Biological Oceanographic Processes

Introduction to EEOS 630
Fall 2008
Send me an email
Eugene.Gallagher@umb.edu

- Name
- Email address (if available)
- Home address and phone number
 - Needed for mailing papers
 - Snow cancellations
- Program (campus mailbox)
- Availability for Wimba (Is M 7 to 7:45, Th 9 to 9:45 ok?)
- Why are you taking the course?
 - Requirement
 - Interest in Boston Harbor, Plankton, Benthos, Microbial Processes, Modeling
 - Which best describes your interest in biological oceanography?
 - A I like the quantitative aspects: numerical modeling, growth modeling, Matlab-based applications, coupling physical and biological oceanographic processes
 - B I like the history and sociology of biological oceanography and the applications of biological oceanography to problems of society
 - C I'm interested in the biodiversity of marine species and testing ecological theories in the marine environment
 - D I'm primarily interested in biogeochemical rate processes
 - E Other: specify

EEOS630
Course handouts

All handouts in pdf, some in html too

- Gallagher’s web page:
 http://alpha.es.umb.edu/faculty/edg/files/edgwebp.htm

- Course handout page
 ▶ All handouts will be posted on WebCT
 ▶ http://www.lms.umb.edu
 ▶ http://boston.umassonline.net
 ▶ You will be registered by the Wiser registration system.
 ▶ A handout of slides for that day’s class will be on the web by 5 am on the day of class.
 ▶ Try to print out a copy of the slide handout before class.
 ▶ Movies will be available for every class.

EEOS630
Textbooks

None required, and some recommended

- Required: None

- Recommended
 - Mann & Lazier (1996)
 - Parsons et al. (1984)
 - Jumars (1996)
 - Valiella (1984)
 - Kirchman (2000) Microbial ecology of the oceans
EEOS630 Grading

Discussion based on Wimba & Class discussions

- Class projects (Using the concepts of differentiated instruction or universal design framework)
 - Oral presentation (can be a team project) and essay (individual)
 - Project 1: 25%
 - Project 2: 25%
 - No midterm examination

- Discussion 25%

- Final examination 25%
Table 2. Assignments for Each Class

<table>
<thead>
<tr>
<th>Item</th>
<th>Before Class</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallagher’s chapter</td>
<td>Read the Comments & Outlines</td>
<td>Available as pdf files</td>
</tr>
<tr>
<td>Assigned readings (Usually 2)</td>
<td>Read and outline main ideas (See Discussion Format below)</td>
<td>Textbook or available as pdfs on E-Reserve</td>
</tr>
<tr>
<td>Supplemental Readings</td>
<td>Scan the Outline in Handout Read if you are interested.</td>
<td>JSTOR or electronically from Gallagher</td>
</tr>
</tbody>
</table>
For Thursday class

- Chapter 1 Benthic Feeding Guilds and Functional Groups
- Two papers & Gallagher’s Chapter 1
 - These readings will be posted on WebCT (or my personal web page http://alpha.es.umb.edu/faculty/edg/files/edgwebp.htm)
Learning through discussion

Group cognitive map: Won’t be used if more than 7 students

- Step 1: Definitions of terms and concepts
- Step 2: Statement of the author’s message
- Step 3: Major themes
- Step 4: Allocation of time
- Step 5: Discussion of major themes
- Step 6: Integration of material
- Step 7: Application of the material
- Step 8: Evaluation of the author’s presentation
- Step 9: Evaluation of group performance
Background on Boston Harbor & MA Bay, a theme of the course

EEOS630
Boston Harbor in the 1980s

- 250-500 mgd sewage effluent, only primary treated, discharged at Deer & Nut Islands
- 20 tons sludge daily released in Presidents Roads
- >90% Capitella in Inner Harbor & Deer Island Sediments
- Few Ampelisca
- 17% of winter flounder with liver cancer
- Cleanup began under court order in 1984
The 1972 Clean Water Act

Federal lawsuit led to the MWRA and the harbor cleanup
Boston Harbor succession

Spionids

Ampelisca

Crassocorophium
MA Bay: a major theme of course

The outfall went online September 2000
Discharge at 35 meters depth
The $4 billion MWRA cleanup of Boston Harbor

