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Assignment 

DISCUSSION TOPIC 

Why and how can primary production be estimated using the 14C and O  methods? 2 

REQUIRED READINGS 

Comment 

Just skim the Peterson (1980) article. It does provide a nice overview of the great debate over 
gyre production, but we’ll be covering that in a future class. 

Peterson, B.  1980.  Aquatic primary productivity and the 14C-CO2  method:  a history of the productivity problem.  Ann. 
Rev. Ecol. Syst. 11:  359-385. 

SUPPLEMENTAL 

Falkowski, P. G., E. A. Laws, R. T. Barber, and J. Murray. 2003. Phytoplankton and their role in primary, new, and 
export production. pp 99-121 in M. J.. R. Fasham, ed., Ocean Biogeochemistry: The Role of the Ocean Carbon 
Cycle in Global Change, Springer, Berlin. [These authors summarize production patterns, especially rates of 
new and export production, from sites around the world studied as part of the Joint Global Ocean Flux 
(JGOFS) study.A pdf of this chapter can be found here: 

http://www.ocean.washington.edu/2004/academics/options/chemical/faculty/MurrayJ/papers/Falko.pdf] 

Fogg, G. E. 1980.  Phytoplanktonic primary production.  Pp. 24-45 in R. S. K. Barnes and K. H. Mann, eds., 
Fundamentals of Aquatic Ecosystems.  Blackwell, Oxford. [An easy-to-read summary of primary production.  I 
use this as a reading for lectures to undergraduate classes on primary production.] 

Gallegos, C. L. and W. N. Vant.  1996.  An incubation procedure for estimating carbon-to-chlorophyll ratios and growth 
irradiance relationships of estuarine phytoplankton.  Mar. Ecol. Prog. Ser. 138: 275-291. [The C:Chl a ratio is 

difficult to determine (see Redalje & Laws 1981).  During balanced growth, C and Chl a are produced 
proportionate to C:Chl a.  Incubations performed here using the dilution method, to reduce grazing effects (and 
grazer biomass).  Grazers lead to overestimates of C:Chl a] 

http://www.ocean.washington.edu/2004/academics/options/chemical/faculty/MurrayJ/papers/Falko.pdf
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Harrison, W. G. and T. Platt.  1980.  Variations in assimilation number of coastal marine phytoplankton:  effects of 
environmental co-variates.  J. Plankton Research 2: 249-260.  [Confirms Platt & Jassby (1976) that temperature 
is the dominant environmental covariate of assimilation number, accounting for 40% of the observed variation, 
but this correlation may be due to seasonal phytoplankton succession and changes in C:Chl ratio (p.257)] 

Parsons, T. R., Y. Maita, and C. M. Lalli. 1984a.  A manual for chemical and biological methods for seawater analysis. 
Pergamon Press, Oxford. ["Uptake of Radioactive Carbon"  Pp. 115-120] 

Miller, C. B. 2004. Biological Oceanography. Blackwell Science, Malden MA. 402 pp. Chapter 3, especially pp. 46-51. 

Parsons, T. R., Takahashi, and Hargrave.1984b.  Biological Oceanographic Processes, 3rd Edition.  Pergamon Press. Pp. 
61-66. 

Pregnall, A. M.  1991.  Photosynthesis/Translocation: Aquatic.  Pp. 53-75 in D. C. Coleman and B. Fry, eds., Carbon 
Isotope Techniques.  Academic Press, San Diego.  [Marshall Pregnall presents a brief, concise summary of 
how to estimate primary production using the 14C-CO2  method.  Pregnall includes a nice section on the 
calculations necessary to compute production and estimate DOC production] 

Comments on the readings 

Bruce Peterson (1980) provides an excellent summary of the uses and limitations of the 14C 
technique for estimating primary production.  He presents the history behind biological 
oceanography's “Great Debate” over the rate of global primary production. 

Falkowski & Raven (1997, Chapter 9) provides a superb recent overview on the measurement 
of primary production using the 14C method. Read through the material below on the definitions 
of gross and net production and my overview of the methods.  Then, read Falkowski & Raven for 
the details. I also have detailed slides incorporating many of the key figures from Falkowski & 
Raven (1997) that I’ll post in Prometheus. 

Pregnall (1991) provides a concise description of how to estimate primary production using the 
14C technique. Parsons et al. (1984a) also describes the 14C technique with less explanation than 
Falkowski & Raven (1997) and Pregnall (1991) but with more description of the protocols. 
Refer to this article for ‘recipes’ for the reagents, recommendations on incubations, and formulae 
for calculating primary production.  Gallegos & Vant (1996) provides a recent analysis of the 
effects of grazing during productivity incubations. 

The 14C & O  techniques 2 

A review of the light-dark bottle O  method will help us to understand the principles and 2

problems of the 14C method. Mills (1989, p. 153) attributes the 1899 discovery of the light-dark 
bottle O  method to Whipple, head of the Boston Water Works and Gordon McKay Professor of 2

Sanitary Engineering at Harvard (Do you think that chair still exists?), and the Norwegians 
Gaarder & Gran.  Whipple suspended phytoplankton samples in the water to estimate production. 
The Norwegians Gaarder & Gran were the first oceanographers to use the light-bottle, dark-bottle 
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Box 1. Steps in estimating phytoplankton production 
using the light and dark bottle O  method. 2

1.	 Obtain samples from the appropriate depths and 
light conditions. This is best done at dawn. 
Avoid exposing samples to direct sunlight even 
for seconds to avoid photoinhibition. 

2.	 Split samples equally between light and dark 
bottles. Measure the initial oxygen 
concentrations in the bottles. 

3.	 Incubate the paired bottles in situ (preferred) or 
using the simulated in situ methods. The latter 
attempts to mimic in situ light intensity (and 
quality), usually using neutral density filters. 

4.	 Incubate for 2 to 24 hours.  Twenty-four hour 
dawn-to dawn-incubations gives the least 
ambiguous results. 

5.	 Calculate gross and net community production: 
a. Light bottle O  minus initial O 2	 2 

concentration is net community 
production. In the absence of 
heterotrophs, the difference is net primary 
production. 

b.	 Dark bottle final O2  concentration minus 
initial O2 concentration is respiration 

c.	 Light bottle minus dark bottle is gross 
community production. 

