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Greenland): importance for ecosystem primary production. Mar. Ecol. Prog. Ser. 238: 15-29. 
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Serôdio, J. and F. Catarino. 2000. Modelling the primary productivity of intertidal microphytobenthos: time scales of 
variability and effects of migratory rhythms. Mar. Ecol. Prog. Ser. 192: 13-30. [Model of Tagus estuary 

-2 -1Portugal using P vs. I curves and vertical migration. Variable fluorescence measured. 156 gCm y  production. 

Oxygen microelectrodes and fast repetition rate fluorescence measurements made on intact cores.] [4, 31] 

Comments on the readings & DIC Limitation 
In shallow neritic waters, 
microphytobenthic 
production can often 
exceed water-column 
production. For example, 
De Jonge (1994) produced 
estimates of benthic and 
pelagic production for the 
shallow Dutch Ems-
Dollard estuaries (Figure 
1). A major loss term from 
the intertidal was erosion. 
Benthic diatoms continue 
to photosynthesize when 
eroded from the sediment- Figure 1. Primary production and average standing stocks in the 
water interface by storms. lower reaches and Dollard portions of the Ems-Dollard estuary 
He produced a carbon (from de Jonge 1994). In both regions, the microphytobenthos 
budget for the Dutch Ems- dominates biomass. In the shallow region, the production from the 
Dollard estuary (mean -1microphytobenthos (68 gC m-2 y ) or resuspended
depth 1.2 m) showing that -1microphytobenthos (24 gC m-2 y ) is 31 times production by true
25% of the total estuarine -1phytoplankton (3 gC m-2 y ).
primary production is due 
to resuspended benthic 
diatoms, 53% by true phytoplankton, and 22% by benthic diatoms living on mudflats. Jahnke et 
al. (2000) found that microphytobenthic production on the Carolina shelf at depths of 14 to 40 

-2 -1meters was quite high 400 (±260) mgCm d  and comparable to pelagic production. 

Many surface and subsurface deposit feeders in shallow-water environments meet most of their 
food requirements by feeding on benthic diatoms. Hentschel & Jumars (1994) hypothesize that 
deposit feeders which can live on low-quality organic matter as adults may require nutritionally 
rich food, like benthic diatoms, as juveniles. Benthic diatom standing stock may be a better 
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indicator of the nutritional quality of sediment than organic carbon concentration. Benthic 
diatoms—rich in the nitrogen, fatty acids, and essential amino acids required by many deposit 
feeders (Phillips 1984, Marsh & Tenore 1990)—are much more abundant in the intertidal than 
subtidal benthos. 

MODELING BENTHIC DIATOM PRODUCTION 

Serôdio & Catarino (2000) present a truly 
remarkable field and modeling study of 
factors controlling epipelic diatom 
production. They measured the dark-level 
Chl a fluorescence (F ) using a pulse-probe o 

fluorometer. Fo measures the increase in 
microphytobenthic biomass at the sediment-
water interface as the epipelic diatoms 
vertically migrate to the surface. It also 
measures the shift up in the 
microphytobenthic photosystems as they 
acclimate to higher light intensities. 
Production was measured using the 
Revsbech & Jørgensen O  microelectrode 2

method (Revsbech et al. 1981 & 1986, Figure 2. Fig. 1 from Serôdio & Catarino (2000) 

Revsbech & Jørgensen 1983) (see Figure 2). 

Serôdio & Catarino (2000) modeled the P 
vs. I curves for epipelic diatoms and 
modeled the effects of both the diel and tidal 
vertical migrations of these diatoms. The 
combined effects of tides, diatom vertical 
migration and light on hourly production are 
shown in Figure 3. 

Serôdio & Catarino (2000) used their 
Figure 3. Fig. 5 from Serôdio & Catarino (2000) 

model to predict that there is as much hourly 
and weekly variability in benthic primary production as there is seasonally. They calculated the 

-2 -1annual primary production of the epipelic diatoms as 156 gCm y . 

A BRIEF OVERVIEW OF PAM FLUORESCENCE 

The goal of the PAM fluorometric method is to estimate Chl a concentration and the rate of 
reaction of Photosystem II, the photosystem responsible for much of the fluorescent signal in 
intact phytoplankton cells. 

The PAM fluorometer emits two different light signals from its fiberoptic probe. First there is a 
very low intensity red light measuring beam that is switched on and off rapidly (approximately 5­
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Stamp



Figure 4. Fig. 3.11 from Falkowski & Raven 
(1997) 

EEOS 630 
Biol. Ocean. Processes 
B. Diatoms, P. 5 of 52 

ìs interval). The number of photons produced is insufficient to noticeably alter Photosystem II 
activity, but a fluorescent signal will be emitted in phase with the ‘modulating’ measuring light. 
The baseline fluorescence emitted is called Fo and is usually linearly related to Chl a 
concentration. 

In cells with low Photosystem II activity, the 
PSII reaction centers are ‘closed,’ and much 
of the absorbed light from the measuring 
beam is returned as fluorescent light (see 
Fig. 4). The fluorescent yield, or ratio of 
emitted fluorescent light to absorbed light, is 
high. In actively photosynthesizing cells, the 
electron transport rate is high in 
Photosystem II, and much of the absorbed 
light can be converted to chemical energy 
and not emitted as fluorescence, a process 
called photochemical quenching. The 
fluorescence yield is low. 

After measuring F  with the PAM fluorometer, a bright light is emitted from the fiber optic cable o

of the PAM fluorometer. The PSII reaction centers exposed to this high intensity bright white 
light (actinic light) will be reduced and unable to process and photochemically quench additional 
photons. Photons still being absorbed by the photosynthetic pigments will be emitted as 
fluorescent light. The fluorescent light emitted after the actinic light is added is called F m. 

Variable fluorescence, F ,  is defined as F  = (F  - F )/F . In senescent photoautotrophic cells, the v v m o m 

PSII reaction centers were essentially closed to begin with, and there is little difference between 
F  and F , so F  will be low, usually much less than 0.75. In actively photosynthesizing cells, F o m v v

will be large. F  is generally linearly related to PSII activity and thus gross photosynthetic rate. F v v

* Photosynthetically available radiation is usually linearly related to photosynthetic rate. 

IS BENTHIC DIATOM PRODUCTION LIMITED BY DIC FLUX? 