- **1991** Sludge dumping ended
- **1991 & 1992** Monitoring of Harbor & Bay began
- **1996** New primary treatment facility at Deer Island
- **1997-2001** Upgrade to secondary treatment at Deer Island
- **1998** Period B. Inter-island transfer tunnel to Deer Island
- **September 2000** Period C. Offshore 15 km outfall
Signell’s 3-d circulation model

Shows the nutrient plume from the 35-m deep outfall

Indicates a clickable link

EEOS630
Course Outline

See p. 13 in syllabus

- Introduction to the course (today)
- Part I: Benthos
 - Introduction to benthic organisms & feeding guilds (Class 2)
 - Classification of benthic organisms
 - Feeding Guilds & Functional groups
 - Distribution of feeding guilds with depth and along environmental gradients

EEOS630
Course Outline

Part I. Benthos (cont)

- Microphytobenthos & benthic primary production (Class 3)
 - Benthic diatom production
 - Biodiversity of benthic diatoms
 - Methods for estimating benthic diatom production, standing stock and specific growth rate
 - Gould & Gallagher (1990)
 - Experimental evidence for factors controlling benthic diatom production
 - Importance of benthic diatom production to estuarine production and secondary producers

EEOS630
Course Outline

Part I. Benthos (cont)

- Bioturbation and the effects of benthos on sediment chemistry and stratigraphy (Class 4)
 - Bioturbation
 - What is it?
 - Why is it important?
 - How is it measured?
 - Bioirrigation
 - Pelletization
Course Outline

Part I. Benthos (cont)

- Competition & Predation in the soft-bottom benthos (Class 5)
 - Effects of predation on soft-bottom benthic communities
 - Problems with Caging studies
- Models of soft-bottom benthic competition
 - Lotka-Volterra competition models
 - Fitting competition models to field data
- Relative importance of predation, competition, density-independent factors

EEOS630
Course Outline

Part I. Benthos (cont)

- General patterns of community structure (Class 6)
 - Methods for assessing benthic biodiversity
 - Deep-sea community structure and patterns of marine biodiversity (Class 7)
 - Sanders' stability-time hypothesis
 - Grassle-Sanders-Jumars spatial temporal mosaic
 - Huston’s dynamic-equilibrium
 - Other hypotheses for patterns of deep-sea diversity.

EEOS630
Part I. Benthos, Part II. Plankton

Classes 7-9

- Effects of pollution on marine benthic communities: Boston Harbor, MA Bay & New Bedford Harbor (Class 8)

- Part II: Plankton
 - P, B, and μ: the fundamental units of phytoplankton ecology (Class 9)
 - C:Chl ratios
 - Effects of temperature
Course Outline (cont.)

Class 10

- Part II Plankton (continued)
 - Environmental factors controlling primary production: Light
 - Readings
 - Harrison et al. (1985)
 - Falkowski & Raven (1997)
 - What is photosynthesis?
 - P vs. I curves
 - simulated in situ incubations.
 - Jassby-Platt equation
 - Estimating primary production using the P vs. I approach in MA Bay.
 - Diel and vertical patterns of production.
 - Photoadaptation & photoinhibition
 - Importance of light quality
Class Outline (cont)

Class 11

- Part II Plankton (cont)
 - Liebig's Law of the minimum and Brandt's denitrification hypothesis
 - Phytoplankton growth
 - nitrification & the nitrogen cycle
 - Chemostats in oceanography
 - Michaelis-Menten growth equations
 - uptake kinetics
 - the cell quota
 - growth kinetics

- Other nutrients: P, Si, Fe, Zn
Temporal and spatial patterns of primary production

Class 12

- The spring and fall blooms
 - Sverdrup's critical depth concept
 - The vernal bloom in the North Pacific and North Atlantic.
 - Spring bloom in MA Bay
 - The Fall bloom in MA Bay

- Dimensional analysis of spring-bloom timing
Upwelling & El Niño

Class 13

- **Physics**
 - Coriolis effect
 - Ekman mass transport
 - Barotropic & baroclinic pressure gradients
 - Geostrophic currents
- **Biology**
 - Upwelling and fish production
 - Primary production at equatorial divergences
- **El Niño Southern Oscillation & Pacific decadal oscillation**
Production on shelves

Class 14

- Case Studies
 - Riley on the New England Shelf
 - Eppley et al. Southern CA

- Nitrogen as the key limiting nutrient in the sea
 - The advection-diffusion equation, and the importance of horizontal and vertical eddy diffusive fluxes of NO_3^-
 - The role of vertical stability and fronts.

