Operations with Functions

Math 140 - Calculus I

Catalin Zara

UMass Boston
September 10, 2009

Algebraic Operations

Algebraic Operations

$A \subseteq \mathbb{R}$, subset of real numbers $f, g: A \rightarrow \mathbb{R}$, two numerical functions

Algebraic Operations

$A \subseteq \mathbb{R}$, subset of real numbers
$f, g: A \rightarrow \mathbb{R}$, two numerical functions

- Sum of functions

Algebraic Operations

$A \subseteq \mathbb{R}$, subset of real numbers
$f, g: A \rightarrow \mathbb{R}$, two numerical functions

- Sum of functions

$$
h=f+g, h: A \rightarrow \mathbb{R}, h(x)=f(x)+g(x)
$$

Algebraic Operations

$A \subseteq \mathbb{R}$, subset of real numbers
$f, g: A \rightarrow \mathbb{R}$, two numerical functions

- Sum of functions

$$
h=f+g, h: A \rightarrow \mathbb{R}, h(x)=f(x)+g(x)
$$

- Difference of functions

Algebraic Operations

$A \subseteq \mathbb{R}$, subset of real numbers
$f, g: A \rightarrow \mathbb{R}$, two numerical functions

- Sum of functions

$$
h=f+g, h: A \rightarrow \mathbb{R}, h(x)=f(x)+g(x)
$$

- Difference of functions

$$
h=f-g, h: A \rightarrow \mathbb{R}, h(x)=f(x)-g(x)
$$

Algebraic Operations

$A \subseteq \mathbb{R}$, subset of real numbers
$f, g: A \rightarrow \mathbb{R}$, two numerical functions

- Sum of functions

$$
h=f+g, h: A \rightarrow \mathbb{R}, h(x)=f(x)+g(x)
$$

- Difference of functions

$$
h=f-g, h: A \rightarrow \mathbb{R}, h(x)=f(x)-g(x)
$$

- Product of functions

Algebraic Operations

$A \subseteq \mathbb{R}$, subset of real numbers
$f, g: A \rightarrow \mathbb{R}$, two numerical functions

- Sum of functions

$$
h=f+g, h: A \rightarrow \mathbb{R}, h(x)=f(x)+g(x)
$$

- Difference of functions

$$
h=f-g, h: A \rightarrow \mathbb{R}, h(x)=f(x)-g(x)
$$

- Product of functions

$$
h=f g=f \cdot g, h: A \rightarrow \mathbb{R}, h(x)=f(x) \cdot g(x)
$$

Algebraic Operations

$A \subseteq \mathbb{R}$, subset of real numbers
$f, g: A \rightarrow \mathbb{R}$, two numerical functions

- Sum of functions

$$
h=f+g, h: A \rightarrow \mathbb{R}, h(x)=f(x)+g(x)
$$

- Difference of functions

$$
h=f-g, h: A \rightarrow \mathbb{R}, h(x)=f(x)-g(x)
$$

- Product of functions

$$
h=f g=f \cdot g, h: A \rightarrow \mathbb{R}, h(x)=f(x) \cdot g(x)
$$

- Ratio of functions

Algebraic Operations

$A \subseteq \mathbb{R}$, subset of real numbers
$f, g: A \rightarrow \mathbb{R}$, two numerical functions

- Sum of functions

$$
h=f+g, h: A \rightarrow \mathbb{R}, h(x)=f(x)+g(x)
$$

- Difference of functions

$$
h=f-g, h: A \rightarrow \mathbb{R}, h(x)=f(x)-g(x)
$$

- Product of functions

$$
h=f g=f \cdot g, h: A \rightarrow \mathbb{R}, h(x)=f(x) \cdot g(x)
$$

- Ratio of functions

$$
h=f / g, h: B \rightarrow \mathbb{R}, h(x)=f(x) / g(x)
$$

Algebraic Operations

$A \subseteq \mathbb{R}$, subset of real numbers
$f, g: A \rightarrow \mathbb{R}$, two numerical functions

