Operations with Functions Math 140 - Calculus I

Catalin Zara

UMass Boston

September 10, 2009

 $A \subseteq \mathbb{R}$, subset of real numbers $f, g \colon A \to \mathbb{R}$, two numerical functions

- $A \subseteq \mathbb{R}$, subset of real numbers $f, g \colon A \to \mathbb{R}$, two numerical functions
 - Sum of functions

 $A \subseteq \mathbb{R}$, subset of real numbers $f, g: A \to \mathbb{R}$, two numerical functions

• Sum of functions

 $h=f+g,\,h\colon A\to\mathbb{R},\,h(x)=f(x)+g(x)$

 $A \subseteq \mathbb{R}$, subset of real numbers $f, g: A \to \mathbb{R}$, two numerical functions

• Sum of functions

 $h=f+g,\,h\colon A\to\mathbb{R},\,h(x)=f(x)+g(x)$

• Difference of functions

 $A \subseteq \mathbb{R}$, subset of real numbers $f, g: A \to \mathbb{R}$, two numerical functions

• Sum of functions

 $h=f+g,\,h\colon A\to\mathbb{R},\,h(x)=f(x)+g(x)$

• Difference of functions

 $h = f - g, \ h \colon A \to \mathbb{R}, \ h(x) = f(x) - g(x)$

 $A \subseteq \mathbb{R}$, subset of real numbers $f, g: A \to \mathbb{R}$, two numerical functions

• Sum of functions

 $h=f+g,\,h\colon A\to\mathbb{R},\,h(x)=f(x)+g(x)$

• Difference of functions

 $h=f-g,\,h\colon A\to \mathbb{R},\,h(x)=f(x)-g(x)$

• Product of functions

 $A \subseteq \mathbb{R}$, subset of real numbers $f, g: A \to \mathbb{R}$, two numerical functions

• Sum of functions

 $h=f+g,\,h\colon A\to\mathbb{R},\,h(x)=f(x)+g(x)$

• Difference of functions

 $h=f-g,\,h\colon A\to \mathbb{R},\,h(x)=f(x)-g(x)$

• Product of functions $h = fg = f \cdot g, h \colon A \to \mathbb{R}, h(x) = f(x) \cdot g(x)$

 $A \subseteq \mathbb{R}$, subset of real numbers $f, g: A \to \mathbb{R}$, two numerical functions

• Sum of functions

 $h=f+g,\,h\colon A\to\mathbb{R},\,h(x)=f(x)+g(x)$

• Difference of functions

 $h=f-g,\,h\colon A\to\mathbb{R},\,h(x)=f(x)-g(x)$

- Product of functions $h = fg = f \cdot g, h \colon A \to \mathbb{R}, h(x) = f(x) \cdot g(x)$
- Ratio of functions

 $A \subseteq \mathbb{R}$, subset of real numbers $f, g: A \to \mathbb{R}$, two numerical functions

• Sum of functions

 $h=f+g,\,h\colon A\to\mathbb{R},\,h(x)=f(x)+g(x)$

• Difference of functions

 $h=f-g,\,h\colon A\to\mathbb{R},\,h(x)=f(x)-g(x)$

- Product of functions $h = fg = f \cdot g, h \colon A \to \mathbb{R}, h(x) = f(x) \cdot g(x)$
- Ratio of functions $h = f/g, h: B \to \mathbb{R}, h(x) = f(x)/g(x)$

 $A \subseteq \mathbb{R}$, subset of real numbers $f, g: A \to \mathbb{R}$, two numerical functions

• Sum of functions

 $h=f+g,\,h\colon A\to\mathbb{R},\,h(x)=f(x)+g(x)$

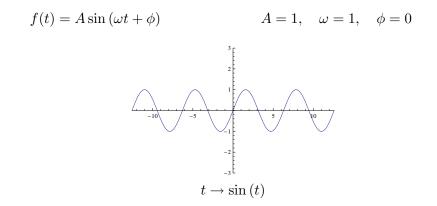
• Difference of functions

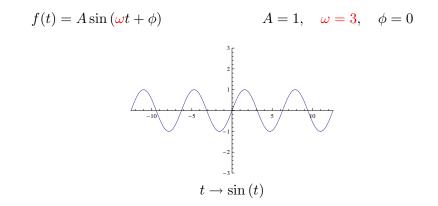
 $h = f - g, \ h \colon A \to \mathbb{R}, \ h(x) = f(x) - g(x)$

