Biological sources and sinks of inorganic nutrients 

1.	 Lehman and Scavia 
2.	 Scavia et al. (1984) phytoplankton cells entrained in the same fluid stream containing 

zooplankton exudation, providing a mechanism for encounters. 
3.	 Lehman (1987) developed a theory of close encounters of a nutrient kinds 
4.	 Porter (1976) described an extreme example in which freshwater blue-green algae benefit in 

growth rate, presumably from nutrient acquisition by being ingested and passing thought the 
guts of zooplankton 

D.	 One functional group of bacteria. 
1.	 Ward’s nitrifying bacteria 
2.	 Currin’s assay for nitrogen fixers 

E.	 Benthic microbial loops 
1.	 Most sediment bacteria attached to mineral grains. 

Jumars, P. A., D. L. Penry, J. A. Baross, M. J. Perry, and B. W. Frost. 1989.  Closing the microbial loop: dissolved 
carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in 
animals. Deep-Sea Res. 36: 483-495. [6, 7, 25, 26, 27] 

Abstract 
A.	 extension of digestion theory. 
B.	 DOM in seawater is a byproduct of animal ingestion and relatively low assimilation efficiencies. 

I.	 Introduction: 
A.	 Heterotrophic bacteria require 20-40% of mean carbon fixation rate (Azam and Fuhrman, Hagstrom, 

Lancelet and Billen) 
B.	 existing models, Fasham and Peterson require 10% of phytoplankton loss from the phytoplankton cell. 
C.	 Lancelet and Billen indicate low loss rates. 

II.	 Theory 
A.	 Reactions for incomplete digestion: an optimal foraging grazer should not completely assimilate labile 

DOM for prey. 
B.	 Fates of solutes ejected in fecal pellets. 
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III.	 Discussion 

Nagata. T. 2000. Production mechanisms of dissolved organic matter. Pp. 121-152 in D. L. Kirchman, ed, 
Microbial ecology of the oceans. Wiley-Liss, New York. 542 pp. 

I.	 Introduction 
II. Release of DOM by phytoplankton 
Figure 1. Percent extracellular release (PER) of DOC relative to primary production 

A.	 Phytoplankton release a variety of compounds 
1.	 Lab 

a.	 2-10% of production in exponential growth (Figure 1) 
b.	 Higher when nutrients depleted or growth conditions suboptimal 
c.	 Or cells in stationary or senescent phase growth 
d.	 abrupt changes in light intensity 

2.	 Field 
a. 14C incubations 

Table 1. Percent extracellular release (PER) of DOC in marine environments 
b.	 Up to 80% percent extracellular release (PER) during declining phase of blooms 

(Larsson & Hägstrom 1982, 7, 26, 27, 28, Lancelot 1983) 

c.	 viral infection can increase DOM release (Gobler et al. 1997) 
d.	 Higher near surface with higher irradiance (cell damage?) 

e.	 Baines & Pace (1991) is about 13% of primary production across a wide array of 
environments. 
(1)	 premature to conclude this is a global average 
(2)	 bacteria consume 40% to 50% of primary production across systems, so 

2/3 of bacterial organic matter demand must be met by other sources. 

(Cole et al. 1988, Ducklow & Carlson 1992). 
III.	 MECHANICAL MODELS OF DOM RELEASE 

A.	 Overflow model 
B.	 leakage model 

IV.	 Production of DOM by grazers 
A.	 Release of DOM by protozoa 

1.	 release about 10-30% of ingested pray organic matter as DOM 
2.	 may be dominant source of DOM release 
3.	 exceeds release by phytoplankton 
4.	 release Fe 
5.	 release DOM during egestion 

a. see Fig. 2 
Figure 2. Feeding sequence for protozoan grazers 

b.	 Assimilation efficiency ((G+R)/I x 100) of 60-70% (Fenchel 1982, 1987) implies 
egestion of 30-40% of ingested material 

c.	 picopellets=colloids 

d.	 Jumars et al. 1989 modeled grazing “optimum digestion”: release of DOM relative 
to ingestion increases with prey abundance. 
(1)	 consistent with Nagata & Kirchman (1991) 
(2)	 other studies find retention time of prey in vacuoles varies little with food 

abundance 
e. Flagellates excrete Urea and purines (Caron & Goldman 1990) 

B.	 Release of DOM by zooplankton 
1.	 zooplankton consume a large fraction of primary production dominated by large 

phytoplankton (White & Roman 1992, Dagg 1993). 

