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Figure 5.  Gross and net carbon-specific photosynthetic rate for shade (B) and light (A) adapted phytoplankton. 
Respiration is usually assumed to be about 10% of PB

m  , but 20% is used here to show the difference between 

gross & net carbon-specific production.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7  
Figure 6 Vertical distribution of gross production in a vertically mixed water column (thus, algal concentrations do not 

change with depth)  (A) around noon on a bright day with light inhibition (the broken line would hold if there 
was no inhibition); (B), mid-morning on a bright day; (C), early in the morning, or on a strongly overcast day at 

noon.  Ordinate:  Percent of blue-green light immediately below water surface. . . . . . . . . . . . . . . . . . . . . . . . . . 7 

Figure 7 Gross production against time of day in a somewhat stratified water column without nutrient limitation on a 
bright day, to show effect of light inhibition around noon and of afternoon depression. (A) surface (broken line 
as in Fig.6); (B) at a light level slightly below saturation intensities around noon; © in the lower part of the 

photic zone.   The upper-most line is the gross production integrated over the photic zone. . . . . . . . . . . . . . . . . 8 

Assignment 

TOPICS 

“How does light quantity and quality affect phytoplankton growth in the sea?” 

REQUIRED READINGS 

Harrison, W. G., T. Platt, and M. K. Lewis. 1985.  The utility of light-saturation models for 
estimating marine primary productivity in the field:  a comparison with conventional 
“simulated: in situ” methods. Can J. Fish. Aquat. Sci. 42: 864-872. [Model P-I curves 
are calculated and compared with actual field measurements of production.] 

Falkowski, P. G. and J. A. Raven. 1997.  Aquatic Photosynthesis.  Blackwell Science, Malden 
MA. 375 pp. [Read Chapter 9, Read pp. 263-276, 282-288 on fast repetition rate 
fluorescence and nonphotochemical quenching; skim the rest of the chapter.] 

SUPPLEMENTAL 

Behrenfeld, M. J. and P. J. Falkowski.  1997. A consumer’s guide to phytoplankton primary 
productivity models.  Limnol. Oceanogr. 42: 1479-1491. [They don’t focus on the 
methods used to generate productivity estimates, but on the conceptual models for the 
correlates of productivity: biomass, depth, light, etc.] [?] 

Miller, C. B. 2004. Biological Oceanography. Blackwell Science, Malden MA. 402 pp. Chapter 
3, especially pp. 52-56. 

P vs. I curves and the effects of light adaptation 

P vs. I curves, called P vs. E curves in Falkowski & Raven (1997)  are described by the Jassby-
Platt (1976) equation. Jassby & Platt (1976) chose this equation because with just two 
parameters, it could express the asymptotic approach to a maximum value: 
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The two parameters for this equation are the light-saturated photosynthetic rate, P Bm, now called 
the assimilation number, and the initial slope, á. 

Phytoplankton can adapt to both the intensity and quality of light by: 
C changes in the amount of photosynthetic pigment per cell (e.g., changes in C:Chl 

a ratio) 
C	 changes in the ratios of 

photosynthetic pigments 
(e.g., Chl a) 

C	 Changes in the size and 
number of photosynthetic 
units (measured by the Chl 
a:P700 size, Perry et al. 
1981) 

C	 Changes in chloroplast size 
& orientation 

C	 Changes in the enzyme 
activities of both the light 
and dark reactions 

Figure 1 shows what might occur with 
identical phytoplankton cultures that had 
been split and grown at two different light 
intensities for two days, prior to their 

Figure 1.  An idealized P vs. I curve showing the effects of production being determined with a one-
shade adaptation.  Curves A and B represent the effects of hour P vs. I incubation. 
incubating subsamples of the same phytoplankton culture 
for two days at high and low light, respectively, before Figure 1 shows what Rhee (1980) calls 
doing a short-term P vs. I incubation with subsamples from the Cyclotella-type of photoadaptation. 
each culture. 
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The initial slope of the Chl-specific production vs.  Light intensity curve remains the same, but 
the asymptote or assimilation number increases with adaptation to higher light intensities.  The 
fundamental units of photosynthesis are the Photosystem I and Photosystem II units, which are 
tightly integrated and linked suites of photosynthetic pigments and enzymes.  To adapt to low 
light, phytoplankton cells should increase the probability that they will capture photons of light. 
This can be done by either increasing the amount of photosynthetic pigment within each 
photosynthetic unit, or increase the number of photosynthetic units per cell.  Perry et al. (1981) 
showed that five phytoplankton species increased the amount of Chl a per photosynthetic unit in 
response to low light. 