EEOS 630 
Biol. Ocean Processes 
14C & O , P. 4 of 34. 2 

O2 method in 1916, publishing their 
results in English in 1927.  Box 1 outlines 
the steps in the light & dark bottle O2 

method. Note that the standard O 2 

method only estimates gross and net 
primary production if there are no 
heterotrophs in the incubation.  If 
significant photorespiration were 
occurring, the standard O2 method would 
underestimate respiration due to 
phytoplankton and would underestimate 
gross production.  The estimate of net 
production (light-initial would include the 
effects of photorespiration. 
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31. Prepare a H CO  solution of known activity 14 -

2. Obtain samples from the appropriate depth and 
light conditions. Don’t expose samples to direct 
sunlight. 

3. Split samples between experimental and control 
bottles. Add C spike to both experimental and 14

control bottles. A variety of controls or blanks 
have been used: Time-0, dark-bottle, DCMU, 
DCMU & dark-bottle 

4. Incubate using in situ (preferred) or simulated in 
situ methods for 2 to 24 hours 

5. Gently filter the particulate matter for later 
laboratory analysis (a 0.4-ìm filter is now 
common). A sample of the medium can be 
obtained to estimate DOC production. 

6. Determine radioactivity of POC (& DOC) and 
the amount of Chl a in the sample bottles  
a. Estimate or measure the specific activity 

of the DIC in the incubation bottle [dpm/ 
g DIC]. 

b. Measure the  C activity in the 14

particulate (and optionally the dissolved) 
organic phases.  The filtered samples or 
liquid samples (for DOC) are first 
acidified to drive off unfixed C, then the14

sample’s radioactivity is determined by 
liquid scintillation counting. 

7. Carbon fixed per sample bottle is obtained by: 

8. The control C uptake (time 0, DCMU control, 14

dark bottle) should be subtracted from A* 
9. Chl a concentration to estimate of Chl a-specific 

production should be determined from the time-0 
and C-spiked bottle to obtain initial and final 14

Box 2. Steps in estimating phytoplankton production 
using the C method.14

The steps involved in performing a 14C 
incubation are shown in Box 2.  There are 
a variety of different ways of carrying out 
14C incubations.  The “Great Debate” in 
biological oceanography is whether the 
14C technique underestimates primary 
production in the open ocean.  The basic 
technique hasn’t changed much since it 
was invented by Steeman-Nielsen in 
1952.  Great care is now taken in 
obtaining healthy phytoplankton samples. 
Clean bottles are used and care is taken to 
ensure that the 14C spike solution isn’t 
contaminated with heavy metals.  Starting 
in the late 1970s, samples of seawater 
from the incubation vessels was taken to 
estimate the amount of primary 
production converted to dissolved organic 
carbon.  Usually the easiest variable to 
measure is the specific activity of the DIC 
pool in the incubation bottle after the 
spike is added.  Usually the DIC 
concentration can be estimated (it doesn’t 
change much), or better yet it can be 
determined back in the laboratory.  In 
certain situations, the DIC concentration 
can change significantly during an 
incubation. This can occur when applying 
the 14C method to estimating benthic 
diatom production.  Samples to estimate 
DIC should be taken before and after the 
incubation. 

It is crucial that the filtration step uses 
low filtration pressures to avoid rupturing 
the phytoplankton cells.  Usually, the 14C 
technique is used to obtain P vs. I curves, 
requiring an accurate estimate of Chl a in 
the bottle.  The variable measured in P vs. 
I incubations is Chl a -specific 
production. One common procedure for 
estimating Chl a concentration is to take a 
sample before adding the 14C spike.  This 
avoids having to deal with radioactive 
contamination when measuring Chl a 

estimates of Chl a. 
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spectrophotometrically or fluorometrically back at the laboratory.  However, if the Chl a 
concentration increases during the incubation, Chl a-specific production will be overestimated 
using only a Time 0 Chl a estimate. 

One of the real problem areas for the 14C method is that while it is assumed that the 14C estimate 
estimates something between gross and net production, there is no theory to determine what 
percentage of net production is being estimated.  In theory, the ability of the O2  method to 
estimate respiration gives it a distinct advantage over the 14C method. While the O  method 2 

provides an estimate of gross production, the 14C technique estimates something between gross 
and net. Peterson (1980, p. 365) presents Steeman-Nielsen argument that if 60% of respired 
CO  is refixed by phytoplankton and if respiration is 10% of gross photosynthesis, then the 14C2

method should give rates comparable to 94% of gross photosynthesis.  At a 20% respiration rate, 
the 14C technique would be 86% of gross production.  The O  method measures both primary 2 

production in the form of particulate and dissolved organic carbon: 

(1) 

These advantages of the O  method are more than offset by some of the problems, chief being 2

that the standard Winkler method for determining O2 concentrations isn’t sensitive enough to 
measure low rates of primary production (either in low productivity areas or in low light or with 
short incubations). A second huge limitation is that the currency of biological oceanography, for 
good or ill, is carbon, not oxygen.  In order to convert primary production from units of ÄO  per 2 

2m , the oceanographer must assume a photosynthetic quotient (PQ=moles O  produced: moles C2

fixation).  The PQ is not a constant.  A final limitation of the O  method is that size fractionated 2 

productivity measurements are impossible.  Such measurements are often very valuable in 
determining the production of different phytoplankton size groups.  Filtering phytoplankton 
through mesh sieves prior to doing an O  analysis would severely damage the cells.  Using the2
14C method, the POC in the incubation can be performed after the incubation. 
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GRAZING WITHIN THE BOTTLE 

Grazing within the bottle complicates the 
interpretation of both the O  and 14C2

methods. It is impossible to exclude 
grazers on the basis of size. Some 
protocols recommend using a screen to 
remove the mesozooplankton, however 
often the most important grazers in bottles 
are the microzooplankton (ciliates and 
heterotrophic nanoflagellates) which 
cannot be separated from the 
phytoplankton by size.  Figure 1 shows 
some of the many pathways for labeled 
carbon in a typical 14C incubation.  With 
short incubations, the 14C method should 
be more likely to estimate gross primary 

Figure 1. Flow diagram showing the path of labeled production, because less of the label 

carbon in a 14Cincubation.  Within the phytoplankton cell, should appear as DOC and as organic 

much of the CO  produced by respiration will be refixed by carbon in heterotrophic organisms.  The 
2

RUBPCO before leaving the cell.  Photorespiring DOC pool represents a major product of 

cyanobacteria leak copious amounts of glycolate, but such primary production but was not routinely 

leakage may be low in nature (Colman 1989). estimated until the 1980s. Most grazers 

The chemoautotrophic nitrifying bacteria fix DIC using on phytoplankton and heterotrophic 

RUBPCO, but they are inhibited by light. bacteria are “sloppy”, losing a 
considerable amount of the fixed carbon 
into the surrounding water. 