Benthic diatoms evolved in a habitat with a thick molecular diffusive boundary: the sediment-
water interface. The key physiological adaptation controlling the growth of benthic diatoms is 
their ability to fix carbon under conditions of very low CO  and high O  (Admiraal 1984,2 2

Ludden et al. 1985). The low CO2 concentration is due both to highly alkaline pH at the 
sediment water interface, caused by microphytobenthic production, and depletion of total 
dissolved inorganic carbon (DIC) concentrations. Some of these physiological mechanisms, both 
biochemical and morphological, for coping with low CO2  and high O2  are also found in pelagic 
diatoms. These physiological mechanisms include a bicarbonate pump using carbonic anhydrase 
(CA), and high rates of â-carboxylation. Benthic diatoms are well adapted for coping with low 

-CO  and high O  concentrations. The evidence is strong that high rates of HCO  uptake and â­2 2 3 

carboxylation are the rule rather than the exception in the microphytobenthos (Zimba et al. 
1990). 
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While it is generally thought that DIC could never limit pelagic production, Riebessel et al. 
(1993) argue that DIC could be a limiting factor for large diatoms during spring blooms. The 
increase in atmospheric CO2 concentrations since the last ice age could lead to conditions more 
favorable to diatom growth during blooms. 

Evidence for DIC limitation of microphytobenthic production 

Admiraal and coworkers (e.g., 1982, 1984), Ludden et al. (1985) and Gould & Gallagher 
(1990) concluded that benthic diatom growth may be limited by the availability of inorganic 
carbon, or perhaps high O  leading to inhibition of photosynthesis (the Warburg effect). 2

Conducting an experiment that can separate the effects of high O2 concentrations from low DIC 
concentrations is very difficult. Admiraal (1984, pp. 296-297) briefly summarizes his evidence. 
Admiraal et al. (1982) and DeJong & Admiraal (1984) provide the most detailed discussion of 
the laboratory experiments, mostly bicarbonate enrichment of laboratory batch cultures of 
benthic diatoms, that led to the unorthodox conclusion that carbon, or the inhibitory effects of 
high O , limits microphytobenthic photosynthetic rates. Admiraal found that the growth rate and 2

standing stock of benthic diatoms in laboratory cultures was a strong function of both pH and 
DIC concentration. The pH of the stagnant layer overlying cultured diatoms reached 9.9 
(DeJonge & Admiraal 1984, p. 270). The additions of the traditional photoautotrophic 
macronutrients (N, P, and Si) did not affect growth. 

To date, only the Dutch investigators have proposed the DIC limitation hypothesis. In the US, 
most investigators cite studies arguing for nitrogenous limitation of diatom growth. Van Raalte et 
al. (1976) found higher primary production and epibenthic Chl a concentrations in areas of 
Sippewissett marsh (MA) experimentally enriched in nitrogen (sewage sludge and urea). Most of 
this increased Chl a was probably due to increases in macroalgal standing stock (e.g., green 
algae) and not microphytobenthic standing stock. Nilsson et al. (1991) also documented 
increases in phytobenthos in response to nitrogen enrichment in a laboratory mesocosm. 
Interestingly, the increased production in both studies was coupled mainly to increased growth of 
Ulva and Enteromorpha and not to benthic diatoms. 

Höpner & Wonneberger (1985) concluded that increased microphytobenthic production was 
directly coupled to increased diffusive flux of nitrogen and phosphorous and porewater. They 
estimated the concentration gradients of DIN and DIP in porewater, calculated the diffusive flux 
from Fick’s 1st law and compared it with measurements of primary production. There was a 
strong positive association between them. They also measured the ratio of DIN and DIP supply 
from porewater and compared it to primary production rate (their Fig. 10). They state, based on 
their Fig. 10: 

“We conclude, therefore, that nutrient effluxes from the sediment 
are patchiness-governing in such a way that epiphytobenthos­
growth is favoured most when the N:P molar ratio fits the ratio 
needed for biomass formation. However data pairs fulfilling this 
condition are also pairs with the highest effluxes (P. 283)” 
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Their observations may appear to directly contradict Admiraal’s DIC-limitation hypothesis, but 
in fact are consistent with it. Epipelic diatoms acquire most of their DIN and DIP from 
porewater, and influence the DIN and DIP gradients and fluxes (Sundback & Graneli 1981). 
Higher diatom production, caused by any process, depletes macronutrient concentrations at the 
sediment-water interface. The resultant concentration gradient drives higher fluxes of porewater 
DIN and DIP from porewaters to the sediment-water interface. When diatom production is high, 
these diatom-driven fluxes are more in accord with Redfield stoichiometry. Thus, Höpner & 
Wonneberger’s (1985) close correlation of nutrient efflux with primary production rate is 
consistent with the DIC limitation hypothesis. 

Another experiment conducted by Höpner & Wonneberger (1985) provides a more clear-cut 
test of the DIC theory. They added DIN and DIP in a subsurface layer in September 1982 and 
1983. They observed a surface bloom of diatoms, relative to a disturbed but unfertilized control 
area, in 1982 but not in 1983. They discuss the 1982 fertilization experiment, 

“...we had the pleasure to observe the formation of a magnificent 
diatom bed, which followed exactly the borders of the fertilized 
area. It had fully developed 14 days after fertilization (September 
11, 1982) and remained visible for another 6 weeks, until it 
disappeared in a rich diatom bloom covering the whole 
neighborhood.” 

Their nutrient enrichment facilitated the appearance of the fall bloom, which occurred throughout 
the mudflat. The DIC limitation theory predicts that such fall blooms in standing stock (not 
production) are characteristic features of temperate mudflats. Their fertilization experiment was 
not replicated, nor were surface production, cell numbers or composition, of Chl a measured. 
They summarized these two experiments in their abstract, 

“The formation of a diatom bed at the fertilized area was observed 
once, but efforts to reproduce it failed, indicating the importance 
of other growth-determining conditions.” 