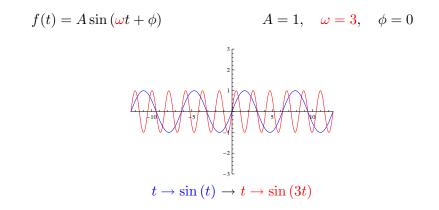
- Product of functions $h = fg = f \cdot g, h \colon A \to \mathbb{R}, h(x) = f(x) \cdot g(x)$
- Ratio of functions
 h = f/g, h: B → ℝ, h(x) = f(x)/g(x)
 Defined only on B = A \ {x | g(x) = 0}

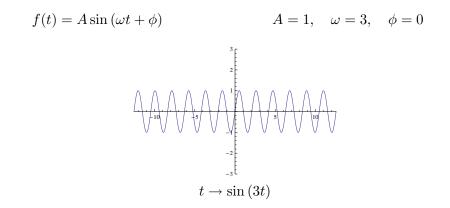
$$f(t) = A\sin\left(\omega t + \phi\right)$$

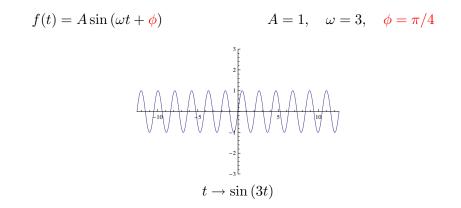
$$f(t) = A\sin(\omega t + \phi) \qquad \qquad A = 1, \quad \omega = 1, \quad \phi = 0$$

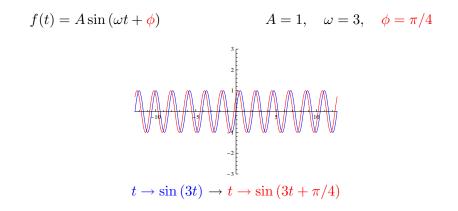


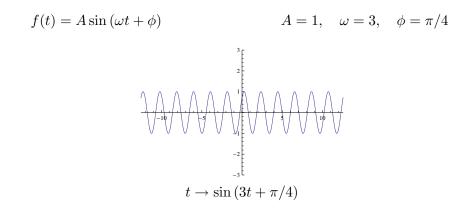


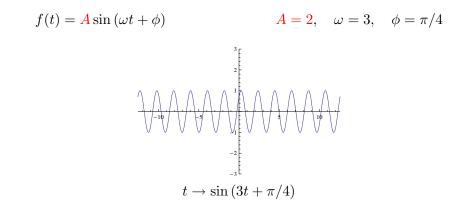












 $A = 2, \quad \omega = 3, \quad \phi = \pi/4$ $f(t) = \mathbf{A}\sin\left(\omega t + \phi\right)$ V_2 $t \rightarrow \sin(3t + \pi/4) \rightarrow t \rightarrow 2\sin(3t + \pi/4)$

 $A = 2, \quad \omega = 3, \quad \phi = \pi/4$ $f(t) = A\sin\left(\omega t + \phi\right)$ ³ F -1010 -3 $t \rightarrow 2\sin\left(3t + \pi/4\right)$

A ball is thrown vertically up from a height of 1m, with an initial velocity of $10\mathrm{m/s}.$

A ball is thrown vertically up from a height of 1m, with an initial velocity of 10m/s. Let h(t) be the height of the ball after t seconds, measured from the ground.

• Dependent variable:

A ball is thrown vertically up from a height of 1m, with an initial velocity of 10m/s. Let h(t) be the height of the ball after t seconds, measured from the ground.

 \bullet Dependent variable: height, h

A ball is thrown vertically up from a height of 1m, with an initial velocity of 10m/s. Let h(t) be the height of the ball after t seconds, measured from the ground.

• Dependent variable: height, h (in meters)

- Dependent variable: height, h (in meters)
- Independent variable:

- Dependent variable: height, h (in meters)
- Independent variable: time, t

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment?

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

A ball is thrown vertically up from a height of 1m, with an initial velocity of 10m/s. Let h(t) be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$h(t) = h_0 + v_0 t - \frac{1}{2}gt^2$$

• Parameters

A ball is thrown vertically up from a height of 1m, with an initial velocity of 10m/s. Let h(t) be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$h(t) = h_0 + v_0 t - \frac{1}{2}gt^2$$

• Parameters

▶
$$h_0 =$$

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$h(t) = h_0 + v_0 t - \frac{1}{2}gt^2$$

- Parameters
 - $h_0 = \text{initial height}$

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$h(t) = h_0 + v_0 t - \frac{1}{2}gt^2$$