The time scale of photoadaptation is generally regarded as ranging from a few minutes to less 
than a doubling time.  Huntsman & Barber (1977) showed how this could be used to determine 
the mixing history of phytoplankton cells.  In the Peruvian upwelling system under high wind, 
cells collected from the top and bottom of the euphotic zone appeared to have similar P vs. I 
curves.  After adaptation to high light, these cells showed roughly the same initial slope, á, but a 
much higher PB

m .  The cells under high wind had become shade-acclimated, since the average 
light intensities experienced were very low.  Under stratified conditions, the P vs. I curves from 
the surface and base of the euphotic zone are quite different.  However, the differences may be 
due to differences in phytoplankton species composition as well as physiological adaptation. 

One of the problems with the simulated in 
situ technique is that it doesn’t simulate 
the light fields experienced by 
phytoplankton cells as they are mixed 
meters or tens of meters vertically each 
day.  Phytoplankton cells exposed to high 
light intensities near the sea surface can 
experience photoinhibition.  As reviewed 
by Neale (1987), photoinhibition can 
occur in milliseconds if the light is bright 
enough.  The major cause of 
photoinhibition is the destruction of 
electron-transport enzymes of 
Photosystem II.  Photoinhibition is 
reversible. 

Figure 2.  The same á and PB
m  parameters as Fig. 1, but 

now with a large photoinhibition parameter (â). 

Jassby & Platt (1976) modeled the reduced photosynthetic rate at high light intensities with a 
third parameter, â, in the P vs. I curve: 
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Figure 2 shows a P vs. I curve with the same á and PB
m  as Fig. 1 but with a relatively high 

photoinhibition parameter, â. Photoinhibition can pose some severe problems in interpreting the 
results of P vs. I incubations.  Phytoplankton cells, unlike bottles, do not remain at one light 
intensity throughout the day.  They can be mixed throughout the surface mixed layer.  If the time 
of exposure to photoinhibiting light levels is very short, then the P vs. I curves from fixed light 
intensities might underestimate production.  Incubations bottles exposed to continuous high light 
will be strongly photoinhibited, while cells in the “real” mixed layer are not.  If most 
phytoplankton cells are mixed close enough to the surface to experience photoinhibition, then 
water-column production estimates based on P vs. I curves could overestimate production.  In the 
“real” water column, most cells would be photoinhibited, but in the production bottles, cells 
exposed to continuous low light would not be photoinhibited. 

What are the advantages of shade 
adaptation?  One potential advantage 
results from the decreased C:Chl a ratios 
in shade-adapted cells.  Figures 3 and 4 
show the same data shown in Figs. 1 and 
2, but now the data are plotted as the 
carbon-specific gross production rates. 
The lower C:Chl a ratios typical of shade 
adapted cells confers a growth advantage 
for these cells at low light intensities. 

Figure 3.  The same data shown in Fig. 1 are plotted as 
carbon-specific production rates.  The shade-adapted cells 
(B) have a lower C:Chl a ratio. 
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Shade adaptation isn’t as simple as phytoplankton cells increasing their Chl a content in order to 
increase the probability of absorbing light.  Chl a in cells is found in tightly integrated units 
called Photosystems I and II.  Photosystem I has an electron trap called the P700 unit, composed 
of Chl a, accessory pigments, and electron-transport proteins.  Photosystem II has an electron 
trap called the P680 unit.  Each photosynthetic unit can process one photon of light, without need 
for chemically recharging the reaction center.  Phytoplankton at low light should be adapted to 
increase the probability of capture of photons of light.  Perry et al. (1981) showed that five 
phytoplankton species accomplish this by increasing the amount of Chl a in each photosynthetic 
unit, rather than increasing the number of photosynthetic units.  Falkowski & Owen (1980) found 
two different types of adaptation to low light, based on the Chl:P700 ratio.  Skeletonema 
costatum adapted to low light increase the photosynthetic unit size while the reaction centers for 