The effect of nitrogen limitation on benthic diatom standing stock and production are important 
issues. Sundback et al. (in press) found that in laboratory mesocosm experiments N and P 
addition favors increases in large diatom cells. Gould (1989) found fall blooms of very large 
pennate diatoms (Pleurosigma, >300 ìm). Such increases in large pennate diatoms, if they are 
less vulnerable to benthic grazing and have lower specific growth rates, could lead to increases of 
standing stock, as recorded by Höpner & Wonneberger (1985), without increases in either 
specific or total production. 
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Ludden et al.’s (1985) simulation model 

Ludden et al. (1985) analyzed the processes controlling benthic diatom growth with a computer 
simulation model. This model is highly unusual in biological oceanography, since DIC is the sole 
limiting nutrient. They assumed that benthic diatoms must have C -type (or C-4 like) 4 

metabolism, achieved through an active bicarbonate pump. Ludden et al. (1985) did not assume 
that C  compounds are the being fixed by PEPCase as in true C  Hatch-Slack or CAM 4 4

-metabolism. The microphytobenthos in their model are capable of taking up HCO , which is3
-converted to CO  by intracellular CA. If the microphytobenthos take up HCO , they must2 3

achieve both intracellular charge and pH balance. High production of hydroxyl ion, resulting 
from high CA activity, could produce high intracellular pH, especially in cells with large volume: 
surface ratios. Alkaline intracellular pH can limit growth and is a potentially growth-limiting 
parameter in Ludden et al. ‘s (1985) model. 

Ludden et al.’s (1985) model shows why benthic species using an active bicarbonate pump 
dominate on intertidal flats. Microphytobenthos using bicarbonate utilization can easily 
outcompete a true C  benthic diatom, using only CO  diffusion through the cell membrane, 3 2

RuBPCO and the Calvin cycle. The microphytobenthic diatoms reduce drastically the seawater 
DIC pools and raise the pH to 9 or even 10.5, virtually eliminating any free CO  (aqu). Thus, not 2

only can the species using both CO  and bicarbonate deplete the DIC supply for the C  species 2 3

through exploitative competition, but they also excrete one hydroxyl ion (OH ) for every HCO3 

incorporated, drastically reducing the percentage of DIC available as CO  (aqu) to true C32

diatoms. 

One part of Ludden et al.’s (1985) model of diatom production is probably wrong. When an 
anaerobic sediment layer is added, Ludden et al.’s (1985) model showed that most of the 
dissolved inorganic carbon (DIC) flux supplying microphytobenthic production is from the 
sediment porewater to the benthic diatom film. Only under high benthic diatom densities is there 
a flux from the overlying water to the film, but even then, this downward flux is less than that 
from the porewater. The source of DIC is very important to benthic productivity measurements. 
If most of the DIC flux fueling microphytobenthic production is from porewater, methods for 
estimating microphytobenthic production, that are based on 14C-labeled surface water, would 
underestimate production. 

Ludden et al. (1985) assumed that the diffusive-layer thickness beneath the diatoms is only 1 
mm. This thickness is far too small. Biologically enhanced molecular diffusion operates over the 
entire depth of the sediment surface, not 1 mm. Aller (1982) reviewed the diffusion geometry of 
sediments. Most workers model that vertical diffusion of solutes in cohesive sediments as a 
molecular diffusive process, accelerated by infaunal irrigation and reduced by sediment porosity. 
Users of one-dimensional diffusion models increase the apparent diffusion coefficient of solutes 
by 10 to 100-fold to simulate the effects of bio-irrigation. Without animals, solutes diffuse 
according to Fick’s law (with molecular diffusion coefficients reduced by sediment porosity) 
over the entire depth of the sediment column, not 1 mm as modeled by Ludden et al. (1985). 
This 1-mm diffusive sublayer thickness in sediments would have to produce tremendous 
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overestimates of the contribution of porewater DIC flux to the diatoms photosynthesizing at the 
sediment surface. 

THE IMPORTANCE OF MOLECULAR DIFFUSIVE BENTHIC BOUNDARY LAYERS 

The diffusive sublayer is always smaller than the viscous sublayer, since chemicals diffuse more 
-2 2 -1slowly than does momentum. The ratio of kinematic viscosity (.10 cm s ) to chemical

2  cm s  at 0 C, 1.77 x 10  at 25 C) is known as the molecular diffusivity (for CO  about 10-5 2 -1 o -5 o 

Schmidt number and is about 600-1000 for CO . The ratio of the diffusive sublayer to the viscous 2

sublayer thickness scales linearly to the Schmidt number to the one third power (Wimbush 1976, 
p. 8 ). Thus the diffusive sublayer for CO  is roughly 1/8th to 1/10th the viscous sublayer 2

thickness. Using O  microelectrodes, Jørgensen, Revsbech and co-workers (e.g., Jørgensen & 2

Revsbech 1985 & 1989, Revsbech et al. 1981, Revsbech & Jørgensen 1983) have been able to 
directly measure the diffusive sublayer thickness. 

Benthic diatoms live in a habitat where 
molecular diffusion through the diffusive 
sublayer at the benthic interface may be the 
limiting factor for the intracellular flux of 
inorganic carbon. The kinetic rate-limiting step 
in the recharging of the intracellular CO  pool is 2

Fickean diffusion, probably through the 100-500 
ìm thick diffusive sublayer at the sediment 
water interface or through the much smaller 
capillary film surrounding diatoms completely 
exposed at low tide. Solutes must also diffuse 
through a relative thin mucopolysaccharide 
biofilm excreted by benthic diatoms. Paterson 
(1989) documented that the biofilm, produced 
by motile benthic pennate diatoms, is an 
extensive mucopolysaccharide matrix. This 
biofilm has extremely important effects on the 
critical entrainment velocity of cohesive 
sediments but is probably not that important as a 
kinetic barrier to DIC flux. This biofilm is 
relatively thin (far less than 10 ìm as shown in 
Paterson 1989, Fig. 9D-F, Fig. 10B&F, see Fig. 
5) compared to the thickness of diffusive water 
layer around the biofilm, which may range from 
50-400 ìm in moving water to 500 ìm-1 mm in 
stagnant water (Jørgensen & Revsbech 1985). 

Figure 5. Figure 10 from Paterson 1989 
showing the mucopolysacharide biofilm 
produced by benthic diatoms. The scale bar in 
frames B & F are 10 ìm, the other scale bars are 
100 ìm. 
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Stirring & production incubations 

Stirring and its effects on diffusional boundaries in benthic incubation chambers is an 
exceptionally important issue. Gould & Gallagher (1990) note that microphytobenthic 
production estimates with unstirred chambers are less than half those observed in stirred 
chambers. Revsbech et al. (1981, p. 725) also noted a two-fold increase in production with 
stirring. Ludden et al. (1985) modeled a 5-fold decrease in the thickness of the diffusive 
sublayer and also noted roughly a 2-fold increase in production of microalgae growing on solid 
surfaces. 