While it is impossible to filter only the grazers out of a bottle, it is possible to dilute their effects. 
As we will discuss later in the semester when covering zooplankton grazing, grazing rates are 
density-dependent.  By diluting out the phytoplankton in a sample, the effects of grazing can be 
greatly reduced.  Of course, in many areas of the ocean and in lakes, grazing is tightly coupled to 
primary production.  Removing the grazers can produce highly inaccurate estimates of the “real” 
primary production rate. 

PHOTORESPIRATION 

Photorespiration is one of the major problems faced by all photosynthetic organisms.  It poses a 
major problem in interpreting data produced from the 14C-productivity method too.  The most 
abundant enzyme in the world is undoubtedly ribulose-bisphosphate carboxylase/oxygenase, 
called RuBPCO or more commonly called “Rubisco.”  In its simplest terms, autotrophy is 
fixation of carbon by Rubisco.  Not all autotrophs are photoautotrophs, nitrifying bacteria & 
sulfide-oxidizing bacteria also use Rubisco, but with reduced inorganic compounds as the energy 
source. Rubisco combines one carbon molecule from CO  to the five-carbon molecule ribulose 2

bisphosphate to produce a 6-carbon molecule used to produce all other biomolecules.  The 
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Calvin cycle is the set of coupled reactions that produces the 5-carbon ribulose biphosphate 
substrate for Rubisco.  All autotrophs use the Calvin cycle and Rubisco.  The fixation of carbon 
requires energy.  Photoautotrophs get the energy (reducing power) from light; chemoautotrophs 
get the energy from reduced inorganic compounds. 

However, Rubisco can function as an oxygenase.  If O  binds to the active site of Rubisco instead 2 

of CO , the enzyme doesn’t create the 6-carbon molecule needed for growth.  Instead Rubisco 2

splits the 5-carbon ribulose bisphosphate into a 3-carbon phosphoglycerate and a 2-carbon 
phosphoglycolate molecule.  Rubisco encountering O  is the biochemical equivalent of “Go to 2 

Jail & Do Not Pass Go” in Monopoly.  The inhibitory effect of O2  on photosynthesis due to 
photorespiration is called the Warburg effect. The 3-carbon molecule produced by 
photorespiration can immediately reenter the Calvin cycle to be built up to a 5-carbon ribulose 
biphosphate. Two glycolate molecules must be condensed to scavenge a single 3-carbon 
pyruvate that can again participate in the Calvin cycle.  The lost CO  is called photorespiration.  2 

As the name implies, photorespiration occurs only in the light and is not assessed with the dark 
bottle in the O  method. 2

The affinity of Rubisco for CO  is very poor.  Some have argued that the poor affinity of Rubisco 2

for its primary task of fixing carbon is due to a quirk of evolutionary history.  The Rubisco 
molecule evolved early in the history of the earth at a time when CO2 concentrations were more 
than twice what they are today and there was no oxygen.  The first photoautotrophs were the 
cyanobacteria.  They lack the scavenge pathway needed to condense two 2-carbon molecules to 
form the 3-carbon pyruvate.  Cyanobacteria in which Rubisco is acting as an oxygenase produce 
large amounts of glycolate which is excreted from the cells.  For a cyanobacterium fixing CO 2 

two billion years ago, maintaining a high CO :O2 concentration at the Rubisco active site was not 2

much of a problem.  Over geologic time, external O2  concentrations increased and CO 2 

concentrations decreased.  Photorespiration which is directly related to the O :CO  ratios at the 2 2 

Rubisco active site increased. 

Minimizing photorespiration must have been an adaptive trait under strong selection.  There were 
four major evolutionary advances for maintaining high CO :O  ratios at the Rubisco active site.  2 2

First, phytoplankton evolved CO2 concentrating mechanisms, the most important being the 
bicarbonate pump.  Phytoplankton actively transport bicarbonate into the cell, expending energy 
in the process.  The intracellular bicarbonate is converted to CO2  near the site of Rubisco by the 
enzyme bicarbonate anhydrase.  Cyanobacteria and most phytoplankton have active bicarbonate 
pump systems, but the pump is shut down until needed.  In the laboratory, cyanobacteria grown 
with high CO  partial pressures will photorespire, leaking glycolate,  at a high rate for a short 2

time after being transferred to a low CO  partial pressure.  The photorespiration rate declines as 2

the cells physiologically adapt to the low CO2 conditions. 

The second major evolutionary advance was the evolution of a more efficient Rubisco molecule. 
Higher algae, like the diatoms and green algae, evolved a more efficient Rubisco molecule but its 
affinity for substrate is still dismal.  The half-saturation constant (K ) for in vitro carbon fixation m 

by eukaryotic ribulose biphosphate carboxylase/oxygenase (RuBPCO) is relatively high 
(K . 6-20 ìM CO  (aqu), Prins & Elzenga 1989 ). This K  is slightly less than the ambient m 2 m 
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concentration of CO  (aqu) in seawater (pH 7.8-8.2).  At a pH of 7.5 freshwater contains about 2

12 ìM CO2 . By using a bicarbonate pump mechanism, Beardall (1991) found that 
phytoplankton can reduce the effect of Km of Rubisco to 3 ìM CO .  2 This is still a poor affinity 
for substrate.  By contrast, the K  for nitrate, ammonium and phosphate uptake may be less than s 

0.3 ìM in oligotrophic phytoplankton species.  Under slightly alkaline conditions (>pH 8.2), 
with no CO2 concentrating mechanism at the active site of the RuBPCO, eukaryotic 
phytoplankton photosynthesis rate could be strongly controlled by the availability of CO .  2 The 
affinity of cyanobacterial RuBPCO for CO  is much lower than eukaryotic RuBPCO.  The in 2

vitro Km for cyanobacterial RuBPCO, which is structurally similar to eukaryotic RuBPCO, is a 
very large 200-350 ìM (Colman 1989). In the past ten years, it has been found that the 
dinoflagellates evolved with yet a third major type of photoautotrophic Rubisco.  Orellana & 
Perry found that antibodies produced to diatom Rubisco will react strongly with Rubisco ranging 
from green algae to corn, they do not bind strongly with dinoflagellate Rubisco. 