PS I (P700) per cell decrease.  Dunaliella 
decreased the size of  the photosynthetic 
unit but increased the number of P700 
reaction centers.  They concluded that 
either adaptation increases the efficiency 
of transfer or light energy from reaction 
centers under low light.  They found that 
the efficiency of light utilization per unit 
of Chl a  (the slope of a P vs. I curve) did 
not increase as the Chl/P700 ratio 
increased. 

Figure 4.  Carbon-specific gross photosynthesis with 
photoinhibition (same á and PB

m  as Fig. 2) 

IT
Stamp



EEOS 630 
Biol. Ocean Processes 
Light, Page 7 of 26. 

Figures 1-4 show gross photosynthetic 
rate.  Figure 5 shows the gross and net 
photosynthetic rate.  Respiration rate is 
usually modeled as being approximately 
10% of P Bm. Slight differences in 
respiration rate can have profound effects 
on certain aspects of phytoplankton 
ecology, especially the timing of the 
spring bloom.  Smetacek & Passow 
(1990) show the dramatic increase in the 
critical depth for phytoplankton capable 
of growing with respiration rates of only 
5% of PB

m  instead of 10% of P Bm. 

Figure 5.  Gross and net carbon-specific photosynthetic rate 
for shade (B) and light (A) adapted phytoplankton. 
Respiration is usually assumed to be about 10% of PB

m , but 
20% is used here to show the difference between gross & 
net carbon-specific production. 

Figure 6 shows how the photosynthetic 
parameters shown in Figs. 2 and 4 translate 
into depth-dependent gross production. 

Figure 6 Vertical distribution of gross production in a 
vertically mixed water column (thus, algal 
concentrations do not change with depth)  (A) around 
noon on a bright day with light inhibition (the broken 
line would hold if there was no inhibition); (B), mid­
morning on a bright day; (C), early in the morning, or 
on a strongly overcast day at noon.  Ordinate:  Percent 
of blue-green light immediately below water surface. 
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Figure 7 shows the consequences of the same 

Figure 7 Gross production against time of day in a 
somewhat stratified water column without nutrient 
limitation on a bright day, to show effect of light inhibition 
around noon and of afternoon depression. (A) surface 
(broken line as in Fig.6); (B) at a light level slightly below 
saturation intensities around noon; © in the lower part of 
the photic zone.  The upper-most line is the gross 
production integrated over the photic zone. 
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 P vs. I curve parameters from the previous figures on hourly production rates.  Note the noon­
time dip in production in the surface layer, due to photoinhibition (Curve A in Fig. 7).  Mann & 
Lazier (1996) note another confounding factor controlling “real” hourly production rates in the 
field. If the wind is constant throughout the day, solar heating will warm the surface layer 
slightly each day, shallowing the mixed layer by a few meters.  All else being equal, 
phytoplankton cells will  spend more time near the surface later in the day than in the morning. 
At night, the water column cools slightly, increasing the mixed layer thickness. 

Outlines of papers 

ASSIGNED 

Harrison et al.  1985. The utility of light-saturation models for estimating marine primary 
productivity in the field:  a comparison with conventional “simulated” in situ 
methods. Can J. Fish. Aquat. Sci. 42: 864-872. 

1.Abstract: 
1.1.Simulated in situ method tested in stratified water. 
1.2.model v. direct measurements 

2.Introduction 
2.1.Different methods, in situ method the best 
2.2.Simulated in situ used most commonly 
2.3.Modeling method. 
2.4.biological profiling information, in situ fluorometry. 
2.5.This paper a comparison of methods. 