- Parameters
 - $h_0 = \text{initial height} = 1 \text{m}$

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$h(t) = h_0 + v_0 t - \frac{1}{2}gt^2$$

- Parameters
 - $h_0 = \text{initial height} = 1 \text{m}$

▶
$$v_0 =$$

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$h(t) = h_0 + v_0 t - \frac{1}{2}gt^2$$

- Parameters
 - $h_0 = \text{initial height} = 1 \text{m}$
 - $v_0 = \text{initial velocity}$

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$h(t) = h_0 + v_0 t - \frac{1}{2}gt^2$$

- Parameters
 - $h_0 = \text{initial height} = 1 \text{m}$
 - $v_0 = \text{initial velocity} = 10 \text{m/s}$

A ball is thrown vertically up from a height of 1m, with an initial velocity of 10m/s. Let h(t) be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$h(t) = h_0 + v_0 t - \frac{1}{2}gt^2$$

• Parameters

•
$$h_0 = \text{initial height} = 1 \text{m}$$

•
$$v_0 = \text{initial velocity} = 10 \text{m/s}$$

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$h(t) = h_0 + v_0 t - \frac{1}{2}gt^2$$

- Parameters
 - $h_0 = \text{initial height} = 1 \text{m}$
 - $v_0 = \text{initial velocity} = 10 \text{m/s}$
 - g =gravitational acceleration

A ball is thrown vertically up from a height of 1m, with an initial velocity of 10m/s. Let h(t) be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$h(t) = h_0 + v_0 t - \frac{1}{2}gt^2$$

• Parameters

- $h_0 = \text{initial height} = 1 \text{m}$
- $v_0 = \text{initial velocity} = 10 \text{m/s}$
- $g = \text{gravitational acceleration} \simeq 10 m/s^2$

A ball is thrown vertically up from a height of 1m, with an initial velocity of 10m/s. Let h(t) be the height of the ball after t seconds, measured from the ground.

- Dependent variable: height, h (in meters)
- Independent variable: time, t (in seconds)
- Rule of assignment? Law of Physics

$$h(t) = h_0 + v_0 t - \frac{1}{2}gt^2$$

• Parameters

- $h_0 = \text{initial height} = 1 \text{m}$
- $v_0 = \text{initial velocity} = 10 \text{m/s}$
- $g = \text{gravitational acceleration} \simeq 10 m/s^2$

$$h(t) = 1 + 10t - 5t^2$$

$$h(t) = 1 + 10t - 5t^2$$

$$h(t) = 1 + 10t - 5t^2$$

Graph:

$$h(t) = 1 + 10t - 5t^2$$

Graph: parabola \Leftarrow quadratic function

$$h(t) = 1 + 10t - 5t^2$$

Graph: parabola \Leftarrow quadratic function From $f(t) = t^2$ to $h(t) = 1 + 10t - 5t^2$

$$h(t) = 1 + 10t - 5t^2$$

Graph: parabola \Leftarrow quadratic function From $f(t) = t^2$ to $h(t) = 1 + 10t - 5t^2$ Completing the square

$$h(t) = 1 + 10t - 5t^2$$

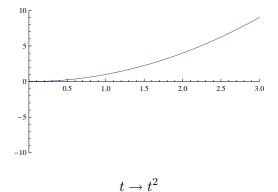
Graph: parabola \Leftarrow quadratic function From $f(t) = t^2$ to $h(t) = 1 + 10t - 5t^2$ Completing the square

$$h(t) = 1 + 10t - 5t^{2}$$

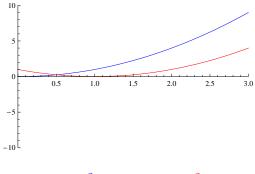
= $-5t^{2} + 10t + 1 =$
= $-5(t^{2} - 2t) + 1 =$
= $-5(t^{2} - 2t + 1 - 1) + 1 =$
= $-5((t - 1)^{2} - 1) + 1 =$
= $-5(t - 1)^{2} + 6$

$$h(t) = 1 + 10t - 5t^{2} = -5(t - 1)^{2} + 6$$

$$h(t) = 1 + 10t - 5t^{2} = -5(t - 1)^{2} + 6$$

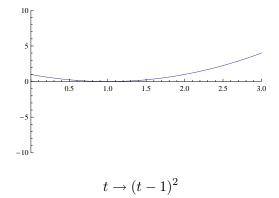


$$h(t) = 1 + 10t - 5t^2 = -5(t - 1)^2 + 6$$

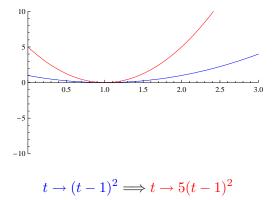


$$t \to t^2 \Longrightarrow t \to (t-1)^2$$

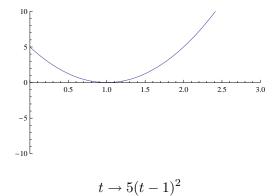
$$h(t) = 1 + 10t - 5t^{2} = -5(t - 1)^{2} + 6$$



