

Plankton Classification

Plankton Classification

Zooplankton

Drifting animals, organisms that eat other plankton

ZOOPLANKTON

- Animals that can swim and pursue prey.
- Radiolarians, Foraminiferans
- Crustacean
 - Copepods
- Gelatinous
 - Salps, larvaceans, ctenophores, jellyfish, pteropods

Why study them?

- Most abundant animal on earth
- Secondary producers in marine systems
- Found in nearly every imaginable habitat
- Critical step in marine food chains
- Early life-stages of important commercial fish, shellfish
- Important in nutrient cycling

Important Zooplankton Groups

- Subclass Copepoda
 - Calanoide
 - Harpacticoids
 - Cyclopoids
- Sub-Phylum Tunicata
 - Larvacea (pelagic appendicularians)
 - Thaliacea (salps, doliolids, pyrosomas)

Copepods

- Phylum Arthropoda
- Class Crustacea

Tunicates

- Subclass Appendicularian
- Subclass Salp
- Subclass Doliolids
 - Gelatinous, soft bodies carbohydrate
 - Pelagic
 - Pump water through filter nets
 - Chordates (simple nervous system)
 - Feed on a large size range of particles

Copepod-Images

Copepod-images

ne Gallaghe

Other Zooplankton-images

Grazing

- Clearance Rate = Grazing Rate: volume of water from which particles are completely removed
 - Efficiency: percent of particles remove (usually based on food quality or size)
- Filtration Rate: total volume of water passing the filter apparatus per unit time
 - 1 copepod filters 1 I of water per h and that water has in it;
 - 5 –50 um particles/l 100% efficiency
 - 10-20 um particles/l 100%
 - 50-2 um particles/l 10%
 - Clearance rate = 300 ml /copepod / h

Grazing (continued)

- Ingestion Rate: amount of food passing through the gut per unit time
 - Units of chl, C or N

Filtration rates are related to food concentration

Filtration Currents

Retention Size

- Determined by the distance between the setae on maxillae of copepods
 - Carnivores >> herbivores /omnivores
- Determined by the net spacing in tunicates

Efficiency Example

Grazing Types

- Filtration: nonselective feeding, based on water currents
- Raptorial: may or may not be selective: grab a food item
 - Mechanical reception
 - Chemosensory

Limitations / Preferences for Grazing

- Size
- Nutritional content
- Taste
- Concentration
- Speed

Diel

- Copepods: increased feeding at night
- Tunicates: may or may not be diel

Seasonal

- Maximum in the spring
 - Temperate areas (spring, fall, summer, winter)
 - Polar areas (spring, summer, fall, winter)
 - Food supply (concentration and type)
 - Life cycle of the zooplankter

Spring

Summer

Methods for Grazing

- Clearance Experiments
 - Change in the number of cells during an incubation
- Gut Pigment
 - Grazing on phytoplankton (depends on pigment destruction)
- Tracers
 - Fluorescent-labels
 - Microcapsules
 - C-14, H-3 thymidine

Examples of Grazing Methods

Zooplankton

- COPEPODS
 - Protozoa
 - Phytoplankton
 - Detritus

- GELATINOUS
 - -DOM
 - -Colloids
 - -Bacteria
 - -Protozoa
 - -Phytoplankton
 - -detritus

Particles for Export and Food

- What types of particles?
 - Feeding Appendages
 - Webs, houses
 - Gelatinous Zooplankton
 - Fecal Pellets

Excretion

- Release of soluble material
 - Ammonia (Urea, free amino acids, DOC)
 - Younger stages excrete more per unit weight (Not total volume)
 - Decreases with temperature
 - Related to grazing

Egestion: Fecal pellet production

- Release of solid material
 - High 7-17 C:N
 - Copepods: surrounded by peritrophic membrane
 - Depends on food concentration to a point
 - Linear relationship between ingestion rate and pellet production rate
 - Temperature dependent
 FPPR
 Pellet
 Volume Food Conc

Comparison between Copepods and Tunicates

Activity	Copepod	Tunicate
Grazing	Filter Smaller particle size (5-200) Raptorial feeder-selective	Filter Large particle size (.2-200) Nonselective
Digestion /assimilation	Higher assimilation (30-90%)	Assimilation (18-60%)
Respiration	Temperature	temperature
Egestion	Conc c & N down	Conc C & N up

Major Avenues of Focus Today

- Controls on toxic blooms
 - Grazed or not?
- Carbon cycle Global warming
 - Grazing and flux of fecal pellets
- Biodiversity
 - Genetic studies
 - Extreme environments
- Human Health

Major Programs Around

- Eurapp (European Appendicularians)
- JGOFS (Joint Global Ocean Flux Study)
- TASC (Trans-Atlantic Study of Calanus finmarchicus)
- GLOBEC (Global ocean Ecosystem Dynamics)

Methods

- Nets
 - 1-size
 - Multiple size mesh
 - Multiple net frames
- Acoustics
- Cameras
 - In situ
 - Video
- Laser
- Diving
- Submersibles
- Fluorescence

- 1. Collection
 - 1. Abundance
 - 2. Distribution
 - 3. Experiments
- 2. Observation
 - 1. Behavior
 - 2. Distribution

Methods-Experiments

- Electrodes
- Chemical Analysis
- Molecular techniques
- Computers
- Internet

Zooplankton Ecology

- Who is there?
- What are they doing?
- How are they doing it?