- Sum of functions

$$
h=f+g, h: A \rightarrow \mathbb{R}, h(x)=f(x)+g(x)
$$

- Difference of functions

$$
h=f-g, h: A \rightarrow \mathbb{R}, h(x)=f(x)-g(x)
$$

- Product of functions

$$
h=f g=f \cdot g, h: A \rightarrow \mathbb{R}, h(x)=f(x) \cdot g(x)
$$

- Ratio of functions

$$
h=f / g, h: B \rightarrow \mathbb{R}, h(x)=f(x) / g(x)
$$

Defined only on $B=A \backslash\{x \mid g(x)=0\}$

Scaling and Shifting

Scaling and Shifting

$$
f(t)=A \sin (\omega t+\phi)
$$

Scaling and Shifting

$$
f(t)=A \sin (\omega t+\phi)
$$

$$
A=1, \quad \omega=1, \quad \phi=0
$$

Scaling and Shifting

$$
f(t)=A \sin (\omega t+\phi) \quad A=1, \quad \omega=1, \quad \phi=0
$$

Scaling and Shifting

$$
f(t)=A \sin (\omega t+\phi) \quad A=1, \quad \omega=3, \quad \phi=0
$$

Scaling and Shifting

$$
f(t)=A \sin (\omega t+\phi) \quad A=1, \quad \omega=3, \quad \phi=0
$$

Scaling and Shifting

$$
f(t)=A \sin (\omega t+\phi) \quad A=1, \quad \omega=3, \quad \phi=0
$$

Scaling and Shifting

$$
f(t)=A \sin (\omega t+\phi) \quad A=1, \quad \omega=3, \quad \phi=\pi / 4
$$

Scaling and Shifting

$$
f(t)=A \sin (\omega t+\phi) \quad A=1, \quad \omega=3, \quad \phi=\pi / 4
$$

$$
t \rightarrow \sin (3 t) \rightarrow t \rightarrow \sin (3 t+\pi / 4)
$$

Scaling and Shifting

$$
f(t)=A \sin (\omega t+\phi)
$$

$$
A=1, \quad \omega=3, \quad \phi=\pi / 4
$$

Scaling and Shifting

$$
f(t)=A \sin (\omega t+\phi) \quad A=2, \quad \omega=3, \quad \phi=\pi / 4
$$

Scaling and Shifting

$$
f(t)=A \sin (\omega t+\phi) \quad A=2, \quad \omega=3, \quad \phi=\pi / 4
$$

Scaling and Shifting

$$
f(t)=A \sin (\omega t+\phi) \quad A=2, \quad \omega=3, \quad \phi=\pi / 4
$$

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$.

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable:

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable:

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment?

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

- Parameters

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

- Parameters
- $h_{0}=$

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

- Parameters
- $h_{0}=$ initial height

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

- Parameters
- $h_{0}=$ initial height $=1 \mathrm{~m}$

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

- Parameters
- $h_{0}=$ initial height $=1 \mathrm{~m}$
- $v_{0}=$

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

- Parameters
- $h_{0}=$ initial height $=1 \mathrm{~m}$
- $v_{0}=$ initial velocity

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

- Parameters
- $h_{0}=$ initial height $=1 \mathrm{~m}$
- $v_{0}=$ initial velocity $=10 \mathrm{~m} / \mathrm{s}$

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

- Parameters
- $h_{0}=$ initial height $=1 \mathrm{~m}$
- $v_{0}=$ initial velocity $=10 \mathrm{~m} / \mathrm{s}$
- $g=$

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

- Parameters
- $h_{0}=$ initial height $=1 \mathrm{~m}$
- $v_{0}=$ initial velocity $=10 \mathrm{~m} / \mathrm{s}$
- $g=$ gravitational acceleration

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

- Parameters
- $h_{0}=$ initial height $=1 \mathrm{~m}$
- $v_{0}=$ initial velocity $=10 \mathrm{~m} / \mathrm{s}$
- $g=$ gravitational acceleration $\simeq 10 \mathrm{~m} / \mathrm{s}^{2}$

Another Example

A ball is thrown vertically up from a height of 1 m , with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Let $h(t)$ be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

- Parameters
- $h_{0}=$ initial height $=1 \mathrm{~m}$
- $v_{0}=$ initial velocity $=10 \mathrm{~m} / \mathrm{s}$
- $g=$ gravitational acceleration $\simeq 10 \mathrm{~m} / \mathrm{s}^{2}$

$$
h(t)=1+10 t-5 t^{2}
$$

Graph of h

$$
h(t)=1+10 t-5 t^{2}
$$

Graph of h

$$
h(t)=1+10 t-5 t^{2}
$$

Graph:

Graph of h

$$
h(t)=1+10 t-5 t^{2}
$$

Graph: parabola \Longleftarrow quadratic function

Graph of h

$$
h(t)=1+10 t-5 t^{2}
$$

Graph: parabola \Longleftarrow quadratic function From $f(t)=t^{2}$ to $h(t)=1+10 t-5 t^{2}$

Graph of h

$$
h(t)=1+10 t-5 t^{2}
$$

Graph: parabola \Longleftarrow quadratic function From $f(t)=t^{2}$ to $h(t)=1+10 t-5 t^{2}$ Completing the square

Graph of h

$$
h(t)=1+10 t-5 t^{2}
$$

Graph: parabola \Longleftarrow quadratic function From $f(t)=t^{2}$ to $h(t)=1+10 t-5 t^{2}$
Completing the square

$$
\begin{aligned}
h(t) & =1+10 t-5 t^{2} \\
& =-5 t^{2}+10 t+1= \\
& =-5\left(t^{2}-2 t\right)+1= \\
& =-5\left(t^{2}-2 t+1-1\right)+1= \\
& =-5\left((t-1)^{2}-1\right)+1= \\
& =-5(t-1)^{2}+6
\end{aligned}
$$

$$
h(t)=1+10 t-5 t^{2}=-5(t-1)^{2}+6
$$

$$
h(t)=1+10 t-5 t^{2}=-5(t-1)^{2}+6
$$

$$
h(t)=1+10 t-5 t^{2}=-5(t-1)^{2}+6
$$

$$
h(t)=1+10 t-5 t^{2}=-5(t-1)^{2}+6
$$

$$
t \rightarrow(t-1)^{2}
$$

$$
h(t)=1+10 t-5 t^{2}=-5(t-1)^{2}+6
$$

$$
h(t)=1+10 t-5 t^{2}=-5(t-1)^{2}+6
$$

$$
h(t)=1+10 t-5 t^{2}=-5(t-1)^{2}+6
$$

$$
h(t)=1+10 t-5 t^{2}=-5(t-1)^{2}+6
$$

$$
h(t)=1+10 t-5 t^{2}=-5(t-1)^{2}+6
$$

$$
t \rightarrow-5(t-1)^{2} \Longrightarrow t \rightarrow 6-5(t-1)^{2}
$$

$$
h(t)=1+10 t-5 t^{2}=-5(t-1)^{2}+6
$$

$$
h(t)=1+10 t-5 t^{2}=-5(t-1)^{2}+6
$$

Domain?

$$
h(t)=1+10 t-5 t^{2}=-5(t-1)^{2}+6
$$

Graph vs. Trajectory

Composition of Functions

Composition of Functions

- Rule f : subtract one unit from the input

Composition of Functions

- Rule f : subtract one unit from the input

$$
\square \xrightarrow{f} \square-1 \Longleftrightarrow f(\square)=\square-1
$$

Composition of Functions

- Rule f : subtract one unit from the input

$$
\square \xrightarrow{f} \square-1 \Longleftrightarrow f(\square)=\square-1
$$

- Rule g : square the input

Composition of Functions

- Rule f : subtract one unit from the input

$$
\square \xrightarrow{f} \square-1 \Longleftrightarrow f(\square)=\square-1
$$

- Rule g : square the input

$$
\square \xrightarrow{g} \square^{2} \Longleftrightarrow g(\square)=\square^{2}
$$

Composition of Functions

- Rule f : subtract one unit from the input

$$
\square \xrightarrow{f} \square-1 \Longleftrightarrow f(\square)=\square-1
$$

- Rule g : square the input

$$
\square \xrightarrow{g} \square^{2} \Longleftrightarrow g(\square)=\square^{2}
$$

- Rule h : First apply rule f, then apply rule g

Composition of Functions

- Rule f : subtract one unit from the input

$$
\square \xrightarrow{f} \square-1 \Longleftrightarrow f(\square)=\square-1
$$

- Rule g : square the input

$$
\square \xrightarrow{g} \square^{2} \Longleftrightarrow g(\square)=\square^{2}
$$