The third major evolutionary advance was the development of the scavenge pathway to convert 
glycolate to pyruvate.  This pathway isn’t found in cyanobacteria, but it is found in most other 
plants.  One of the ways of estimating photorespiration rates is to add inhibitors of the C2  scavenge 
pathway, such as aminooxyacetate AOA (Tolbert et al. 1985). After AOA addition, photorespiration 
results in direct excretion of glycolate with relatively high 14C activity.  In essence, AOA turns eukaryotic 
phytoplankters photorespiration physiology into that of a cyanobacterium.  

A fourth major evolutionary advance in photosynthesis was the evolution of C-4 metabolism.  C-4 
metabolism is a term coined by Morris (1980) and includes true C-4 photosynthesis, which is found in a 
subset of multicellular plants and Crassulacean acid metabolism (CAM).  True C-4 plants partition the 
incorporation of atmospheric CO  into C-4 compounds and the fixation of CO  by Rubisco into different 2 2

cell types.  In true C-4 photosynthesis, CO  is added to the 3-carbon molecule phosphoenolpyruvate 2 

(PEP) to form a 4-carbon molecule by the efficient enzyme PEP carboxykinase (or other â-carboxylases). 
Since the carbon is added at the 2nd or â carbon molecule in the 3-carbon chain, this class of enzymes is 

known as the â carboxylases. In desert plants, this energy-requiring â carboxylation reactions occur 
mainly at night when the stomata (openings to the atmosphere) in the bundle sheath cells are 
open.  During the day, the stomata are closed limiting water loss.  Photosynthesis occurs as CO 2 

is cleaved from the 4-carbon storage compounds at the Rubisco active sites in the mesophyll 
cells. In Crassulacean Acid Metabolism (CAM), the CO  is fixed first into C-4 compounds and 2 

then CO  is cleaved from the 4-carbon storage compounds in the same cells.  In CAM 2

metabolism, significant amounts of carbon are stored as C-4 compounds at night. 

It isn’t known how important C-4 like metabolism is to phytoplankton.  DesColas-Gros & 
Fontugne (1985, p. 3) found no PEP carboxylase activity in marine diatoms, but high activities 
of PEP carboxykinase (EC 4.1.1.49).  PEP carboxylase and PEP carboxykinase both produce C-4 
compounds from C-3 compounds and CO .  2 Glover & Morris (1979) surveyed phytoplankton in 
the Bigelow marine phytoplankton type culture collection, analyzing the â-carboxylase:Rubisco 
ratios. Table 1 shows that the diatoms have very high ratios of â carboxylase:Rubisco and 
display very little inhibition of photosynthesis by oxygen (the Warburg effect).  The diatoms have 
adaptations that allow them to photosynthesize even under very low CO  and high O22

environments. The presence of high â-carboxylase activities in the diatoms doesn’t mean that 
they are using C-4 photosynthesis.  The diatoms may merely be storing nitrogen.  One of the 
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major pathways for incorporating nitrogen in phytoplankton cells is to incorporate NH4
+ into C-4 

skeletons produced by PEP carboxylases (Guy et al. 1989, Vanlerberghe et al. 1990 ). 

Table 1.  Rubisco:PEPCase activity in selected marine phytoplankton and sensitivity to 
inhibition by oxygen (Warburg effect).  Table 2 from Morris (1980). 

Group RuBPCO:PEPCase % inhibition 

Dunaliella Green flagellate 29 17 

Synechococcus sp. Cyanobacterium 15 18 

Thalassiosira pseudonana diatom 7-14 0 

Phaeodactylum tricornutum diatom 8 4.5 

Skeletonema costatum centric diatom 0.5 3 

Surirella ovata diatom 2.9 0 

Amphipora paludosa pennate diatom 6.6 0 

Navicula pelliculosa pennate diatom 2.3 0 

Photorespiration looms as a huge issue in interpreting 14C results. Recent work now indicates 
that photorespiration is nil in physiologically healthy algae.  Weger et al. (1989) used 18O to 
estimate dark respiration and photorespiration in healthy diatoms in the laboratory and found that 
the latter was virtually unmeasurable.  Colman (1989) argues that photorespiration represents 
only a small portion of gross production in healthy cyanobacteria.  Obviously, natural selection 
has led to efficient mechanisms for phytoplankton to cope with their inefficient Rubisco 
molecules. However, if the mechanism for maintaining high CO :O  activities at the Rubisco 2 2 

active sites involves C-4 metabolism, the 14C technique could underestimate production.  For 
example, if phytoplankton cells produce C-4 storage products at night to fuel photosynthesis 
during the following day, then short-term 14C incubations would underestimate production.  
Rubisco would be fixing unlabeled carbon taken in prior to the incubation.  In Eppley’s classic 
studies of oligotrophic gyre production, he always performed 24-hour incubations.  In theory, 
Peterson (1980) argued that many short incubations should produce a summed production 
estimate much greater than one long incubation.  In a long incubation, the phytoplankton carbon 
would be grazed and respired.  However, when Redalje put this idea to the test, he found that 
long incubations produced higher production estimates than summed short-term incubations. 
Temporal decoupling of carbon acquisition and fixation by Rubisco could account for this 
pattern. 
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DCMU, TIME ZERO BLANKS, & THE ROLE OF THE DARK BOTTLE 

Since 1989, a major problem has emerged in the interpretation of the dark bottle in the 14C 
technique. The dark bottle is not used in the standard 14C technique. While biological 
oceanographers often performed parallel 14C incubations with dark bottles, they rarely 
incorporated the dark bottle uptake in their calculations.  There shouldn’t be much if any 
incorporation of 14C into particulate matter in the dark bottle.  While Morris (1980) had clearly 
indicated that C-4 metabolism was possible in marine phytoplankton, most biological 
oceanographers believed that phytoplankton, as true C-3 plants, don’t fix carbon in the dark. 