3.Methods 
3.1.3 cruises. 
3.2.water samples taken at 100, 50, 25, 10 and 1% light depths.


3.2.1.based on Secchi disk.

3.2.2.PAR was 45% of pyranometer value


3.3.24 h 200-ml incubations on board deck for P v. I incubations

3.3.1.model P vs. I curves used 30-50 100 ml samples, for 2-4 h.

3.3.2.P vs. I measurements made at 2 depths:  1% and 50%

3.3.3.Natural sunlight used.

3.3.4.time-zero or “dark bottles” used as blanks


3.4.Jassby-Platt (1976) relationship: 

3.5.photoinhibition equation: 
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3.6.Hourly primary productivity rates computed 

P(t) = P  (I(t))*B. B (3) 

3.7.Rates for each depth were computed using 100, 50, 25, 10 and 1% surface light values.  Daily rates were 
calculated by summing hourly rates. 

vP  =  Ó P(t) (4) 

v3.8.Trapezoidal integration of P  over the total depth interval samples. 

4.Results and Discussion 

4.1.Data used to compute model estimated production (Fig. 1) 

Fig. 1. Computational scheme.  Dotted lines use photoinhibition model. Hourly and cumulative production 
4.2.Arctic waters show nearly linear diel photosynthesis (Fig 1. bottom right), Figure 2 top. 

Fig. 2.Relationship between PP measured using 4-h and 24-h incubations.  In Arctic waters, uptake is nearly constant 
over the 24-h period. 

4.3.Model and SIS predicted estimates showed good agreement (Fig. 3). 

Fig. 3.Mean primary production rates in the euphotic zone, comparing SIS with model estimates.  Solid line SIS, broken 
HT, dotted line, photoinhibition model.  There is more recycling in the surface layer (e.g., phytoplankton to zooplankton) 

4.3.1.2-4 hr P vs. I vs. 24 hr SIS 
4.3.2.Slight discrepancies due to the use of tungsten lamps. 

model estimates used tungsten lamps 

Fig. 4.Relationship between model and SIS production rate estimates for individual depths.  (Model tends to greatly 
overestimate production at the 1% light depths, but note change in scale). 

4.3.3.light quality differences. 
4.3.4.or differences in phytoplankton populations or adaptations 

Fig. 5.  Relationship between model (HT) and SIS areal production estimates. 

Fig. 6.Effects of spectral differences. 
5.Conclusions 

5.1.model estimates close 
5.2.get P vs. I parameters from upper mixed layer (ANOVA in Table 6) 
5.3.More work needed on the effects of spectral quality on production 

5.4. 
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Falkowski, P. G. and J. A. Raven. 1997.  Aquatic Photosynthesis.  Blackwell Science, 
Malden MA. 375 pp. [Read Chapter 9, Read pp. 263-276, 282-288 ] 

(3.8) 

9. Photosynthesis and primary production in nature 
i. Large number of photochemical responses that occur on short and long 

scales. 
ii. Acclimations vs. adaptations 

b. Estimating photosynthesis in aquatic systems (p. 264) 
i. Gross photosynthesis: the light-dependent rate of electron flow from water 

2to terminal electron acceptors (e.g., CO ) 
(1) oxygen evolution modified by the Photosynthetic Quotient. 

ii. et photosynthesis 
iii. Net primary production 

Figure 9.1 
iv. Community respiration 

c.	 Measurements of rates of gas exchange 
i.	 The 18O method 

(1)	 Addition of 18O  and measurement of light dependent production of 2 
18O -labeled water 

(2)	 tedious and expensive 
ii.	 The 14C method 

(1)	 Introduced by Steemann-Nielsen 1952 
(2)	 ambient DIC about 2 mM 
(3)	 After steady-state achieved, rate of incorporation equals net 

production 
(4)	 Incubation problems 

(a)	 Incubation time remains an issue 
(b)	 trace metal contamination a problem for measurements 

prior to 1980 in open-ocean incubations 
Scintillation counters 

(c)	 Natural light vs. simulated in situ approaches 
d.	 Integrated water-column photosynthesis (p. 269) 

i. Euphotic zone 
Figure 9.2.  A schematic diagram showing the vertical profile of photosynthesis. 

