

Numbers

• Natural numbers (\mathbb{N}) : $0,1,2,\ldots$ • Integer numbers (\mathbb{Z}) : Naturals + negatives $(-1,-2,-3,\ldots)$ • Rational numbers (\mathbb{Q}) : Integers + fractions $(\frac{1}{2},-\frac{7}{5},\ldots)$ • Real numbers (\mathbb{R}) : Rationals + other (e.g. $\sqrt{3},\pi,\ldots)$ • Complex numbers (\mathbb{C}) : Reals + imaginary (\ldots) $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \subset \ldots$

Functions

$$\boxed{\text{Input}} \xrightarrow{\text{Rule}} \boxed{\text{Output}}$$

• Notation:

Name: Domain
$$\rightarrow$$
 Range

• Terminology:

Function name defined on domain with values in range Function Cos defined on
$$\mathbb R$$
 with values in $\mathbb R$ Function Cos defined on $\mathbb R$ with values in $[-1,1]$ Function Cos defined on $[-\frac{\pi}{2},\frac{\pi}{2}]$ with values in $[-1,1]$

• Numerical Functions

$$f \colon \mathbb{R} \to \mathbb{R} \quad \text{OR} \quad f \colon A \to \mathbb{R} \text{ with } A \subset \mathbb{R}$$

Constant functions

- General form: $f: \mathbb{R} \to \mathbb{R}, f(x) = c$
- Example: f(x) = 2 (sometimes denoted by $f(x) \equiv 2$)
- Graph:

• Important, but boring ...

Linear functions

• General form: $f: \mathbb{R} \to \mathbb{R}, f(x) = ax$

- Examples: f(x) = 2x, $f(x) = -\pi x$

• a: slope

• Properties:

$$f(x+y) = f(x) + f(y)$$
$$f(kx) = kf(x)$$

- The only functions for which the above rule works!

• Linear for calculus: f(x) = ax + b

- Example: f(x) = 2x - 4, f(x) = 3(x - 1) + 5

– Do not satisfy the above rules unless b = 0!!

• a: slope, b: intercept

Power functions

• General form: $f: M \subset \mathbb{R} \to \mathbb{R}, f(x) = x^a$

- Examples: $f(x) = x^3$, $f(x) = x^{-1}$, $f(x) = x^{1/2}$

- Variable base, constant exponent

– Domain is not always all $\mathbb{R}!$

- If p is integer and q is natural

$$x^{\frac{p}{q}} = \sqrt[q]{x^p}$$

- What does x^{π} really mean?

• Power Rules

$$- x^m \cdot x^n = x^{m+n}$$

$$- \frac{x^m}{x^n} = x^{m-n}$$

$$- (x^m)^n = x^{m \cdot n}$$

Polynomial functions

- Combination of powers with natural exponents
- Exponent of highest power: degree
- Examples
 - $-f(x) = -x^3 + 4\pi x$, degree $3 \to \text{cubic polynomial}$
 - $-f(x) = ax^2 + bx + c$, general form of quadratic
 - f(x) = ax + b, linear (for calculus)
 - Domain is all $\mathbb{R}!$
 - Long term behavior (larger and larger, or smaller and smaller values of x)? depends on degrees and leading coefficient
 - Non-example: $f(x) = 4x^3 + x^{-2}$

Rational functions

- Ratios of polynomial functions
- $f(x) = \frac{P(x)}{Q(x)}$
- Examples

$$- f(x) = 4x^3 + x^{-2} = \frac{4x^5 + 1}{x^2}$$

$$- f(x) = \frac{x^3 - \pi x}{x^2 + 1}$$

• Domain: exclude x for which Q(x) = 0

• Long term behavior depends on degrees and leading coefficients

Trigonometric functions

- \sin , \cos , $\tan = \frac{\sin}{\cos}$, $\sec = \frac{1}{\cos}$
- Domains
 - $-\sin, \cos$: all \mathbb{R}
 - -tan, sec: exclude x for which $\cos x=0$ $\quad x\neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}$

- Periodicity $f(x+T) \equiv f(x)$ for all x.
 - $-\sin, \cos, \sec: \operatorname{period} 2\pi$
 - tan: period π
- Fundamental formula:

$$\sin^2 x + \cos^2 x \equiv 1$$

Exponential functions

- General form: $f: \mathbb{R} \to \mathbb{R}, f(x) = a^x$
- Defined everywhere only for a > 0
- Constant base, variable exponent
- Examples: $f(x) = 2^x$, $f(x) = \left(\frac{1}{2}\right)^x$
- DO NOT CONFUSE with power functions!! Constant exponent, variable base

- Long term behavior
- What does π^x really mean?

Logarithmic functions

- To what power should we raise 2 to get 16?
- $\bullet \ \log_2 16 = 4$
- Logarithmic function: $f:(0,\infty)\to\mathbb{R}, f(x)=\log_a x$
 - To what power should we raise a to get x?
 - Only makes sense if a > 0 and $a \neq 1$

• Exponentials and logarithms

$$a^{\log_a x} = x$$
 $\log_a(a^x) = x$