Starting in 1989, biological oceanographers received a wake-up call: dark-bottle uptake of 14C 
was shown to be very significant.  Dr. Karl Banse (1989 ASLO meeting presentation in Alaska), 
Harris et al. (1989), and Prakash et al. (1991) recommend strongly that the dark bottle uptake 
values be subtracted from the light bottle.  Harris et al. (1989) found that the dark-bottle 14C 
uptake in open ocean areas in low light could be nearly the same as the light bottle uptake.  Li & 
Dickie (1991)  provide evidence that much of the dark-bottle CO  uptake, especially in dimly lit 2

water, may be due to chemoautotrophic bacteria like the marine nitrifiers.  Failure to subtract the 
value of the dark bottle, especially in analyses of oceanic phytoplankton production, can produce 
assimilation numbers which far exceed the presumed physiological maximum for photosynthesis. 

Often, the herbicide DCMU, which blocks electron transfer in Photosystem II, is used instead of 
the dark bottle or with a dark bottle.  DCMU will instantly stop all fixation of CO  by the Calvin 2 

cycle.  However, DCMU also blocks several of the key enzymes used to assimilate bicarbonate 
via C-4 metabolism.  The DCMU blank might reveal a low uptake of 14C, but the difference in 
14 14C uptake between the DCMU blank and the light incorporation of C could represent the 
activity of â carboxylases and Rubisco. 

The Time-zero blank used in some 14C incubations estimates the amount of short-term abiotic 
incorporation of 14C into abiotic particulate phases in the incubation bottle.  Its value is usually 
low. 

O2 OR 14C? 

Which technique is better: 14C or O ?  The 14C method replaced the O  method because it was 2 2 

more sensitive. Now, with more sensitive techniques for measuring O2  concentrations, this is not 
a major consideration.  It was never a good reason for choosing the O  method over the 14C2 

method in eutrophic coastal waters.  The O  method provides estimates of both gross and net 2 

production; the 14C technique does not. 

The 14C method has several advantages other than sensitivity over the O2  method.  First, 

production is usually expressed using carbon.  The conversion of production, measured as 

to  requires an assumed photosynthetic quotient.  Second, the 14C method can be used to 

IT
Stamp



EEOS 630 
Biol. Ocean Processes 
14C & O , P. 12 of 34. 2 

provide size-fractionated estimates of production.  The amount of production by the 
microplankton can be distinguished from that of the picoplankton.  Finally, the 14C method can 
be combined with estimates of 14C activity in photosynthetic pigments to provide taxon-specific 
production and specific growth rates (Redalje & Laws 1981, Redalje 1983, Gieskes & Kraay 
1989, Strom & Welschmeyer 1991, Goericke &Welschmeyer 1993b). 

ALTERNATE TECHNIQUES FOR MEASURING PRIMARY PRODUCTION 

Change in seawater properties 

Primary production can be measured crudely by increased water-column O2 concentration, 
particulate organic carbon, Chl a (requiring an assumed C:Chl a ratio), or decreases in essential 
nutrients (N or P). Mills (1989) reviews how oceanographers from the Plymouth biological 
station, led by Harvey, used changes in phosphorus and seawater pH to estimate the areal primary 
production of the North Sea. 

In two weeks, we  will discuss Ryther et al. (1971), who estimated primary production in 
upwelling systems using both changes in seawater properties and the 14C technique. 

Stable isotopes 

18 18O  production from O-labeled H O has recently been used to great effect in measuring primary 2 2 

production rates in the field (Grande et al. 1989). The major drawback to this technique is that 
it requires a mass spectrometer to measure the production of the stable isotope 18O. The 
following equation shows how the method works: 

16Like the original light and dark bottle method, to convert 18O O production to carbon fixation
requires an estimate of the photosynthetic quotient.  By assuming a PQ of 1.25, Grande et al. 
(1989) found that the 14C method estimated between 60% to 100% of 18O gross production. 

Weger et al. (1989)  used a mass spectrometer with a membrane inlet and 18O to measure O 2
production and respiration in the lab. 

Falkowski’s flash-probe fluorescence 

Falkowski has developed a method for estimating photosynthetic rate by measuring the 
fluorescence produced using rapidly paired flashes of light.  The first flash of light produces a 
fluorescent signal identical to the one used by Lorenzen’s (1966) in situ fluorescence method. 
This signal provides an estimate of the amount of Chl a in the cell (or more precisely, the amount 
of Chl a associated with Photosystem II).  When a photon of light is absorbed by a phytoplankton 
cell, there are three possible fates for it: it can fluoresce, be converted to chemical energy, or be 
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converted to heat.  The conversion to chemical energy is what we want to measure.  Falkowski’s 
method relies on the fact that it takes a few milliseconds for the electron transport systems to 
recharge after processing a photon of light.  By exciting the phytoplankton cell with a second 
flash of light immediately after the first, the activity of electron transport in Photosystem II can 
be determined.  The difference in the fluorescence yield produced by the first and second flash of 
light is directly related to the photosynthetic rate of the cell.  A senescent phytoplankton cell, one 
treated with DCMU, or one whose photosystem II was photoinhibited by exposure to bright light 
would produce the same fluorescence yield with both flashes.  An actively photosynthesizing cell 
would have a large difference in fluorescence signal between flashes. 

Falkowski, and others, have developed algorithms to produce P vs. I curves using the flash-probe 
fluorescence technique.  It does not replace the standard 14C method, because the algorithms were 
developed so that the flash-probe fluorescence measurements produce similar estimates to the 14C 
technique.  Just as Lorenzen’s (1966) in situ fluorescence technique must be calibrated relative 
to the more accurate laboratory spectrophotometric and fluorometric approaches, the Falkowski 
flash-probe method must be calibrated against standard 14C incubations.  The advantage of this 
method is that it allows rapid, broad-scale synoptic estimates of the parameters of the P vs. I 
curve without need for incubations.  