ii. Non-dimensional P vs. z 
Figure 9.3.  A simulation model showing the effect of vertical motons on the light environment 

e.	 Phytoplankton respiration (p. 272) 
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Figure 9.4 A schematic diagram showing the relationship between density, net photosynthesis, 
net primary production, dailiy integrated photoautotrophic respiration (Rv), daily integrated total 
community respiration, the depth of the euphotic zone and the critical depth. 

f. The effect of photoautotrophic biomass 
Figure 9.5 One thousand vertical profiles of carbon fixation as a function of physical and optical 
depth. 

g. Temporal variations in light in aquatic ecosystems (skim only for 9/17 class) 
h. Diel cycles and Circadian rhythms 
i. P vs. E curves and bio-optical models 
j. In Vivo Fluorescence approaches (p. 282) 

In vivo fluorescence 
Variable quantum yield of fluorescence 
-fluorescence yields higher during day than at night 
-Appearance that there is a subsurface chlorophyll maximum, when this is not so. 
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Figure 9.6.  An example of non-photochemical quenching 
of in vivo fluorescence in the ocean from the NW Atlantic 
in April. The subsurface fluorescence maximum does not 
correspond to a subsurface Chl a maximum. 

Nonphotochemical quenching due to the antennae and the reaction center 
i. Profiles of fluorescence with a fast repetition rate fluorometer 

k. Integrated water-column light utilization efficiency. 
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SUPPLEMENTAL 

Parsons, T. R, M. Takahashi & B. Hargrave. 1984. Biological Oceanographic processes, 3d 
edition. Pergamon Press pp. 61-80. 

1.Light quality 
a.Wavelengths


i.usable between 300 and 720 nm PAR (photo. available radiation)

ii.PUR, photo. usable radiation, fraction available being used

iii.PSR, amount stored as chemical energy


b.Chromatic adaptation:adaptation in sessile benthic algae, light quantity not quality (Rhee, p. 50) 
2.Measurement of light quantity 

a.units: ìEin  =microEinsteins 
3.Extinction in the water column 

i.Secchi disk 
ii.light meters 

4.light adaptation 
a.	 P vs. I curves:  Banse’s figures (6.1 - 6.5)


i.Prezelin’s relationship (Rhee p. 52, shown in Fig. 6.1 of HO6)

ii.Photoinhibition:  depression in P vs. I curve

iii.Chlorella type


increase cellular Chl a

iv.Cyclotella type


cellular Chl a  content unchanged

b.Perry showed increase in photosynthetic unit size at low light

c.Falkowski measures Chl/P700 ratio


5.Time scales 
a.rate of adaptation/rate of mixing important:  1st order kinetics (Falkowski found 2 days) 

6.Diel rhythms 
a.Falkowski (1984) picosecond to month scales 

7.Respiration rates: 
a.function of P ; approximately 10% 

8.photorespiration may be important 
9.Interactions between light and N. limitation:Interactions are neither additive nor multiplicative 
10.Temperature 

a.affects distribution and seasonal succession of species

b.Eppley’s equation assumes that Temp affects on ì-max, not K , s


recent studies show effects on K


max 

s 

11.Temperature-light interactions 
-photochemical reactions insensitive to temperature 

12.Conclusions 
a.threshold nutrient concentrations set by RKR -type relationships. 
b.Relationships well understood for steady state 
c.Interactions between environmental variables important 

OTHERS 

Rhee, G.-Yull.  1982.  Effects of environmental factors and their interactions on phytoplankton growth.  Adv. 
microb. Ecol. 6: 33-74. 

1.	 Introduction 
-a review of nutrients, light and temperature effects 

2.	 response of species to changing environmental stresses are the driving forces behind succession and species 
distribution. 