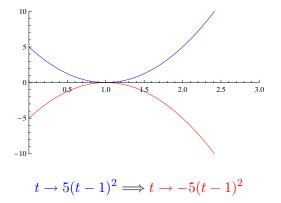
$$h(t) = 1 + 10t - 5t^2 = -5(t - 1)^2 + 6$$



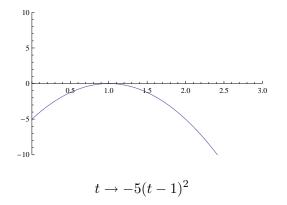
$$h(t) = 1 + 10t - 5t^{2} = -5(t - 1)^{2} + 6$$



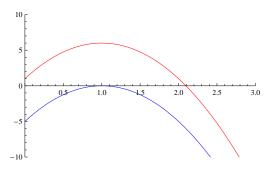
$$h(t) = 1 + 10t - 5t^2 = -5(t - 1)^2 + 6$$



$$h(t) = 1 + 10t - 5t^{2} = -5(t - 1)^{2} + 6$$

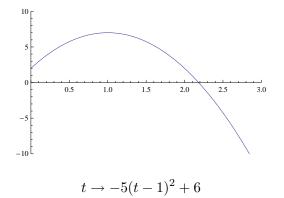


$$h(t) = 1 + 10t - 5t^2 = -5(t - 1)^2 + 6$$

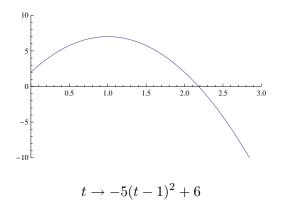


$$t \to -5(t-1)^2 \Longrightarrow t \to 6 - 5(t-1)^2$$

$$h(t) = 1 + 10t - 5t^{2} = -5(t - 1)^{2} + 6$$

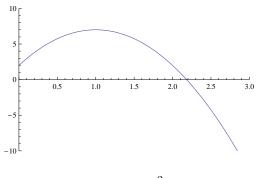


$$h(t) = 1 + 10t - 5t^{2} = -5(t - 1)^{2} + 6$$



Domain?

$$h(t) = 1 + 10t - 5t^{2} = -5(t - 1)^{2} + 6$$



$$t \to -5(t-1)^2 + 6$$

Graph vs. Trajectory

Catalin Zara (UMB)

Operations

• Rule f: subtract one unit from the input

• Rule f: subtract one unit from the input $\Box \xrightarrow{f} \Box - 1 \Longleftrightarrow f(\Box) = \Box - 1$

- Rule f: subtract one unit from the input $\Box \xrightarrow{f} \Box - 1 \Longleftrightarrow f(\Box) = \Box - 1$
- Rule g: square the input

- Rule f: subtract one unit from the input $\Box \xrightarrow{f} \Box - 1 \Longleftrightarrow f(\Box) = \Box - 1$
- Rule g: square the input

$$\Box \xrightarrow{g} \Box^2 \Longleftrightarrow g(\Box) = \Box^2$$

- Rule f: subtract one unit from the input $\Box \xrightarrow{f} \Box - 1 \Longleftrightarrow f(\Box) = \Box - 1$
- Rule g: square the input

$$\Box \xrightarrow{g} \Box^2 \Longleftrightarrow g(\Box) = \Box^2$$

• Rule h: First apply rule f, then apply rule g

- Rule f: subtract one unit from the input $\Box \xrightarrow{f} \Box - 1 \Longleftrightarrow f(\Box) = \Box - 1$
- Rule g: square the input

$$\Box \xrightarrow{g} \Box^2 \Longleftrightarrow g(\Box) = \Box^2$$

• Rule h: First apply rule f, then apply rule g Input for h: x

- Rule f: subtract one unit from the input $\Box \xrightarrow{f} \Box - 1 \Longleftrightarrow f(\Box) = \Box - 1$
- Rule g: square the input

$$\Box \xrightarrow{g} \Box^2 \Longleftrightarrow g(\Box) = \Box^2$$

Rule h: First apply rule f, then apply rule g
 Input for h: x ⇒ Input for f: x

- Rule f: subtract one unit from the input $\Box \xrightarrow{f} \Box - 1 \Longleftrightarrow f(\Box) = \Box - 1$
- Rule g: square the input

