Numbers

- Natural numbers (\mathbb{N}):
- Integer numbers (\mathbb{Z}) :

$$
\begin{aligned}
& 0,1,2, \ldots \\
& \text { Naturals + negatives }(-1,-2,-3, \ldots) \\
& \text { Integers + fractions }\left(\frac{1}{2},-\frac{7}{5}, \ldots\right) \\
& \text { Rationals + other (e.g. } \sqrt{3}, \pi, \ldots) \\
& \text { Reals + imaginary }(\ldots) \\
& \quad \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \subset \ldots
\end{aligned}
$$

- Rational numbers (\mathbb{Q}) :
- Real numbers (\mathbb{R}) :
- Complex numbers (\mathbb{C}) :

Functions

$$
\begin{array}{|l|l|}
\hline \text { Input } \\
& \text { Rule } \\
\hline
\end{array}
$$

- Notation:

$$
\text { Name : Domain } \rightarrow \text { Range }
$$

- Terminology:

> Function name defined on domain with values in range Function Cos defined on \mathbb{R} with values in \mathbb{R} Function Cos defined on \mathbb{R} with values in $[-1,1]$
> Function Cos defined on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ with values in $[-1,1]$

- Numerical Functions

$$
f: \mathbb{R} \rightarrow \mathbb{R} \quad \text { OR } \quad f: A \rightarrow \mathbb{R} \text { with } A \subset \mathbb{R}
$$

Constant functions

- General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=c$
- Example: $f(x)=2($ sometimes denoted by $f(x) \equiv 2)$
- Graph:

- Important, but boring ...

Linear functions

- General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a x$
- Examples: $f(x)=2 x, f(x)=-\pi x$
- a : slope
- Properties:

$$
\begin{aligned}
f(x+y) & =f(x)+f(y) \\
f(k x) & =k f(x)
\end{aligned}
$$

- The only functions for which the above rule works!
- Linear for calculus: $f(x)=a x+b$
- Example: $f(x)=2 x-4, f(x)=3(x-1)+5$
- Do not satisfy the above rules unless $b=0$!!
- a : slope, b : intercept

Power functions

- General form: $f: M \subset \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{a}$
- Examples: $f(x)=x^{3}, f(x)=x^{-1}, f(x)=x^{1 / 2}$
- Variable base, constant exponent
- Domain is not always all \mathbb{R} !
- If p is integer and q is natural

$$
x^{\frac{p}{q}}=\sqrt[q]{x^{p}}
$$

- What does x^{π} really mean?
- Power Rules

$$
-x^{m} \cdot x^{n}=x^{m+n}
$$

$-\frac{x^{m}}{x^{n}}=x^{m-n}$
$-\left(x^{m}\right)^{n}=x^{m \cdot n}$

Polynomial functions

- Combination of powers with natural exponents
- Exponent of highest power: degree
- Examples
- $f(x)=-x^{3}+4 \pi x$, degree $3 \rightarrow$ cubic polynomial
- $f(x)=a x^{2}+b x+c$, general form of quadratic
$-f(x)=a x+b$, linear (for calculus)
- Domain is all \mathbb{R} !
- Long term behavior (larger and larger, or smaller and smaller values of x)? depends on degrees and leading coefficient
- Non-example: $f(x)=4 x^{3}+x^{-2}$

Rational functions

- Ratios of polynomial functions
- $f(x)=\frac{P(x)}{Q(x)}$
- Examples
$-f(x)=4 x^{3}+x^{-2}=\frac{4 x^{5}+1}{x^{2}}$
$-f(x)=\frac{x^{3}-\pi x}{x^{2}+1}$
- Domain: exclude x for which $Q(x)=0$

- Long term behavior depends on degrees and leading coefficients

Trigonometric functions

- $\sin , \cos , \tan =\frac{\sin }{\cos }, \sec =\frac{1}{\cos }$
- Domains
- sin, cos: all \mathbb{R}
$-\tan$, sec: exclude x for which $\cos x=0 \quad x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}$

- Periodicity $f(x+T) \equiv f(x)$ for all x.
$-\sin , \cos$, sec: period 2π
- tan: period π
- Fundamental formula:

$$
\sin ^{2} x+\cos ^{2} x \equiv 1
$$

Exponential functions

- General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a^{x}$
- Defined everywhere only for $a>0$
- Constant base, variable exponent
- Examples: $f(x)=2^{x}, f(x)=\left(\frac{1}{2}\right)^{x}$
- DO NOT CONFUSE with power functions!! Constant exponent, variable base

- Long term behavior
- What does π^{x} really mean?

Logarithmic functions

- To what power should we raise 2 to get 16 ?
- $\log _{2} 16=4$
- Logarithmic function: $f:(0, \infty) \rightarrow \mathbb{R}, f(x)=\log _{a} x$
- To what power should we raise a to get x ?
- Only makes sense if $a>0$ and $a \neq 1$

- Exponentials and logarithms

$$
a^{\log _{a} x}=x \quad \log _{a}\left(a^{x}\right)=x
$$