3.	 Nutrients. 
a.	 Nutrient limitation inferred 

i.	 from field sampling, elemental composition: Redfield (1958) atomic ratio:  106:16:1 
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ii.	 for photoautotrophs carbon is rarely limiting (Schindler 1977, Parsons et al. , 1978 
iii.	 Redfield ratio is generally found in oceanic and neritic regions [? evidence] 
iv.	 Ryther & Dunstan (1971):  N is the limiting nutrient in seawater 
v.	 Freshwater:  P is limiting  (Thomas 1969, Fuhs et al. , 1972, Line and Schelske 1979) 
vi.	 [G. P. Harris argues that N & P are both limiting in freshwater & marine] 
vii.	 Si limitation:  Smayda (1974), Kilham (1975).


Si:P ratio is 8:1 to 12:1 (D’Elia et al. , 1979)

b.	 Limiting nutrients:  growth and uptake 

i.	 external concentrations and growth 

(1) 

Equation (1) is wrong.  The correct equation is: 

(1) Monod equation: 

(7) 

(2)	 threshold concentrations 
(3)	 in the field, S cannot be related to growth. 

ii.	 intracellular concentrations and growth 
Droop (1968) equation: 

(8)


Caperon (1968): 

(6, p. 38) 

(1) Droop’s equation is the simplest 
(2)	 ìm’ is always greater than ìm   (p. 39) 
(3)	 “Under steady-state conditions, the Monod and cell-quota models are 

mathematically equivalent in describing growth rate (Burmaster 1979)”. p. 40 

iii.	 nutrient uptake and growth 
(1)	 dq/dt=v-ìq, where v is uptake rate (8) 
(2)	 v=ìq (9) 
(3)	 v=V’ S(K +s) (10)max m 

(4)	 One cannot used Km  as a substitute for K s 

c.	 Optimum N:P ratios and multinutrient limitation 
i.	 Liebig’s law of the minimum 
ii.	 Experimental results (Rhee 1974, 1978, Droop 1974) showed that growth is controlled by the 

nutrient in shortest supply. 
(1)	 N:P ratio of 30 
(2)	 optimum N:P ratio is the same as the ratio of minimal cell quotas for N and P q oN/qoP 

(Rhee 1978) 
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4.	 Light 

a.	 Growth and Photosynthesis


growth rate

(1)	 compensation light intensity: the light intensity required to maintain the viability 

of the population without net growth. 
(2)	 p. 46.  When growth is expressed as a function of the absorption rate of light energy 

(q ) one can obtain the efficiency of an organisms to convert light energy to growth. E

The rate q  may be expressed as(dE/dt)/((1/X), where X is biomass.  q e has units of 
time -1.  The relationship between ì and qE  is linear: 

ì = c*qE + ìe (15) 

E	 * 

(3)	 [See Laws latest 1990 models for this] 
(4)	 Efficiency varies between species, highest for the green algae and lowest for the 

cyanobacteria. 

(5)	 Succession:species differences in the efficiency factor and the compensation rate 
play an important role in phytoplankton succession.


Green algae===> cyanobacteria (low compensation rates of absorption)

(6)	 K , the light required to support half maximal growth i 

(7)	 ì vs. I relationship should be predictable from plots of P vs. I.  The disagreement is 
not surprising since cells excrete organic carbon (Nalewajko and Marin 1969), 
Berman and Holm-Hansen 1974, Hellbust 1974, Berman 1976, Mague et al. , 1980) 

ii.	 Photosynthesis:  light and dark reactions. 
light:photochemical reactions generate ATP and reducing power with evolution of O 2 

dark:CO  is enzymatically reduced to carbohydrates and other products using the energy and electrons generated in the 
light reactions. 