- Rule h : First apply rule f, then apply rule g Input for h : x

Composition of Functions

- Rule f : subtract one unit from the input

$$
\square \xrightarrow{f} \square-1 \Longleftrightarrow f(\square)=\square-1
$$

- Rule g : square the input

$$
\square \xrightarrow{g} \square^{2} \Longleftrightarrow g(\square)=\square^{2}
$$

- Rule h : First apply rule f, then apply rule g Input for $h: x \Longrightarrow$ Input for $f: x$

Composition of Functions

- Rule f : subtract one unit from the input

$$
\square \xrightarrow{f} \square-1 \Longleftrightarrow f(\square)=\square-1
$$

- Rule g : square the input

$$
\square \xrightarrow{g} \square^{2} \Longleftrightarrow g(\square)=\square^{2}
$$

- Rule h : First apply rule f, then apply rule g Input for $h: x \Longrightarrow$ Input for $f: x$

$$
x \xrightarrow{f}-1=x-1
$$

Composition of Functions

- Rule f : subtract one unit from the input

$$
\square \xrightarrow{f} \square-1 \Longleftrightarrow f(\square)=\square-1
$$

- Rule g : square the input

$$
\square \xrightarrow{g} \square^{2} \Longleftrightarrow g(\square)=\square^{2}
$$

- Rule h : First apply rule f, then apply rule g Input for $h: x \Longrightarrow$ Input for $f: x$

$$
x \xrightarrow{f}-1=x-1
$$

Output of $f: x-1 \Longrightarrow$ Input for $g: x-1$

Composition of Functions

- Rule f : subtract one unit from the input

$$
\square \xrightarrow{f} \square-1 \Longleftrightarrow f(\square)=\square-1
$$

- Rule g : square the input

$$
\square \xrightarrow{g} \square^{2} \Longleftrightarrow g(\square)=\square^{2}
$$

- Rule h : First apply rule f, then apply rule g Input for $h: x \Longrightarrow$ Input for $f: x$

$$
x \xrightarrow{f}-1=x-1
$$

Output of $f: x-1 \Longrightarrow$ Input for $g: x-1$

$$
x-1 \xrightarrow{g} x^{2}=(x-1)^{2}
$$

Composition of Functions

- Rule f : subtract one unit from the input

$$
\square \xrightarrow{f} \square-1 \Longleftrightarrow f(\square)=\square-1
$$

- Rule g : square the input

$$
\square \xrightarrow{g} \square^{2} \Longleftrightarrow g(\square)=\square^{2}
$$

- Rule h : First apply rule f, then apply rule g Input for $h: x \Longrightarrow$ Input for $f: x$

$$
x \xrightarrow{f} x-1=x-1
$$

Output of $f: x-1 \Longrightarrow$ Input for $g: x-1$

$$
\begin{gathered}
x-1 \stackrel{g}{\rightarrow} x^{2}=(x-1)^{2} \\
x \xrightarrow{f} x-1 \xrightarrow{g}(x-1)^{2} \Longrightarrow h(x)=(x-1)^{2}
\end{gathered}
$$

$$
x \xrightarrow{f} x-1 \xrightarrow{g}(x-1)^{2} \Longrightarrow h(x)=(x-1)^{2}
$$

- $h=g \circ f:$ composition of g and f

$$
h(x)=g(f(x))
$$

$$
x \xrightarrow{f} x-1 \xrightarrow{g}(x-1)^{2} \Longrightarrow h(x)=(x-1)^{2}
$$

- $h=g \circ f:$ composition of g and $f \quad h(x)=g(f(x))$
- First function applied $=$ innermost $=$ last mentioned

$$
x \xrightarrow{f} x-1 \xrightarrow{g}(x-1)^{2} \Longrightarrow h(x)=(x-1)^{2}
$$

- $h=g \circ f:$ composition of g and $f \quad h(x)=g(f(x))$
- First function applied $=$ innermost $=$ last mentioned
- Order matters:

$$
f(g(x))=
$$

$$
x \xrightarrow{f} x-1 \xrightarrow{g}(x-1)^{2} \Longrightarrow h(x)=(x-1)^{2}
$$

- $h=g \circ f:$ composition of g and $f \quad h(x)=g(f(x))$
- First function applied $=$ innermost $=$ last mentioned
- Order matters:

$$
f(g(x))=x^{2}-1 \neq(x-1)^{2}=g(f(x))
$$

- Composition $g \circ f$ only makes sense when

$$
x \xrightarrow{f} x-1 \xrightarrow{g}(x-1)^{2} \Longrightarrow h(x)=(x-1)^{2}
$$