Natural fluorescence 

Kiefer et al. (1989) estimate primary production from natural solar-induced fluorescence.  As 
phytoplankton cells absorb natural sunlight, they fluoresce.  Kiefer’s detectors, now sold by 
Biospherical Instruments, detect this fluorescence signal, and from it determine the primary 
production rate.  Kiefer et al. (1989) estimated that 2 atoms of carbon are fixed for every photon 
of natural light emitted as fluorescence.  The 2:1 empirical ratio shouldn’t be confused with the 
quantum yield of photosynthesis.  Laws et al. (1990) state that the minimum number of photons 
that must be absorbed by photosynthetic pigments to fix one atom of carbon is eight.  This ratio 
is called the quantum requirement and its inverse the quantum yield. Kiefer et al. (1989) 
estimated a quantum yield of 0.07 (quantum requirement=14.3) in the South Pacific gyre.. 

This method was introduced to biological oceanography at about the same time as Falkowski’s 
flash-probe method.  The method has not been used extensively. 

Satellite remote sensing 

Oceanographers are now estimating primary production by satellite.  We will devote a discussion 
section to the burgeoning field of “satellite remote sensing.”  At present, satellites can be used to 
estimate changes in Chl a in seawater and, from this, presumed minimal rates of primary 
production.  Such calculations require assumptions of the C:Chl a ratio. Trevor Platt and co­
workers have showed how estimates of light and sea-surface Chl a concentrations can be 
combined with estimates of the subsurface Chl a distribution and P vs I characteristics to 
estimate primary production.  Behrenfeld & Falkowski (1997) produced models that allow the 
subsurface productivity profiles to be estimated from surface Chl a, temperature, and light. 

IT
Stamp



EEOS 630 
Biol. Ocean Processes 
14C & O , P. 14 of 34. 2 

Terms & Concepts 

Avogadro's number: 6.022 x 1023 mol-1 

14 32 3â emitter, â decay: C, P, and H are all â emitters and their activity is measured using the 
liquid scintillation counter. 

carboxysome site of RuBPCO in cyanobacteria 
carotenoid- an accessory pigment (along with the phycobilins); long poly isoprenoid 

molecules having conjugated double bonds (p. 597 Lehninger)  2 major classes: 
carotenes [no oxygen] and xanthophylls [contain oxygen] 

DCMU A metabolic inhibitor of photosytem II see Appendix of Terms 
fluorescence efficiency	 ç, = the probability that the absorption of a photon at the excitation 

wavelength ëex   will produce a photon at the emission wavelength 
ëem

light reaction see Handout 2 
photosynthetic quotient-	 See Append1-def.pdf 
phycobilin- red algae have relatively little chlorophyll a but a lot of phycoerythrobylin 

(Lehninger, p. 597), a red phycobilin the protein conjugate of phycoerythrobilin is 
phycoerythrin; phycocyanin is the analogous conjugate of phycoerythrin in the 
cyanobacteria. 

pyrenoid site of RuBPCO in chloroplasts cf., carboxysome 
quantum yield- see Appendix of terms.  Moles of CO  fixed by one mole-photon of light 2 

absorbed by pigments. 
Liquid scintillation counting  14C activity is almost always determined using liquid scintillation 

14	 3 32counting.  C is a â-emitting radioisotope, as is H and P. The SI unit for radioactivity 
is the Becquerel (Bq), equal to 1 disintegration per second.  The Curie is equivalent to 3.7 
x 1010  disintegrations per second.  One ìCi (micro Curie) is equivalent to 37kBq.  The 
specific activity is the amount of radioactivity present (in Curies or dpm) per unit of 
weight (g or moles). 

To detect the number of â decays is a 4-step process (Peng, p. 8): 
i. absorption of energy by the solvent 
ii. formation of the solvent excited state 
iii. energy transfer from solvent to solute 
iv. fluorescence emission by the solute (radiative transition 

from its first excited singlet state). 
This reaction usually takes place in a counting or scintillation vial, composed of glass or 
plastic. 
Quenching is the general reduction of maximum light output of the scintillation system. 
A combination of primary and secondary solutes used to produce photons is called a 
fluor or scintillation. A fluor is a light transducer, converting nuclear energy into light 
photons.  Photocathodes are used to detect the emission of photons of light.  Usually 
coincident photocathodes are used to reduce background light emission.  With coincident 
detection, photons must be detected at 2 photocathodes simultaneously. 

simulated in situ incubations: Incubations done out of the water, usually using neutral-
density filters to simulate in situ light levels. 

http://www.es.umb.edu/edg/ECOS630/append1-def.pdf
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Strickland & Parsons equations to estimate production: 
W=12,000 X A X Ft

W= Weight of one mole of Carbon in mg. 
A = total carbonate alkalinity in milliequivalents per liter 
F  = Table nine. .95t

Radiocarbon measured photosynthesis  = (R -R ) x W X 1.05/(RxN) s b 

R  is the normalized radioactivity of the sample planchette s

R  is 	 the normalized radioactivity  of a blank (e.g., blackened BOD b

bottle or DCMU treated sample) 
R is the total activity added to the bottle 
W DIC in the bottle 
N time (h or d) 
1.05	 The kinetic isotope fractionation, estimating the reduction of 14C 

fixation relative to 12C 
thylakoid membranes (Parsons et al. (1984) p. 62)- Lehninger(p. 590) flattened membrane sacks 

or vesicles within the chloroplast, which occur in stacked arrangements called grana. 
Contain the photosynthetic pigments as well as the enzymes for the light-dependent 
reactions.  

Outlines 

REQUIRED PAPERS 

Peterson, B.  1980.  Aquatic primary productivity and the 14C-CO2  method:  a history of the productivity problem. 
Ann. Rev. Ecol. Syst. 11: 359-385. 

1.	 Introduction 
a.	 Steeman-Nielsen introduced the technique in 1952 
b.	 Few oceanographers aware of the assumptions used in estimating primary production using the 14C­

CO2  method 
c.	 Overview of the technique to be presented. 

i.	 technical pitfalls 
ii.	 inconsistent results 

2.	 The 14 C-CO METHOD 2 

a.	 The Basic Technique 
i.	 Strickland et al., provides method. 
ii.	 Marshall Pregnall provides a slightly different version of the method 
iii.	 a dark bottle is used. [What is the purpose of the dark bottle?] 