2

(1)	 slope of the P vs. I curve dictated by light reactions, asymptote by dark reaction 
(2)	 Light: 

(a)	 Ø & II:  each has its own set of light-absorbing pigments, 
(b)	 P700, a special Chl a pigment assembly serves as a an electron trap in Ø 

(i) electrons in the trap are expelled. 
(c) PSII:  P680 photosystem instead of P700 

(i)	 electrons expelled from the trap and pass through redox carriers, 
generating ATP from ADP by photophosphorylation.  The 
electrons come to rest at P 700.  The electron in PS II comes 
from H O with release of O 2	 2 

(d)	 C vs. C :Skeletonema costatum  and Phaeodactylym tricornutum is 
primarily of the C4  type:  [This may not be the case] 

3 4 

(e)	 -Dunaliella tertiolecta assimilates CO  primarily through the C3 pathway 
during exponential growth and by both C3 and C4 during stationary phase 
(Glover et al. , 1975, Beardall et al. , 1978, Mukerji et al. , 1978, Glover 
and Morris 1979, Morris 1980)p. 48 

2 

[Dark:  plateau of P vs. I curves reflects limitations by dark reactions. 

Calvin Bensen cycle:  CO2  carboxylated  to ribulose 1,5 bisphosphate by RuBP carboxylase to yield 2 molecules 
of phosphoglycerate. 

C :  CO  incorporated into phosphoenolpyruvate by PEP carboxylase.  The net CO incorporation in C  plants 
take place through the Calvin cycle. ] 

4 2	  4 

[Question for the class:Why would a plant have a C4 metabolism?] 

iii.	 Effects of light quality (p. 49) 
(1)	 Light quality can be important.  Some species showed maxima in blue and red light 

(Wallen and Geen 1971, Brown and Geen 1974) 
(2)	 The enhancement of protein synthesis appears to be related to the enhanced PEP 

carboxylase activity under blue light (Miyachi et al. 1978, Rutyers, 1980) 
(3)	 Excretion depends on spectral composition of light is least under blue and red light, 

and the nature of the products varies with the spectral composition of the light under 
which the cells are grown (Soeder and Stengel 1974, Brown and Geen 1974). 

(4)	 Pigmentation changes with respect to light quality. 
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(5) Distribution of benthic algae (green to brown to red) explained in terms of light 
quality.  

(6) Photosynthesis per unit quanta showed no correlation with their depths. 

iv. Photoinhibition 
(1) Disruptions of both light and dark reactions. 
(2) precedes the destruction of chlorophyll 
(3) processes implicated:(page 50) 

(a) action of UV light 
(b) inhibition of dark respiration 
(c) stimulation of chlorophyllase activity 
(d) enhancement of photorespiration (Tolbert et al. , 1974, Li et al. , 1980) 

v. Cell composition: 
(1) cellular contents of Chl a and accessory pigments (e.g., Chl b, c, biliproteins and 

carotenoids) increase 
(2) Cell RNA and protein content increased. 

(3) Light adaptation 
Light changes seasonably, daily, with depth and with turbidity. 
-Jørgensen (1969,1970) proposed 2 types of adaptation: 

vi. Chlorella type adaptation. 
organisms increase their cellular Chl a content with decreasing light:  little difference in 

photosynthetic rates at adapted light intensity between high- and low-light adapted cells. 
Net photosynthetic rate per cell appears to be constant during steady state regardless of the level of 

light, but the rate per unit Chl a follows a saturation function. 

vii. Cyclotella type of adaptation.

cellular Chl a content remains unchanged, and only the light-saturated photosynthetic rate varies.


(1)	 Mechanisms: 
(a)	 Scenedesmus obliquus:  regulation of redox carriers 
(b)	 initial slope of P (per cell) vs. I was little different 
(c)	 light saturation level changes.:  difference in the amount of redox carriers 

(i.e., when low-light adapted cells are exposed to high light, the 
concentration of redox carrier (plastoquinone) becomes limiting to 
photosynthesis.) 

(d)	 Glenodinium: adapts by increasing the efficiency of light absorption.: 
Glenodinium model plotted in Banse’s figure 6.1.  

(2)	 Falkowski and Owen (1980):  suggested 2 strategies, based on the Chl:P700 ratio 
(a)	 S. costatum adapted by increasing the photosynthetic unit size while the 

reaction centers for PS I (P700) per cell decreased. 
(b)	 Dunaliella, the photosynthetic unit size decreases, but the number of 

reaction centers increased.  