- $h=g \circ f:$ composition of g and $f \quad h(x)=g(f(x))$
- First function applied $=$ innermost $=$ last mentioned
- Order matters:

$$
f(g(x))=x^{2}-1 \neq(x-1)^{2}=g(f(x))
$$

- Composition $g \circ f$ only makes sense when Potential outputs of f are valid inputs for g

$$
x \xrightarrow{f} x-1 \xrightarrow{g}(x-1)^{2} \Longrightarrow h(x)=(x-1)^{2}
$$

- $h=g \circ f:$ composition of g and $f \quad h(x)=g(f(x))$
- First function applied $=$ innermost $=$ last mentioned
- Order matters:

$$
f(g(x))=x^{2}-1 \neq(x-1)^{2}=g(f(x))
$$

- Composition $g \circ f$ only makes sense when Potential outputs of f are valid inputs for g Range of f is included in domain of g

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules Strategy: What operations are performed?

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

- $x=\pi / 4 \Longrightarrow 2 x=2 \cdot \pi / 4=\pi / 2$

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

- $x=\pi / 4 \Longrightarrow 2 x=2 \cdot \pi / 4=\pi / 2 \Longrightarrow$ Double the input:

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

- $x=\pi / 4 \Longrightarrow 2 x=2 \cdot \pi / 4=\pi / 2 \Longrightarrow$ Double the input: $f(\square)=2 \square$

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules
Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

- $x=\pi / 4 \Longrightarrow 2 x=2 \cdot \pi / 4=\pi / 2 \Longrightarrow$ Double the input: $f(\square)=2 \square$
- $2 x=\pi / 2 \Longrightarrow \cos (2 x)=\cos (\pi / 2)=0$

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules
Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

- $x=\pi / 4 \Longrightarrow 2 x=2 \cdot \pi / 4=\pi / 2 \Longrightarrow$ Double the input: $f(\square)=2 \square$
- $2 x=\pi / 2 \Longrightarrow \cos (2 x)=\cos (\pi / 2)=0 \Longrightarrow g(\square)=\cos (\square)$

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules
Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

- $x=\pi / 4 \Longrightarrow 2 x=2 \cdot \pi / 4=\pi / 2 \Longrightarrow$ Double the input: $f(\square)=2 \square$
- $2 x=\pi / 2 \Longrightarrow \cos (2 x)=\cos (\pi / 2)=0 \Longrightarrow g(\square)=\cos (\square)$
- $\cos (2 x)=0 \Longrightarrow(\cos (2 x))^{3}=0^{3}=0$

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules
Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

- $x=\pi / 4 \Longrightarrow 2 x=2 \cdot \pi / 4=\pi / 2 \Longrightarrow$ Double the input: $f(\square)=2 \square$
- $2 x=\pi / 2 \Longrightarrow \cos (2 x)=\cos (\pi / 2)=0 \Longrightarrow g(\square)=\cos (\square)$
- $\cos (2 x)=0 \Longrightarrow(\cos (2 x))^{3}=0^{3}=0 \Longrightarrow$ Cube:

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules
Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

- $x=\pi / 4 \Longrightarrow 2 x=2 \cdot \pi / 4=\pi / 2 \Longrightarrow$ Double the input: $f(\square)=2 \square$
- $2 x=\pi / 2 \Longrightarrow \cos (2 x)=\cos (\pi / 2)=0 \Longrightarrow g(\square)=\cos (\square)$
- $\cos (2 x)=0 \Longrightarrow(\cos (2 x))^{3}=0^{3}=0 \Longrightarrow$ Cube: $p(\square)=\square^{3}$

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules
Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

- $x=\pi / 4 \Longrightarrow 2 x=2 \cdot \pi / 4=\pi / 2 \Longrightarrow$ Double the input: $f(\square)=2 \square$
- $2 x=\pi / 2 \Longrightarrow \cos (2 x)=\cos (\pi / 2)=0 \Longrightarrow g(\square)=\cos (\square)$
- $\cos (2 x)=0 \Longrightarrow(\cos (2 x))^{3}=0^{3}=0 \Longrightarrow$ Cube: $p(\square)=\square^{3}$