- Modeling with Matlab
Presentation of Project 1

Class 15-16

- Three topics will be chosen based on benthos and phytoplankton
 - Quantitative/modeling topic
 - Autecological topic (focusing on individual species)
 - Policy/management topic

- First topic: effect of OCS drilling on biological oceanographic processes, with an emphasis on Georges Bank

- You must make a 12-minute presentation & submit a 5-10 page paper.

- No midterm exam
MA Bay Production

Class 17

- Effects of light and nutrients and the Cole-Cloern/Platt relationship.
- The seasonal cycle of production
- The vertical distribution of phytoplankton & the subsurface chlorophyll maximum
- Eutrophication
Primary production in the oceanic gyres

- Rates of production in gyres.
 - Problems with the 14C method.
 - Indirect measures of primary production
- Models of gyre production.
 - Are the gyres analogous to a chemostat?
 - The micro-nutrient patch hypothesis
 - The role of mesoscale phenomena
- Pacific decadal oscillation and gyre production, Karl’s regime change hypothesis
Satellite Remote Sensing

Class 19

- Satellite remote sensing of Chl a and primary production
 - Theory
 - Limitations
- Estimating Chl a from space
- Estimating primary production from space
 - Platt & Sathyendranath
 - Behrenfeld & Falkowski

EEOS630
Part III. Secondary Production

Zooplankton Grazing, Class 20

- Grazing mechanisms
 - Life at Low Reynolds number
 - Frost's empirical relationships between grazing and phytoplankton concentration
 - Interaction between phytoplankton size and grazing
 - How to measure zooplankton grazing rates.
Zooplankton Predation & population biology

Class 21

- Predation on zooplankton
 - Brooks and Dodson's (1965) `Size-efficiency hypothesis'
 - The role of invertebrate predation
 - The trophic-cascade hypothesis
Vertical Migration

Class 22

- Vertical migration of zooplankton
 - Zooplankton life histories
 - Demography
 - Demographic analysis of the adaptive value of vertical migration

- The vertical migration game
 - Game theory
 - *Pseudocalanus-Euchaeta*
The Microbial Loop

Class 23

- Methods for determining microbial standing stocks & production
- The microbial loop hypothesis
 - sources of dissolved organic matter (DOM)
 - Control of bacterial standing stock and production
 - Nutrient regeneration
 - transfer of DOM to macrozooplankton and fish
Effects of Body Size

Class 24

- Allometric scaling
 - Growth rate versus body size
 - Respiration rate
 - Predation rate
 - P:B ratios
 - Size-Spectra in plankton and benthos

- Food for Right Whales

- Size spectra of planktonic and benthic communities
 - Loch Ness monsters and mermaids

EEOS630
Production in HNLC areas

Class 25

- The N. Pacific
 - The *Neocalanus* major grazer paradigm
 - Refutation/Revolution: the role of microzooplankton
 - New paradigm: Ecumenical iron hypothesis

- The marine biological pump
- The Geritol Solution to global warming

EEOS630
Ecosystem modeling

Classes 26-28

- Introduction to Ecosystem Models
 - Riley’s Georges Bank Model
 - Steele’s North Sea Ecosystem Model
 - the standard run
 - Model stability: the role of refuges and predation
 - Multicohort and other models
 - Frost's modifications of the Landry model
 - Evans and Parslow: a model of grazing effects on the vernal phytoplankton bloom
Narragansett & MA Bay models

Class 28, last class

- Simulation of a coastal marine ecosystem: Kremer and Nixon's Narragansett Bay Model
 - Physical model
 - Phytoplankton growth
 - Zooplankton growth
 - Predation
 - Benthic-pelagic coupling

- Predicting the effects of nutrient addition on MA Bay: the Hydroqual model
FINAL EXAMINATION

- In-class 3-hour, closed-book examination
- All questions will be handed out about 2 weeks in advance
- Date for final will be set in mid-semester by the University