The effect of stirring on diffusive flux estimates from chambers is crucial to the extrapolation of 
incubator estimates to the field (Nowell & Jumars (1984, p. 312), but it is difficult to quantify 
the effects of stirring. The MANOP incubators, used to measure diffusive fluxes in the deep-sea 
benthos, are the only benthic flux chamber that have been calibrated. Bucholtz-Ten Brink et al. 
(1989) calibrated these chambers using alabaster dissolution and flush mounted hot-wire velocity 
sensors. Based on their work and an earlier flume study by Opdyke et al. (1987), Bucholtz-Ten 
Brink et al. (1989)  found a log-log relationship between U  diffusive sublayer thickness (z ). * ä

Using their equation 8, the thickness of the diffusive sublayer (zä in ìm) has the following 
relationship to U : *

(1) 

As shown in Fig. 6, the diffusive sublayer 
thickness (z ) declines rapidly as a function ä

of U , and is relatively insensitive to *

increases in U  in excess of 1cm sec -1.*

Depending on the molecular diffusivity (D), 
reduction of U  by stirring reduces the dif­*

fusive sublayer to a thickness of 100 to 200 
ìm at U  values of about 1.5 cm sec -1.* 

Bucholtz-Ten Brink et al. (1989) found a 
direct linear relation between stirring 
velocity (in r.p.m.) and U . *

Other studies confirm Buchholtz-Ten 
Figure 6. The relationship between z  (diffusive Brink et al.’s (1989) empirical relation ä 

sublayer thickness) and U  (shear velocity) in the between z  and U . Riber & Wetzel (1987) *
ä * 

estimated the mass flux of radioactive MANOP incubators. 

phosphorous into lake periphyton (on microscope slides) as a function of water velocity. They 
noted that mass flux increased as a power function of water velocity, but the exponent was less 
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than 1/3. Their documentation of exponents for increasing PO  flux in the range of 0.15 to 0.33 is 4

consistent with a reduction of the diffusive sublayer to the -0.67 to  -0.85 power, as found by 
Bucholtz-Ten Brink (1989). 

The geometry of the Gould & Gallagher (1990) incubator is considerably different than the 
MANOP incubator. With the present design, 5-mm plugs of sediment rest on petri dishes above 
the floor of the incubator. This undoubtedly creates smaller diffusive sublayers of varied 
thickness over the surface of the 5-mm plugs. As a slight improvement in this design, the plugs 
could be added to machined depressions in the bottom of the incubator. The goal of recessing the 
plugs would be to create more uniform boundaries over the surface of the diatom plugs, not 
thicker boundaries. Greater stirring speeds will be used to compensate for the differing plug 
geometries on the bottom of the incubators. 

It is unlikely that the diffusive sublayer thicknesses in the Gould & Gallagher (1990) incubator 
could be decreased greatly by increased stirring. Sediment erosion sets the upper limit on stirring 
speeds in these incubators. Sandy-silt sediment will begin to erode at U*cr values greater than 
about 1.6 cm sec-1 (Nowell et al. 1981, Table II). From these considerations and Fig. 3, I 
conclude that the diffusive sublayer overlying benthic diatoms films on smooth mud surfaces 
rarely decreases below about 100-200 ìm. On hydrodynamically transitional boundaries, the 
enhanced shear produced by animal tubes and other roughness elements can create local patches 
of reduced diffusive boundary layer thickness (Eckman & Nowell 1984, Eckman 1985). The 
effect of these isolated tubes on the DIC flux to diatoms could provide the mechanistic 
explanation for the positive association between real and simulated tubes and macroinfaunal 
recruitment rates (Eckman 1979, Gallagher et al. 1983). The goal of stirring is to reduce the 
diffusive sublayer of approximately 500 ìm-1 mm, which would occur in stagnant cores, to the 
range of 100-200 ìm (and lower around tubes). The difference between stirred and stagnant film 
thicknesses could easily account for the 2-fold increases in production observed in stirred and 
unstirred incubators (Gould & Gallagher 1990, Revsbech et al. 1981). The thickness of this 
diffusive layer can probably not be reduced much below 100-200 ìm without entraining 
sediment. Gould & Gallagher (1990) set the stirring rate at a point slightly below the stirring 
required to cause rocking or entrainment of biogenic particles on the sediment surface (.1.2 cm 
sec-1 in Nowell et al. 1981, Table II). 

For diatoms growing in very thin water layers, the diffusive boundary at the sea-air interface, the 
sea-surface microlayer, becomes the key boundary. With thin overlying water layers, the 
recharging of the DIC pool through air-sea exchange must be considered as an important flux. 
The air-sea flux is controlled by Fickean diffusion through the air-sea microlayer. This diffusion 
is linearly related to the ÄpCO  gradient times the microlayer thickness. Frankignoulle (1988, 2 

Table 3) estimated the air-sea surface microlayer thickness, in which diffusion is governed by 
Fick’s law, as 48-200 ìm in the Bay of Calvi and North Sea. Most of his microlayer thickness 
estimates ranged from 50 to 100 ìm, close to the oceanic mean value of 40 ìm quoted by 
Broecker & Peng (1982) based on ocean-atmosphere distributions of 222Rn and 14C. Erikson 
(1989) found transfer velocities or piston velocities similar to those documented by Broecker & 
Peng (1982). These microlayers are oceanic values; the air-surface microlayer on mudflats has 
apparently not been estimated. 
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Darley et al. (1976), Darley et al. (1981) and Whitney & Darley (1983) introduced techniques 
for estimating the production of microphytobenthic production through the air-water interface. 
By adding radioactively labeled CO  gas to incubators containing a fan, they estimated primary 2

-1production rates of up to 245 mg C m-2 h . Their rates are among the highest ever recorded on
mudflats and are more than double the maximum production rate noted by Gould & Gallagher 

-6 -2 -1(1990). Their observed rate of air-to-sea carbon flux of 5.7 x 10  mol m s , with a ÄCO2 

gradient of 340ìatm CO , would require a gas exchange coefficient or piston velocity of 4.3 x 10­
2 

4 m/sec, using the following equation from Frankignoulle (1988): 

(2) 

The effective molecular diffusive boundary associated with an air-to-diatom flux of 245 mgCm­

2 -1  h  is only 4 - 10 ìm thick. This boundary is approximately that shown by Paterson (1989) for 
the mucous biofilm surrounding pennate diatoms on mud. This 4-10 ìm thick layer is only a 
fraction of the 40 ìm thick molecular diffusive layer that occurs at the air-sea interface (Broecker 
& Peng 1974). 