2.	 The release of DOC by zooplankton can represent 10-20% of ingestion (Copping & 

Lorenzen 1980, Strom et al. 1997) 
Table 4. Release of DOM by crustacean zoolankton. 

3.	 4 modes of release of DOM by zooplankton 
a.	 sloppy feeding 

(1)	 Lampert (1978): 4-17% of DOM lost during feeding by Daphnia 
b.	 excretion 
c.	 egestion 
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d.	 release from fecal pellets 

(1)	 Following Jumars et al. 1989, “We may hypothesize that a dominant 
control of DOM release by zooplankton is egestion and rapid dissolution 
of solutes from pellets” 

V.	 RELEASE OF DOM BY VIRAL INFECTION 
A.	 Gobler et al. (1997): viral infection important for DOM release during the declining phase of 

phytoplankton blooms 
B.	 need to reevaluate the conventional explanation that the high flux of DOC release during declining 

phase of blooms is due solely to algal extracellular release 
VI.	 Which mechanisms are important for bacteria? 

A.	 Multiple trophic pathways provide DOM, a view different from Azam et al. (1983) who argued that 
the major process was algal extracellular release 

B.	 Heterotrophs play a major role in DOM release 
C. Oligotrophic environments 

Figure 4 
1.	 grazers the dominant source of DOC, 65% of total DOC production 

a.	 protozoa are the most important grazers (can consume 80% of primary production 

Landry et al. 1997, Liu et al. 1995) 

b.	 Consistent with Jumars et al. (1989) 
c.	 viruses, 3% of primary production and 50% of bacterial production 

2. Total heterotrophic production far exceeds primary production (Table 7) 
a.	 counterintuitive but arises because organic carbon is recycled primarily by DOC-

microbial food chains (Scavia 1988, Strayer 1988) 
VII.	 New perspectives on production pathways of refractory DOM 

A.	 >90% of DOM released to seawater is consumed and respired on a time scale of days or less. 
B.	 refractory carbon has an average > 1000 years (Williams & Druffel 1987) 
C.	 bacterial membrane proteins, peptidoglycan may form refractory DOM 

VIII.	 Conclusions 
A.	 In cultures, exponentially growing phytoplankton relae about 5% of total primary production as DOC 
B.	 Protozoan grazers can release 20-30% of ingested prey organic carbon as DOC 

1.	 metazoan zooplankton: 10-20% 
2.	 egestion of unassimilated material may be the major mechanism 

C.	 Viral infection of host cells may result in substantial release of DOM, potentially large but poorly 
understood source of DOM 

D.	 Oligotrophic ocean model indicates protozoa are major contributors to DOM 
E.	 A substantial portion of refractory DOM is derived from bacteria. 

Riemann, B. and R. T. Bell. 1990.  Advances in estimating bacterial biomass and growth in aquatic systems. Arch. 
Hydrobiol. 118: 385-402. [4, 5] 

I.	 Abstract 
3	 3A.	 3H-thymidine and H-adenine incorporation into DNA and H-leucine incorporation into protein are

currently in use in many laboratories.  
B.	 leucine and thymidine methods together give reasonable estimates of bacterial growth. 

II.	 Introduction 

A.	 Revolution due to Azam et al. (1983) , Sherr & Sherr 1988 
B.	 new fluorometric techniques for enumerating bacteria and assessing growth 
C.	 DOC release is readily used by bacteria. 
D.	 Wright (1988) concern over methods was detracting from conceptual advances. 

III.	 Microscopic sizing of bacteria 
A.	 AO and DAPI 
B.	 mean cell volume from photograms, image analysis, 

IV.	 Conversion of cell volume to cell carbon 
A.	 121 fg C ìm-3  has been applied (Ferguson & Rublee 1976, Watson et al. 1977) 
B.	 Bratbak and Dundas 220 fg C ìm-3 

C.	 350-580 in recent studies. 

V.	 Bacterial growth rates 

-see Moriarty (1986) and earlier reviews. 
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VI.	 3H-thymidine incorporation into DNA 
A.	 specific for bacteria at nM concentrations 
B.	 two pathways 

1.	 de novo route and salvage pathway 
2.	 de novo synthesis must be eliminated or it contribution assessed 

C.	 introduced by Fuhrman & Azam (1980) 
3D.	 ice cold TCA to remove non-bound H-thymidine

E.	 3H remaining assumed to be bound to DNA 
F.	 Problems 

1.	 variation in 3H-thymidine in DNA vs other molecules 
2. 10-fold range in conversion factors. 