Equation 1 (p. 360). 
Carbon uptake = counts in particulate & DOM/(Total counts added) x available inorganic carbon x 1.05 

iv.	 dark bottle subtracted, recorded separately, or ignored 
v.	 Methods:  How incubations are performed. 

(1)	 Incubations performed for 0.5 - 24 hours under appropriate conditions. 
- Long incubations can be very important for estimating respiration costs. 

(2)	 What size filter should be used for filtering phytoplankton samples? 
- The smaller the better, if damaging cells is not a problem. 

Does this equation give us estimates of ì, the specific growth rate of phytoplankton? 
Problems with the carbon to chlorophyll level. 
vi.	 Purposes of the dark bottles in incubations. 
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(1)	 abiotic formation of labeled particulate carbon + active dark uptake of CO2 
(2)	 Does not measure respiration directly 
(3)	 often replaced with a DCMU blank, as recommended by Legendre 
(4)	 [Banse 1989 (ASLO abstract) argues that it must be included] 

b.	 Technical Problems 
i.	 OBTAINING THE SAMPLE 

(1)	 Toxic materials 
(a)	 metals 
(b)	 Tygon or rubber tubing inside go-flow bottles. 

(2)	 photoinhibition 
(3)	 [Evidence for problems] 

(a)	 change in cell numbers 
(b)	 change in species composition 
(c)	 change in DCMU-induced fluorescence (Cullen) 

ii.	 INOCULATING AND INCUBATING 
(1)	 simulated in situ incubations 
(2)	 how can turbulence by assessed? 
(3)	 Is the DIC pool depleted during the experiment? 

if the DIC pool is depleted (e.g., freshwater, [microphytobenthic production] then 
equ.  1 is inappropriate) 

iii.	 SAMPLE PREPARATION FOR COUNTING. 
(1)	 filter is crucial AA MiliporeTM filters recommended by Parsons et al. 
(2)	 get activity of filter pore water. 
(3)	 2Schindler's improvement (p. 362, left):  acidify the sample to pH 4, bubble with N , 

Add a subsample (or concentrate the DOC and POC) for counting. 
(4)	 Estimates of the total inorganic carbon pool: 

(a)	 alkalinity titration, the standard technique. 
(b)	 infrared gas analysis, after acidification of the sample. 
(c)	 gas chromatography. 

iv.	 COUNTING THE SAMPLE 

3.	 The early years and the great debate 
a.	 Steeman Nielsen  1.5 X1010 tons of global production 
b.	 Earlier measurements, based on O  production, 15.5 x 1010 tons (published by Rabinowitz) 2 

c.	 Some argued that the low estimates using the O2  methods were due to a bacteriocidal effect 
d.	 Steeman Nielsen suggested antibiotics were released in the light. 
e.	 Steeman Nielsen found that C-14 compared exactly to gross photosynthesis. approximately 94% 

[Check Grande et al., 1989 for recent estimates] 
f.	 Ryther & Vacarro found the two techniques similar if short incubations used. 

Postulated respired 14C-CO  being refixed. 2 

g.	 (page 365) Steeman Nielsen argued that if 60% of respired CO  is refixed, and if respiration is 10% of 
gross photosynthesis then the C-14 method should give rates comparable to 94% of gross 
photosynthesis.  At a 20% respiration rate than the correction factor would be 14%. 

2 

Figure 1. Steeman Nielsen's method for estimating Net & Gross photosynthesis. 
h.	 Rodhe of Sweden was the first to show that many short incubations give superior results to one long 

incubation. 
i.	 (note that Gieskes & Kraay observed different results) 
ii.	 [Eppley noted that long incubations needed for 24-h respiration rates.] 
iii.	 Martin et al. 1988 use very long, several day incubations. 

4.	 Second generation studies: 
a.	 Antia et al., observed that because 35-40% of the organic matter was excreted, the gross oxygen 

production was much higher than 14-C uptake. "In these coastal waters during diatom blooms the 14­
C method measures the net production of particulate matter whereas the oxygen method measures the 
gross total production of organic material." 

b.	 Photosynthetic quotient, Peterson page 368  1.0 for hexose sugars  and 1.4 for fat production 

Williams et al. (1983) found that in nitrogen rich waters a PQ of 2.0 was most appropriate.  
5.	 Third generation:  challenging the method. 

a.	 simulated in situ incubations 
b.	 Redfield ratios:  276:106:16:1  (by atoms) O:C:N:P 
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c.	 Coulter counters used to estimate production (net) 
d.	 How productive are the open ocean areas?  Sheldon and Sutcliffe found that Sargasso sea water may 

have high rates of production. 

e.	 Sieburth noted that the C-14 primary production estimates may be too low to support the high rates of 
heterotrophic activity in the open ocean areas. 

f.	 Gieskes observed that small bottles result in high mortality of open ocean species. 
g.	 2

14Cp. 372.  Lake ecologists have the advantage of being able to directly compare O  and 
i.	 [oceanographers face problems because of the low sensitivity of Winkler titrations] 
ii.	 [Grande's method allows direct comparisons] 

6.	 Photoinhibition and photorespiration 
a.	 photoinhibition due to: 

i.	 rapid increase in respiration, decline in net photosynthesis 
ii.	 a slower decline in gross photosynthesis that paralleled the decrease in chlorophyll 

fluorescence 
b.	 Static light bottle incubations may result in underestimates of 20-80% in production.  Algal cells are 

normally mixed.  Reviewed by Falkowski (1984) 
c.	 Photorespiration (page 374):  refers to the oxidation of glycolate, a recent product of the oxygenase 

activity of RuBPCO.  With concomitant consumption of O  and release of CO  in the light.  As much 
as 50% of the fixed CO2  can be respired in C3 plants.  A normal incubation would underestimate 
production because within a few minutes the 14C would be released back in the water.  In the dark 
bottle, photorespiration ceases almost immediately. 