14Whitney & Darley (1983)  modified the air C-CO  incubator so that desiccation would be less2
-2 -1of a problem. Their estimates of summertime production ranged from 4.1 mg Cm d  to 143.2 

-2 -1mg Cm d  on a Sapelo Island Georgia salt marsh. This latter estimate from a Creek bank may 
reflect the production of diatoms exposed directly to air, growing with an effective diffusive layer 
thickness of 7 to 14 ìm. 

If there is a water film overlying the sediments, the Darley technique can underestimate 
production, since with a typical air-sea microlayer thickness of 40 ìm, a molecular diffusion 

-9 2 -1 -2 -1coefficient of 2 x 10  m  sec , an air-to-sea flux of only 36 mg C m h  is possible. Thus if there 
is a water layer of even fractions of a millimeter overlying the mudflat surface and zone of 
production, the Darley incubator would probably underestimate production. The surface of Savin 
Hill Cove is wet when the tide goes out, but the surface of Southern salt marshes and even 
Massachusetts salt marshes are relatively dry. Air incubation should be used if the sediment 
surface is dry during low tide. However, it probably should not be used if there is overlying water 
as is typical of Savin Hill Cove. 
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REDALJE-LAWS CHL A-SPECIFIC LABELING TO ESTIMATE 9 & C:CHL A 

Redalje & Laws’ (1981) Chl a specific labeling procedure is a very clever method for estimating 
two of the three major growth variables: ì and the C:Chl a ration. Laws (1984) provides one 
mathematical and biochemical model for the method. 

Table 1 shows the variables used in the calculation of the specific growth rate, using the Redalje-
Laws procedure. 

Table 1. Definitions and variables used in applying the Redalje-
Laws approach (from Gould & Gallagher 1990) 

Variable Units Description 

ÄC C fixed during incubation 

ì specific growth rate 

1.05 Dimensionless Factor to account for isotope discrimination 

A* 14C activity of total particulate matter 

pC Microalgal C at the end of the incubation 

I* Specific activity of DIC 

chlR* Specific activity of C in Chl a molecule 

t h duration of incubation in hours. 

A standard 14C incubation is run, just as if the goal were merely to measure primary production. 
Usually the phytoplankton population would be split into two fractions after the incubation. One 
half of the sample would be used to estimate the radioactivity of the total phytoplankton fraction, 

* * *called A  in Table 1. With A  and I , the specific activity of the dissolved inorganic carbon (DIC) 
in the incubation vessel, the amount of primary production can be determined using Equation 3: 

(3) 

Equation 3 is the same equation used for a standard 14C incubation to estimate primary 
production (covered in the next class). To estimate ì, the radioactivity in the Chl a molecule 
must be determined. This was first done by using thin-layer chromatography of the 
photosynthetic pigments, but now the pigments are separated using HPLC. The Chl a fraction is 
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*removed, its mass estimated, and the amount of radioactivity is determined to estimate R . The
amount of microalgal carbon at the end of the incubation can be determined from Equ 4. 

(4) 

The specific growth rate assuming a 12-h photic period to convert the hourly incubation 
timescale can be estimated using Equ. 5: 

Box 1 Derivation of the Redalje-Laws 
equation to estimate ì as h . The equation-1 

multiplies the hourly rate by 12 to obtain the 
daily specific growth rate. 

(5) 

Equation 5 certainly looks daunting. It is based on the 
balanced growth assumption, which states that new 
Chl a is being labelled at the same rate as the total 
microalgal carbon pool. Redalje (1983) and 
Goericke & Welschmeyer (1993a) tested this 
assumption, finding it is not true if the microalgae are 
switched from low to high light, or when sun-adapted 
microalgae are switched to lower light. Shade 
adapted algae, with a low C:Chl a ratio, drastically 
curtail the synthesis of Chl a when placed in high 
light and the Redalje-Laws method can grossly 
underestimate ì. If the balanced growth assumption 
is true, then the amount of microalgal carbon in the 
incubation vessel, C , can be estimated from Equ. 4. p

With this estimate of C , Equation 16 can be readily p

derived from Equation 1. This derivation is shown 
in the text box to the left. 

Redalje & Laws (1981, Laws 1984) derived the 
equation originally under the assumption that the Chl 
a molecule turns over rapidly so that Chl a would 
have the same specific activity as the total 
phytoplankton carbon pool. Welschmeyer & 
Lorenzen (1984) derived a mathematically 
equivalent expression, under the less restrictive 
assumption that the new Chl a that is synthesized 
during an incubation matches the specific activity of 
the total pool of organic carbon synthesized during 
the incubation. This assumption is called the 
balanced growth assumption. If this ‘balanced 
growth’ assumption is met, the Redalje-Laws method 
can estimate ì, phytoplankton carbon content, and 
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the C:Chl a ratio. Goericke & Welschmeyer (1993a) experimentally showed that the Chl a 
molecule does not turn over at a significant rate during the course of an incubation, invalidating 
one of the original assumptions of the method, but not the equation (Equation 16). They derived 
a more complicated expression for estimating ì using the Chl a labeling method. Their major 
recommendation is to use long incubations (24 h) to estimate ì with Chl a-specific labeling. 
Jesperson et al. (1992) found that the Chl a molecule was labeled at a higher rate than the total 
phytoplankton carbon pool. Thus Equation 16 would produce an overestimate of the 
phytoplankton specific growth rate. 

The Redalje-Laws labeling method has been used by many investigators, most notably 
Welschmeyer & Lorenzen (1984) and Gieskes & Kraay (1986, 1989). Laws et al. (1987) used 
the technique to show that phytoplankton in the oligotrophic open ocean were growing at very 
high specific growth rates. Gould & Gallagher (1990) adapted the Redalje-Laws Chl a labeling 
procedure to obtain the first field estimates of the specific growth rates for benthic diatoms. 

Taxon-specific : 

Gieskes & Kraay (1989) modified the Redalje-Laws method to estimate the specific growth rate 
of different phytoplankton groups (e.g., diatoms vs. cyanobacteria) by estimating the radioactivity 
in 14C incorporation into different carotenoids. This technique was used to great effect by Strom 
& Welschmeyer (1991) who estimated the specific growth rate of diatoms in the subarctic 
Pacific. Goericke & Welschmeyer (1993b) provide more details on this labeling method. 