(c)	 Conclusion:  either change will yield an increase in the efficiency of light 
energy transfer to reaction centers under low light conditions.  In theory, 
an increase in number would increase photosynthetic capacity, whereas an 
increase in size would enhance the efficiency of light utilization.  However 
they found that the efficiency of light utilization per unit of Chl a  (the 
slope of a P vs. I curve) did not increase, while the Chl/P700 ratio 
increased. 

(3)	 Perry et al. (1981) reported an increase in the photosynthetic unit size in five marine 
species at low light intensities.  
(a)	 Perry et al.  (1981) suggest that organisms with intrinsically larger 

photosynthetic unit sizes may adapt more readily to the rapid fluctuations 
of light that occur in the mixed layer. [K-selected species] 

(4)	 Time scale of adaptation: 
(a)	 If the rate is slower that the rated of displacement, light adaptation would 

not be manifested as a function of depth. 
(b)	 Regulation can occur in less than one generation 
(c)	 p. 54:  When shade adapted cells are exposed to strong light, the 

fluorescence yield measured as the ratio of in vivo fluorescence to Chl a 
decreases.  This decrease reflects energy spillover (Govindjee et al. , 
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1973) i.e., the energy absorbed by PSII is directed away from its reaction 
center to the reaction center of PS I.  This change, which would reduce O 2 

production as well as noncyclic electron transport, takes place within a few 
minutes.  Therefore it has been suggested that energy spillover is a short 
term mechanism of adaptation, which may be of particularly significance 
for organisms subject to wide fluctuations of light in a short time period. 

(d)	 Depressed fluorescence yield observed in near-surface waters of lakes. 
Depression inversely related to light intensity and was reversible.  Similar 
depressions have been noted by Kiefer 1973.  Decrease attributed to the 
contraction of chloroplasts. 

(e)	 fluorescence yield also varies with nutrient limitation Kiefer (1973) 

b.	 Interactions of light with nutrient limitation and uptake. 
i.	 Nutrient limitation decreases photosynthetic rate per cell or per dry weight. 
ii.	 Seft (1978)  P’  =P (1-[q /q]) (17)m m o 

iii.	 “Under light limitation, nutrient requirements increase.” 
“...in CO -limited A. nidulans...the maintenance concentration of CO , the 
concentration below which no growth can occur, increases with decreasing 
irradiance, and the CO2 requirement to maintain growth rate also increases (Young 
and King, 1980)” 

2	 2

iv.	 The interaction effects of light and nutrient limitation are greater than the sum of their 
individual effects.  The interaction effects are therefore not additive, nor are they 
multiplicative. 

v.	 Under severe nutrient limitation, an otherwise optimal light intensity can be lethal. 
vi.	 The stimulation of N uptake by photosynthesis can be explained by the availability of 

photogenerated electrons and ATP 
vii.	 When N-limited Chlorella fucusa was given nitrate or nitrite, the CO  fixation rate decreased. 

DCMU decreased nitrite reduction (but not nitrate) by about 50%.  About half the electrons 
used for nitrite reduction are generated photochemically. 

2 

5.	 Temperature 

a.	 Growth 
i.	 Growth rate 

(1)	 Arrhenius equation 
A=Ae -E/RT (18) 

R is the gas constant, T is absolute temperature, E is activation energy’ 
(2)	 Relationship between ln ì and 1/T is inversely linear. 
(3)	 single-species growth is rarely linear 

ii.	 Cell composition 
(1)	 cell quotas change [See Goldman for critique] 

b.	 Temperature adaptation 
c.	 Interactions with Nutrient limitation and uptake 

i.	 Optimum is rarely achieved because of nutrient limitation. 
ii.	 temperature effects minimum cell quota 

d.	 Temperature-Light interactions (p. 62): 
i.	 Photochemical reactions are insensitive to temperature. 
ii.	 The slope of the P vs. I curve (per Chl a) are little affected.  When light is limiting, 

photosynthetic rate is unaffected by changes in temperature. The plateau changes 

6.	 Concluding remarks: 
a. Threshold-type control lays a foundation

Growth rate:  saturation functions.
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