Fig. 1.  Pathways of thymine and thymidine metabolism from Moriarty 1986 

VII.	 Specificity of macromolecular labeling 
A.	 N-starved cells may use thymidine nitrogen Cho & Azam (1988)] 
B.	 Is purification of DNA essential? 

VIII. Conversion factor for calculating cell production or carbon from rates of thymidine incorporation 

Fig. 2.  Empirical conversion factors. 
3use higher concentration of H-thymidine

3	 3Fig. 3.	 The effects of increasing concentrations of H-thymidine on the rate of H-thymidine incorporation.  [Note 
asymptote at .5nM] 

IX.	 3H-thymidine incorporation in anaerobic environments. 

A.	 sulfate reducers and chemolithotrophic bacteria don’t incorporate thymidine (Gilmour et al. 1990) 
B.	 chemolithotrophic bacteria may not take it up 

X.	 3H-adenine incorporation into DNA and RNA. 
incorporated by both bacteria and algae into RNA and DNA:  measures total microbial production 

XI.	 3H-leucine incorporation into protein 
A.	 protein constitutes over ½ dry weight of bacterial cells 
B.	 applied by Cuhel (1982) to seawater 
C.	 Kirchman et al. (1985): most leucine incorporated into protein 
D.	 when bacteria are not in balanced growth, the ratio of leucine to 3H-thymidine incorporation varies 

greatly (Fig. 5) 
3E.	 leucine incorporation more sensitive than H-thymidine 

XII.	 Frequency of dividing cells 

A.	 proposed by Hagstrom et al. (1979) 
3B.	 FDC can be 2 orders of magnitude higher than H-thymidine  (Riemann et al. 1984) 

XIII.	 Conclusions.  Four methods available 
A.	 3H-thymidine incorporation 
B.	 3H-leucine incorporation into protein 
C.	 3H-adenine incorporation into RNA and DNA 
D.	 frequency of dividing cells 

Sherr, E. B., B. F. Sherr, and L. J. Albright.  1987.  (with response by H. W. Ducklow, D. A. Purdee, P. J. LeB. 
Williams and J. M. Davies.  Bacteria:  Link or Sink?  Science 235: 88-89.[7, 18, 45] 

1.	 Criticism of Ducklow et al. 1986. 
2.	 one can’t generalize from a single link or sink experiment. 
3.	 Criticism. 

a.	 Ducklow et al. (1986) don’t provide information on the components of the planktonic assemblage and 
without this information the experiment can’t be interpreted 

b.	 Parsons et al. experiment provided direct evidence that bacteria can be a link in marine food webs. 
Glucose addition stimulated production 

c.	 The idea that cyanobacteria may not be utilized is not supported. 
i.	 grazed by ciliates 
ii.	 ciliates grazed by metazooplankton. 

d.	 14C bicarbonate spike showed that at the end of 10 days, herbivorous zooplankton had incorporated 
only 1.2% of 14Cactivity. 
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Rejoinder by Ducklow: 
1.	 In earlier study, there was appreciable net primary production on the 3 sunniest days.  This experiment had 

rapid uptake of bacterial pool.` 
2.	 Tritiated thymidine experiment showed that only 0.5% of label found in >100 ìm particles. 
3.	 Friday Harbor 12 -20% of leucine label transferred to zooplankton larger than 53 ìm. 
4.	 Parsons et al. yield was 0.1% with glucose enhancement experiment. 
5.	 10 copepods per liter present. 
6. Protozoan bacterivores removing 50% to 100% of bacterial production each day. 

“We do not share the view of Sherr et al.. that if the results of an experiment fail to 
fit the hypothesis, then one rejects the experiment or its site” 

Thingstad, T. F. 2000. Control of bacterial growth in idealized food webs. Pp. 229-260 in D. 
L. Kirchman, ed., Microbial ecology of the oceans. Wiley-Liss, New York. 542 pp. 