Outlines of Papers 

REQUIRED & SUPPLEMENTAL 

Admiraal, W. 1984. The ecology of estuarine sediment-inhabiting diatoms. Prog. Phycol. Res. 3: 269-322. [Please 

read pages 269-287 [several pages are merely species lists] and pp. 296 & 297]{5, 6, 24, 25} 
1. Introduction 
2. The estuarine habitat 

i.	 diatoms can grow at depths greater than 40 m in clear tropical waters (Plante-Cuny 1974) 
b.	 Diatom growth on sediment 

i.	 most are pennates (having symmetrical lanceolate cells) 
ii.	 in plankton, centric (radially symmetrical cells) predominate 
iii.	 types 

(1)	 species that can move up into water column 
(2)	 motile species, also called epipelon (Round 1971), pennates belonging to the 

biraphid section 
(3)	 immobile fixed diatoms 

iv.	 other divisions: epipsammon and epipelon 
v.	 “motile diatoms are able to position themselves in the top-layer of the sediments by their 

photo, geo-, and chemo-taxis, combine  with rhythmic responses to tidal and light cycles 
(Harper 1977)” P. 271 

vi.	 nothing known about energy expenditure 

Figure 3. Vertical migration rhythm 
vii.	 motile diatoms dominant on sheltered sediments 
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Figure 4.	 Depth distribution of chlorophyll from sediment cores. can go from near the surface to greater than 15 
cm depth. 

c.	 Environmental parameters [sic]. 
i.	 strong vertical zones. 

Figure 5.	 Diagrammatic representation of distribution of populations in sand in Barnstable Harbor 
(Massachusetts) during period when the tide is out. “Round (1979a) found a two-layered structure in 
diatom assemblages from sand, with species migrating up and down in the top-layer and non-motile 
species living at more than 3 mm depth.” 
ii. parameters 

(1) salinity 

(2) light, 1% light depth 140 ìm in mud (Colijn 1982) 

Fig. 6. Seasonal fluctuation of daylight from Colijn 1982 
(3) tides: increased growth during neaps when emersion greater (Riazu 1982) 
(4) strong oxygen gradient, Revsbech & Jørgensen 

Figure 7. “profile of oxygen and photosynthetic oxygen production measured with micro-electrodes.” 
(5) pH 

Terry & Edvyvean (1981) measured the daily fluctuation in the pH under a diatom 

cover and  found pH values up to 9.5 to 10 during illumination . Fig. 8. 

Figure 8. Time course of pH change from Terry and Edyvean 1981, fluctuations up to 9.5-10 
The photosynthetic activity of diatoms increases the pH (through the uptake of HCO 3

-) to values over 9. 

d. The distribution of species. 

Fig. 10. Seasonal distributions of diatom species from Admiraal et al. 1984 

3. SURVIVAL STRATEGIES OF BENTHIC DIATOM SPECIES. 
a. Adaptation to variable conditions. 

i. irradiance and daylength 
(1) little photoinhibition observed 
(2) certain diatom species adapt to wide ranges in light conditions 
(3) several species of intertidal diatoms occur throughout the year. 

ii. temperature 
(1) temperature response not that much different from phytoplankton (Eppley 1972) 

iii. salinity 

iv. Oxygen, pH and inorganic carbon. 
(1) endowed with significant â-carboxylating activity 
(2) DIC is depleted. Oxygen concentrations rise to values equaling saturation with pure 

oxygen (Fig. 7) 
Benthic diatoms are endowed with significant Â-carboxylating enzyme activity. 

(3) Schwinghamer et al. 1983. A del C-13 of -18 was found in sparse populations and ­
13 in dense assemblages. 

(4) Ludden et al. used a simulation model. Could it be that the migration of diatoms in 
the top-layers of the sediment provides the cells alternatively with abundant 
inorganic carbon supply or abundant illumination, thereby allowing the metabolism 
to function according to the Crassulacean-type? (p. 296) 

v. Nutrients. 
(1) only modest stimulation from nutrients, in contrast to phytoplankton 
(2) determine Redfield ratios using the lens-tissue technique 

b. Exposure to toxic substances 
c. Autotrophic and heterotrophic metabolism 

high half-saturation coefficients relative to bacteria 
d.  Competition for space and nutrients 

i. Jong & Admiraal (1984) 2 showed that insufficient supply of DIC and too much O  affected 
dominance of species in culture. 

ii. inverse relationship between diversity and population density 
iii. Lee (1975) antibiotic substances 

iv. Jong & Admiraal (1984) document severe antibiosis 
e. Niches of diatom species 

4. Population growth and production. 
a. Note on methodology. 
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i.	 bell jars 

ii.	 air incubation:  Holmes & Mahall (1982) noted that overlying water had a big effect on 
rates. 

iii.	 microelectrodes 
produce much higher rates: photorespiration implicated 

b.	 Photosynthesis and growth in natural populations 
i. The primary controlling factor is the biomass of the algal populations. 

Fig. 15. Chl a and daily production from Colijn & de Jonge (1984). 
ii.	 Assimilation numbers are low 0.1 to 1 
iii.	 Admiraal & Peletier measured observed rate in real and in situ cultured diatoms in the field 

c.	 Carbon budgets of populations. 
i.	 “The utilization of photosynthetic products and the biomass of diatoms in the benthic 

ecosystem has hardly been analyzed” 
ii.	 Admiraal’s (1980) summary of losses 

(1)	 Burial and vertical migration 
(2)	 respiration mortality and excretion 
(3)	 herbivory 
(4)	 Heterotrophic utilization of organic substrates 
(5) transport by tidal currents. 

Fig. 16: on organically polluted mudflats, most of the photosynthate is lost as respiration, mortality and excretion. 