2 2 

d.	 The importance of photorespiration has not been documented. 
7.	 Carbon flow models. 
8.	 Summary 

a.	 Lack of respiration measurements a big drawback 
b.	 14C-uptake  underestimates production for unknown reasons. 
c.	 Better carbon flow models needed 

Falkowski, P. G. and J. A. Raven. 1997.  Aquatic Photosynthesis.  Blackwell Science, Malden MA.  375 pp.   [Read 

Chapter 9, Read pp. 263-276,  282-288 on fast repetition rate fluorescence and nonphotochemical quenching; 

skim the rest of the chapter.] {} 

SUPPLEMENTAL 

Parsons, Takahashi, and Hargrave. 1984. Biological Oceanographic Processes, 3rd Edition. 
Pergamon Press. Pp. 61-66. 
THE PRIMARY FORMATION OF PARTICULATE MATERIALS 
1.1	 AUTOTROPHIC PROCESSES 

1.1.1.1 definitions of: 
1.1.1.1.1 autotrophy: don't require organic materials as a source of energy 
1.1.1.1.2 autotrophs are primary producers of autochthonous material. 

1.1.2	 Basic Photosynthetic Reactions: 

(27) 

where, H O, H , H S, H S O , and some organic compounds can be used as the H-donor in H A but 
only light is used as the energy source. 
Three step process 

2 2	 2 2 2 3 2

1.1.2.1	 capture light 
1.1.2.2	 change energy into another chemical form 
1.1.2.3	 fix CO2  using ATP and NADPH 

[See Appendix1-def.pdf for a fuller equation] 
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Light absorbed in the visible region 300 nm to 720 nm, 112 kcal of energy for every mole of carbohydrate 
formed. 

Fig. 26  Light absorption of intact cells, and photosynthetic action spectra 
Chl. absorption peak above 680 nm 
Chl a fluoresces at 730 nm from light absorbed at longer wave lengths 
Chl a fluorescence at 684 nm and 695 nm from light absorbed at shorter wavelengths 
1.2	 Energy absorbed at the longer wavelength Chl a 680 is used directly for photochemical reactions or 

emitted as fluorescence (Fl 730), but energy absorbed at the shorter wavelengths is transferred to Chl a 
670 before being used or emitted as fluorescence (at 684 and 695 nm) 

Fig. 27.  	Photosystems I and II. 
Photosystem I fluoresces at 730 nm 

Energy absorbed at shorter wavelengths is transferred by the accessory pigments to Chl a 670 before 
being used or emitted as fluorescence at 684 nm and 695 nm. Photosystem II liberates oxygen from water and 

transfers electrons to plastoquinone.  This series of reactions is carried out in the light. DCMU, a herbicide, 
blocks electron transport beyond the Photosystem II trap and light absorbed is released as fluorescence.  The 
relative fluorescence after DCMU addition has been proposed as a measure of photosynthetic capacity [used 
effectively by Cullen et al.] 

Dark reaction:  Calvin-Benson cycle (p. 63) 
Hatch-Slack pathway is an alternative. 

Quantum yield:  see HO2 

Action spectra: light utilization formed by combining the light absorption with the quantum yield. 

Photosynthetic Quotient: ratio of evolved O  to fixed CO .  1 for carbohydrates, 1.25 for proteins and 1.43 for lipids. 

Dark Respiration:  10% of P max 

2 2 

Photorespiration 18O  can be used to estimate algal respiration. 
additional mitochondrial respiration and photorespiration  [Weger et al., 1989L & O.] 

Two steps: 

Fig. 30. Photosynthetic carbon fixation pathway.  Oxidation of C5 compound to produce phosphoglyceric acid (C3) and 

2 

phosphoglycolic acid (C ) from ribulose diphosphate (C ).  High O , low CO  high light intensity, high 2	 5 2 , 

temperature and high pH all favor photorespiration.  Furthermore algae do not lose much CO by 2 

photorespiration since they refix the CO  by photosynthesis. 2

"Photorespiration is sensitive to red and white light but insensitive to blue light which is the most 
predominant in the marine environment.  Furthermore, algae don't lose much CO during 2 

photorespiration because they refix the CO  by photosynthesis (Tolbert 1974)" 2
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as opposed to 14C-labeled CO . The rate of photosynthesis can be compared with the kinetic rate of conversion 2 

-

3 2
of HCO  to CO . (see Miller and Colman 1980)] 
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EFFECTS OF TOXIC SUBSTANCES (ESPECIALLY METALS) AND CONTAINMENT ON 

PRIMARY PRODUCTION ESTIMATES 

Comment 

It is ironic that trace metal contamination (e.g., copper) may have led to poisoning of gyre productivity samples, but 
Martin and others believe many areas of the world's oceans, including gyres, may be limited by trace metal concentrations 
(e.g., Fe3+ (ferric ion)). 
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Fitzwater, S. E., G. A. Knauer, and J. H. Martin.  1982.  Metal contamination and its effect on primary production 
estimates.  Limnol. Oceanogr. 27: 544-551.  [Small concentrations of metals (200 ng/l) were shown to have 
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Gieskes, W. W. and G. W. Kraay.  1984.  State-of-the-art in the measurement of primary production. Pp. 171-190 in 
M.J.R. Fasham, ed., Flows of energy and materials in marine ecosystems, Plenum. [G. and K. take great care to 
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theoretical analysis and comparison with reported observations. Limnol. Oceanogr. 23: 268-282. [EDTA can 
have 2 effects: binding toxic metals (e.g., Cu) or providing essential micronutrients (e.g., Fe).  Free ferric ion is 
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assume a 10 ìm diffusive boundary.  They find that EDTA does not enhance Fe diffusion rates, since the flux of 
Fe(OH)2- is so large.] 
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MISCELLANEOUS 

Kiefer, D. A., W. S. Chamberlin, and C. R. Booth. 1989. Natural fluorescence and chlorophyll a: relationships to 
photosynthesis and chlorophyll concentrations in the western South Pacific gyre. Limnol. Oceanogr. 34: 868­
881. [Natural solar-induced fluorescence measured] 

Lorenzen, C. J. 1966. A method for the continuous measurement of in vivo chlorophyll concentration.  Deep-Sea Res. 13: 
223-227. [The classic paper describing the use of pumped water through a Turner Model III fluorometer with 
excitation peak at 445 nm and emission peak at >645 nm.] 
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organic matter in the Peru Coastal current.  Inv. Pesq. 35:  43-59. [A parcel of water is followed & biological & 
chemical properties surveyed — the classic study of upwelling] 
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