Last operation performed: p

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules
Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

- $x=\pi / 4 \Longrightarrow 2 x=2 \cdot \pi / 4=\pi / 2 \Longrightarrow$ Double the input: $f(\square)=2 \square$
- $2 x=\pi / 2 \Longrightarrow \cos (2 x)=\cos (\pi / 2)=0 \Longrightarrow g(\square)=\cos (\square)$
- $\cos (2 x)=0 \Longrightarrow(\cos (2 x))^{3}=0^{3}=0 \Longrightarrow$ Cube: $p(\square)=\square^{3}$

Last operation performed: p

$$
h(x)=\square^{3}=p(\square)
$$

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules
Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

- $x=\pi / 4 \Longrightarrow 2 x=2 \cdot \pi / 4=\pi / 2 \Longrightarrow$ Double the input: $f(\square)=2 \square$
- $2 x=\pi / 2 \Longrightarrow \cos (2 x)=\cos (\pi / 2)=0 \Longrightarrow g(\square)=\cos (\square)$
- $\cos (2 x)=0 \Longrightarrow(\cos (2 x))^{3}=0^{3}=0 \Longrightarrow$ Cube: $p(\square)=\square^{3}$

Last operation performed: p

$$
h(x)=\square^{3}=p(\square)
$$

Prior to that: $g \Longrightarrow \square=\cos (\triangle)$

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules
Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

- $x=\pi / 4 \Longrightarrow 2 x=2 \cdot \pi / 4=\pi / 2 \Longrightarrow$ Double the input: $f(\square)=2 \square$
- $2 x=\pi / 2 \Longrightarrow \cos (2 x)=\cos (\pi / 2)=0 \Longrightarrow g(\square)=\cos (\square)$
- $\cos (2 x)=0 \Longrightarrow(\cos (2 x))^{3}=0^{3}=0 \Longrightarrow$ Cube: $p(\square)=\square^{3}$

Last operation performed: p

$$
h(x)=\square^{3}=p(\square)
$$

Prior to that: $g \Longrightarrow \square=\cos (\triangle)$

$$
h(x)=p(\square)=p(g(\triangle))
$$

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules
Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

- $x=\pi / 4 \Longrightarrow 2 x=2 \cdot \pi / 4=\pi / 2 \Longrightarrow$ Double the input: $f(\square)=2 \square$
- $2 x=\pi / 2 \Longrightarrow \cos (2 x)=\cos (\pi / 2)=0 \Longrightarrow g(\square)=\cos (\square)$
- $\cos (2 x)=0 \Longrightarrow(\cos (2 x))^{3}=0^{3}=0 \Longrightarrow$ Cube: $p(\square)=\square^{3}$

Last operation performed: p

$$
h(x)=\square^{3}=p(\square)
$$

Prior to that: $g \Longrightarrow \square=\cos (\triangle)$

$$
h(x)=p(\square)=p(g(\triangle))
$$

First operation performed: $f \Longrightarrow \triangle=f(x)=2 x$

Decomposition of functions

$$
h(x)=\cos ^{3}(2 x)=(\cos (2 x))^{3}
$$

Write as a composition of simpler rules
Strategy: What operations are performed?
Example: To compute $h(\pi / 4)$:

- $x=\pi / 4 \Longrightarrow 2 x=2 \cdot \pi / 4=\pi / 2 \Longrightarrow$ Double the input: $f(\square)=2 \square$
- $2 x=\pi / 2 \Longrightarrow \cos (2 x)=\cos (\pi / 2)=0 \Longrightarrow g(\square)=\cos (\square)$
- $\cos (2 x)=0 \Longrightarrow(\cos (2 x))^{3}=0^{3}=0 \Longrightarrow$ Cube: $p(\square)=\square^{3}$

Last operation performed: p

$$
h(x)=\square^{3}=p(\square)
$$

Prior to that: $g \Longrightarrow \square=\cos (\triangle)$

$$
h(x)=p(\square)=p(g(\triangle))
$$

First operation performed: $f \Longrightarrow \triangle=f(x)=2 x$

$$
h(x)=p(\square)=p(g(\triangle))=p(g(f(x)) \Longleftrightarrow h=p \circ g \circ f
$$