5.	 BENTHIC DIATOMS AS A FOOD SOURCE FOR HERBIVORES. 
a.	 nematodes, oligochaetes, harpacticoids, turbellarians and ciliates all eat diatoms 

i.	 Steele & Frost (1977) to illustrate effects of grazers on size composition of diatoms 
b.	 Quantitative effects of grazing 

i.	 freshwater ciliates exert only 
a low grazing pressure 

ii.	 Davis & Lee (1983): 
macrofauna can control 
diatoms 

iii.	 macrofauna affect 
microalgae strongly 
(Admiraal et al. 1983) 

6.	 Concluding remarks. 

Cahoon, L. B., G. R. Beretich, C. J. Thomas, and A. 
M. McDonald. 1993. Benthic microalgal 
production at Stellwagen Bank, 
Massachusetts Bay, USA. Mar. Ecol. Prog. 
Ser. 102: 179-185. [Significant benthic diatom 

production at 30-40 m depth] {?} 
1.	 Abstract: 

a.	 Chl a and production measured at 3 
sites on Stellwagen Bank during 
August 1991 

b.	 microalgal Chl a averaged 40 mg/m2 

vs average phyotplankton Chl a of 26 
c.	 Primary production measured from 

oxygen exchange: 21 mg C m-2 h-1 

i.	 light levels never exceeded 
1% of I o 

2.	 Methods & Materials 
a.	 Stellwagen Bank 
b.	 Benthic microalgal production 

measured in situ 
c.	 Plastic domed chambers with whirling 

cup rotors	 Figure 7. Location of Study sites at Stellwagen 
3.	 Results 

Bank 
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a. Microphytobenthic Chl a exceeded phytoplankton Chl a 6 of 7 times 
-2 -1b. Gross benthic production about 21 mg C m h

c. Phytoplankton production 240 mg C m-2 h-1  or 2.9 g C m-2 d-1  (12-hour day) 
d. Net benthic production always negative 

i. Light intensities 0.52% of surface irradiance 
4. Discussion 

a. Benthic production was only 6% of water column production and was negative 
b. Benthic respiration high due to high zooplankton fecal pellet flux. 

Gould, D. G. and E. D. Gallagher. 1990. Field measurement of specific growth rate, biomass and primary 
production of benthic diatoms of Savin Hill Cove, Boston. Limnol. Oceanogr. 35: 1757-1770. {6, 10, 11, 

12, 13, 15, 31} 
1. Chl a labeling 

Figure 7. Table 1 from Gould & Gallagher (1990) 
“The 14C-Chl a labeling technique assumes that the specific activity of Chl a C 

(R *chl  ) and total cell C(R *Cp) are equal after a given period of growth in labeled medium” 

My derivation: 

ì=1/C  dC/dt p 

C  =C  eìt 
p o

ln(C /C )=ìtp o 

ì=-ln(C /C )/t 
ì=-ln([C -ÄCt]/C )/t 
ì=-ln(1-Ä

p 

Ct/C )/t 
p 

o p 

p 
* * * *ì=-ln(1-{1.05(A /I )t/t}/[A /R ])/t
* *ì=-ln(1-{1.05(R /I ))/t

Figure 8. Figure 1 
from Gould & 
Gallagher (1990) 
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Figure 10. Figure 3 from Gould & 
Gallagher (1990) 

Figure 9. Figure 2 from Gould & Gallagher (1990) 

Figure 11. Table 3 from Gould & Gallagher 
(1990) 

Figure 12. Table 2 from 
Gould & Gallagher (1990) 

Figure 13. Table 4 from Gould & Gallagher (1990) 

Figure 14. Table 5 from 
Gould & Gallagher (1990) 
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Ludden, E, W. Admiraal, and F. Colijn. 1985. Cycling of carbon and oxygen in layers of marine microphytes:  a 
simulation model and its eco-physiological implications. Oecologia 66: 50-59.{?} 

1.	 SUMMARY 
1.a.	 Mathematical simulation model 
1.b.	 validated using available data 
1.c.	 simulated oxygen concentration and pH 
1.d.	 model predicted upper limits of primary production and biomass. 
1.e.	 limits set by a combination of oxygen accumulation and depletion of inorganic carbon resulting from 

diffusion limitations and the recirculation of organic carbon in photosynthetic, respiratory and 
excretory processes. 

2.	 Introduction. 
-Three issues merit consideration 
2.a.	 bell jar methods unsatisfactory 

2.a.i.	 Revsbech & Jørgensen (1981, 1983) found discrepancies among bell jars and microelectrode 
methods. 

2.a.ii.	 Gradients of O2  crucial 
2.b. transfer of carbon indicate that only a fraction of the fixed carbon serves as food for the micro and 

meiofauna. 
-Does the rate of respiration and photorespiration in dense populations account for a 
considerable drain? 

2.c.	 Conditions for algal growth are extreme. 
2.c.i.	 pH up to 10 
2.c.ii.	 Glover et al. (now published) indicate various patterns of carbon fixation. 

3.	 Theory and description of the model. 
3.a. Outline of the method: 

Fig. 1. Diagram of carbon and oxygen flow in the model. 
3.a.i.	 Oxygen transfer across cell membrane immediate, carbon complicated. 
3.a.ii.	 algal film connected with the seawater via a diffusion gradient 
3.a.iii.	 P, Si and N not included int he model. 
3.a.iv.	 simulation run with various modifications 

-connected with an underlying sediment layer. 
3.b.	 The carbonate system. 

-
2 33.b.i.	 Hydration of CO  and dehydration of HCO are fairly slow processes (Johnson 1972). The 

carbonate system may not be in equilibrium 
3.b.ii.	 Equilibrium not assumed: transient dynamics modeled 
3.b.iii.	 “We used a variable step, variable order, Gear method from NAG to do the integration.” 

-3.b.iv.	 pK1 and pK2 taken from Buch (1960), kCO  and kHCO2 3  taken from Johnson (1982) 
3.c.	 Algal metabolism: 6 parts 

3.c.i.	 CO  fixation 2 

3.c.i.1.	 fixation exclusively by RuBPCO 
3.c.i.2.	 half saturation constant for Rubisco is 30 micromoles/l  

3.c.ii.	 Photorespiration 
3.c.ii.1.	 controlled by O :CO  ratios (Laing et al. 1974)2 2 

3.c.ii.2. half the glycolate was converted to serine and half was excreted. 
-1 

m 2 m3.c.ii.3.	 3 different K O  values assumed: 300, 1000, and 2000ìmoll , 400 is K  of pure 
enzyme 

3.c.iii.	 Uptake of bicarbonate ions 
3.c.iii.1. active uptake of bicarbonate ions. 
3.c.iii.2. Km  never measured, assumed 10-100ìmol l-1 

3.c.iii.3. maximum internal DIC 6mmol l-1 (Colman & Colman 
3.c.iii.3.a. feedback inhibition of DIC uptake 

3.c.iii.4. carbonic anhydrase: instantaneous equilibrium of carbonate system 
3.c.iii.5. internal pH control, affected at high pH 

3.c.iii.5.a. 2 different methods used 
3.c.iv.	 CO  leakage out of cells 2 

3.c.iv.1.	 slow leakage out of cells 
3.c.v.	 dark respiration 

3.c.v.1.	 . 10% of primary production. 
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3.c.v.2. small biomass-dependent term and photosynthesis dependent term 
3.c.vi.	 Excretion 

3.c.vi.1.	 low excretion (3% of biomass per day) 
3.c.vi.2.	 excretion coupled to photorespiration 

3.c.vii.	 Three types of algal DIC metabolism simulated. 
3.d.	 the diffusion equations. 