1. Introduction 
Figure 1 
Figure 2. Idealized scheme of carbon flow through the pelagic food web. 

a.	 Idealized food web (Fig. 2) 
i.	 complications: mixotrophic protiess, parasites, appendicularians (baleen 

whales of the microbial world) 
2.	 Top-down or bottom-up control 

a.	 Correlating bacterial biomass to bacterial production 
b.	 “Bottom-up” refers to the causal chain in which resource limitation influences the 

consumer and the consumer’s predators, and so on, up the food chain. “Top­
down” refers to the cascading effects of predators controlling their prey, which 
again may control their prey and so on down the food chain (e.g., McQueen et al. 
1989) 

c.	 Bacterial carbon demand 
d.	 Billen et al. (1990) plotting method 

i.	 smaller variation in growth rate than biomass 
ii.	 suggestion of less bottom-up and more top-down control in oceanic 

environments 
iii.	 Ducklow (1992) 

e.	 Control of bacterial biomass 
i.	 heterotrophic nanoflagellate potential generation time 5 hours (Fenchel 

1982) 
ii.	 predator control taken over as the standard explanation for control of 

bacterial biomass 
iii.	 simple Lotka-Volterra model predicts steady state bacterial population 

-1  under flagellate predation control of 8 x 105 cells mL , close to levels
observed 

iv.	 freshwater: higher bacerial abundance 
v.	 sediment porewater bacterial abundance: 109  cells mL-1  (Schmidt et al. 

1998) 
S reduced flagellate predation rate in sediments 

f.	 ciliate predator added to model 
i.	 Hutchinson’s paradox 

3.	 Substrate control of bacterial growth rate 
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a. The case of P-limited bacterail growth rate 
b. C-limited bacterial growth rate 
c. Effects of eutrophication 
d. The quantitative importance of bacteria in food webs 

4. Summary 
a. Conditions controlling bacterial growth require a model to analyze 
b. Lotka-Volterra model 
c. 
d. top-down and bottom-up can’t be readily separated at steady state. 
e. 
f. 
g. silica supply can have a largeeffect on bacterial production 
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Palenik, B. et al. 2003. The genome of a motile marine 
Synechococcus. Nature 424: 1037-1042.  

Rappé, M. S., S. A. Connon, K. L. Vergin, and S. J. 
Giovonanni. 2002. Cultivation of the ubiquitous 
SAR11 marine bacterioplankton clade. Nature 
418: 630-633. [PCR revealed this clade makes 
up about 1/4 of marine bacteria, but it was 
unculturable. Using very low-nutrient medium 
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spatial or temporal substructure. Ecological 
considerations suggest that much genotypic and 
possibly phenotypic variation within natural 
populations should be considered neutral.”] 
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species and 1.2e6 new genes.  Abstract: “We 
have applied "whole-genome shotgun 
sequencing" to microbial populations collected 
en masse on tangential flow and impact filters 
from seawater samples collected from the 
Sargasso Sea near Bermuda. A total of 1.045 
billion base pairs of nonredundant sequence 
was generated, annotated, and analyzed to 
elucidate the gene content, diversity, and 
relative abundance of the organisms within 
these environmental samples. These data are 
estimated to derive from at least 1800 genomic 
species based on sequence relatedness, 
including 148 previously unknown bacterial 
phylotypes. We have identified over 1.2 million 
previously unknown genes represented in these 
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rhodopsin-like photoreceptors. Variation in 
species present and stoichiometry suggests 
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Wulff, J. G. Field, and K. H. Mann, eds.. 
Network analysis in marine ecology.  Lecture 
notes on coastal and estuarine studies, Vol. XX. 
Springer Verlag, New York. 284 pp. 
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Fogg, G. E.  1983.  The ecological significance of 
extracellular products of phytoplankton 
photosynthesis.  Botanica marina 26: 3-14. 
[Glycolic acid, a major source of labile DOM, 
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MD.  [Discusses the conditions leading to 
glycolate excretion by microalgae] 

Williams, P. J. LeB., C. S. Yentsch 1976.  An 
examination of photosynthetic production, 
excretion of photosynthetic products, and 
heterotrophic utilization of dissolved organic 
compounds with reference to results from a 
coastal subtropical sea.  Marine Biology 35: 31­
40. 

Heterotrophic Protist standing stocks & growth 

Bloem, M-J., B. Bär-Gilissen, and T. E. Cappenberg. 
1986.  Fixation, counting and manipulation of 
heterotrophic nanoflagellates.  Appl. Env. 
Micro. 57:  1266-1272. 
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