3.d.i.	 some runs exchanges with the underlying water 
3.d.ii.	 Fick’s first law 
3.d.iii.	 “The thickness of the diffusion barrier was taken to equal half the variable thickness of the 

algal film plus the depth of a stagnant boundary layer (Table 1)” p. 53 
3.d.iv.	 “We chose a thickness of 1 mm for the stagnant layer and later check the effect of a fivefold 

reduction in the diffusion barrier. 
Table 1. Equations variables and constants in the model. 

4.	 Results and discussion. 
4.a.	 Results of the photosynthesis submodel 

Table 3. Parameters of three different algal types. 
-1 ­

m 2 m 3Case 1: C3 type diatom, Case 3: C4 type diatom(large K for O  2000ìmol l , low K  for HCO . Case 
2: Admiraal’s guess for Navicula salinarum. STANDARD RUN. 

Fig. 2.	 Photosynthetic oxygen production per unit biomass as a function of extracellular concentrations of 
inorganic carbon (DIC) and oxygen. 
4.a.i.Three different algal species modeled. 
4.a.ii.	 Rasmussen’s sandflat algae are like type 1. 
4.a.iii.	 N. salinarum like case 2. 
4.a.iv.	 Standard alga chosen (Type 2) 

4.b.	 Development of a growing microalgal film: a standard run. 
4.b.i. Type 2 diatom, Table 3 

Fig. 3. Fluctuation in the state variables. 
4.b.ii.	 time resolution comparable to microelectrodes 

4.b.iii.	 O increased to 1200 ìmol l-1 (comparable to Revsbech & Jørgensen 1983)2 

4.b.iv.	 pH rises to 10 when the light is switched on. 
4.b.v.	 Next step: Development of an algal mat over a scale of weeks. 

4.b.v.1. starts with a few cells 

Fig. 4. Simulated development of an algal mat on an inert substrate 
4.b.v.2.	 Sparse populations doubled at 0.5 d-1 

4.b.v.3.	 biomass stabilized at 18 mg C dm-2=18 g C m-2 

-1 -2 -14.b.v.4.	 peak production 0.05 mmol C dm-2h =60mgCm h
4.b.v.5.	 “These rates are probably set by the maximum transport rate across the diffusion 

barrier, since similar photosynthetic rates have been measured in compact 
biological material such as the thallus of macroalgae” p. 55 

4.b.v.6.	 The amount of inorganic carbon within the algal mat decreased and mainly 
consisted of carbonate, whereas the concentrations of photosynthetically available 
bicarbonate and carbon dioxide were reduced to levels that are assumed to be 
limiting. 

Fig. 5.	 Total DIC is less than 0.1 mmolar (100 ìM) c. 15% grazing per day. biomass decreased slightly. A: 
standard run stippled, solid line is Type 1 algal. B as in A but solid line is type 3 (C  alga). C: 15% 
grazing d-1 

4

4.b.v.7.	 oxygen as high as 1200ìmol l-1 inhibit fixation of carbon 
4.b.v.8.	 significant loss of DOM during later stages of the model 
4.b.v.9.	 Photosynthetic quotient decreased from 1.4 to 0.6 from photorespiration, dark 

respiration and excretion of organic matter. 
4.c.	 Biological effects 

4.c.i.	 3 physiology types 
4.c.i.1.	 Type 1:  full C3 metabolism, 
4.c.i.2.	 Type 3:  full C4 metabolism 
4.c.i.3.	 Type 2:  mixture of C3 and C4. 

4.c.ii.	 Type 1 algae competitively displaced 
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4.c.iii. Type 1 algae are able to form a mat but would not be able to survive under the conditions 
created by an invading alga of the Type 3 type. 
4.c.iii.1. competition for DIC 

4.c.iv. 15% grazing modeled. 
4.c.iv.1. Grazing had hardly any effect on the oxygen concentration and oxygen flux 
4.c.iv.2. altered the standing stock 
4.c.iv.3. grazing doesn’t alter productivity 
4.c.iv.4. Grazing altered the allocation between growth and dissipating processes. 
4.c.iv.5. “Grazing by large herbivores might have additional repercussions such as the 

reworking of sediment and the burial of algal cells in the sediment and in altering 
structure and porosity of the sediment top layer.” p. 57 

4.d. Physical effects: 

4.d.i. anaerobic sediment added:  “anaerobic, pH 7.5, DIC of 3 mmol l . THE DIFFUSION -1 

LAYER IN THE SEDIMENT WAS TAKEN AS 1 MM. The porosity of the sediment was 
assumed to be 0.7" p. 57 

Fig. 6. Physical effects. A algal mate on sediment layer. B algal mat exposed to air. C standard run with 
stagnant boundary layer reduced 5-fold. Standard run with light period doubled to 16 h. 

24.d.ii. sedimentary oxygen removal and increase in CO resulted in 40% increase in biomass. 

24.d.iii. measurement of O  flux to water layer may grossly underestimate primary production. 

24.d.iv. air flux: biomass increased, carbon supply more difficult, O  less of a problem. ph increased 
to 11.5 (improbable), above pH 10.5 carbonates are precipitated. 

4.d.v. With stirring and reduction of diffusive sublayer, the production doubled: 20% increase in 
biomass. 

4.e. Carbon fluxes and carbon budgets. 

Fig. 7. predicted net flux of DIC. A: low biomass. B: biomass=8 mg C dm  (=80 g C m  . from sediment to -2 -2 

overlying water. 

24.e.i. Methodological problems:  CO   flux from the overlying water is not a representative 
measure of production. 

4.e.ii. sparse: 70% of production is net, dense: 50% net production 
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