$$\Box \xrightarrow{g} \Box^2 \Longleftrightarrow g(\Box) = \Box^2$$

• Rule h: First apply rule f, then apply rule gInput for h: $x \Longrightarrow$ Input for f: x

$$x \xrightarrow{f} x - 1 = x - 1$$

- Rule f: subtract one unit from the input $\Box \xrightarrow{f} \Box - 1 \Longleftrightarrow f(\Box) = \Box - 1$
- Rule g: square the input

$$\Box \xrightarrow{g} \Box^2 \Longleftrightarrow g(\Box) = \Box^2$$

• Rule h: First apply rule f, then apply rule gInput for h: $x \Longrightarrow$ Input for f: x

$$x \xrightarrow{f} x - 1 = x - 1$$

Output of $f: x - 1 \Longrightarrow$ Input for g: x - 1

- Rule f: subtract one unit from the input $\Box \xrightarrow{f} \Box - 1 \Longleftrightarrow f(\Box) = \Box - 1$
- Rule g: square the input

$$\Box \xrightarrow{g} \Box^2 \Longleftrightarrow g(\Box) = \Box^2$$

• Rule h: First apply rule f, then apply rule gInput for h: $x \Longrightarrow$ Input for f: x

$$x \xrightarrow{f} x - 1 = x - 1$$

Output of $f: x - 1 \Longrightarrow$ Input for g: x - 1

$$\boxed{x-1} \xrightarrow{g} \boxed{x-1}^2 = (x-1)^2$$

- Rule f: subtract one unit from the input $\Box \xrightarrow{f} \Box - 1 \Longleftrightarrow f(\Box) = \Box - 1$
- Rule g: square the input

$$\Box \xrightarrow{g} \Box^2 \Longleftrightarrow g(\Box) = \Box^2$$

• Rule h: First apply rule f, then apply rule gInput for h: $x \Longrightarrow$ Input for f: x

$$x \xrightarrow{f} x - 1 = x - 1$$

Output of $f: x - 1 \Longrightarrow$ Input for g: x - 1

$$\boxed{x-1} \xrightarrow{g} \boxed{x-1}^2 = (x-1)^2$$

$$x \xrightarrow{f} x-1 \xrightarrow{g} (x-1)^2 \Longrightarrow h(x) = (x-1)^2$$

$$x \xrightarrow{f} x-1 \xrightarrow{g} (x-1)^2 \Longrightarrow h(x) = (x-1)^2$$

• $h = g \circ f$: composition of g and f h(x) = g(f(x))

$$x \xrightarrow{f} x-1 \xrightarrow{g} (x-1)^2 \Longrightarrow h(x) = (x-1)^2$$

- $h = g \circ f$: composition of g and f h(x) = g(f(x))
- First function applied = innermost = last mentioned

$$x \xrightarrow{f} x-1 \xrightarrow{g} (x-1)^2 \Longrightarrow h(x) = (x-1)^2$$

- $h = g \circ f$: composition of g and f h(x) = g(f(x))
- First function applied = innermost = last mentioned
- Order matters:

$$f(g(x)) =$$

$$x \xrightarrow{f} x-1 \xrightarrow{g} (x-1)^2 \Longrightarrow h(x) = (x-1)^2$$

- $h = g \circ f$: composition of g and f h(x) = g(f(x))
- First function applied = innermost = last mentioned
- Order matters:

$$f(g(x)) = x^2 - 1 \neq (x - 1)^2 = g(f(x))$$

• Composition $g \circ f$ only makes sense when

$$x \xrightarrow{f} x-1 \xrightarrow{g} (x-1)^2 \Longrightarrow h(x) = (x-1)^2$$

- $h = g \circ f$: composition of g and f h(x) = g(f(x))
- First function applied = innermost = last mentioned
- Order matters:

$$f(g(x)) = x^2 - 1 \neq (x - 1)^2 = g(f(x))$$

• Composition $g \circ f$ only makes sense when Potential outputs of f are valid inputs for g

$$x \xrightarrow{f} x-1 \xrightarrow{g} (x-1)^2 \Longrightarrow h(x) = (x-1)^2$$

- $h = g \circ f$: composition of g and f h(x) = g(f(x))
- First function applied = innermost = last mentioned
- Order matters:

$$f(g(x)) = x^2 - 1 \neq (x - 1)^2 = g(f(x))$$

 Composition g

 f only makes sense when Potential outputs of f are valid inputs for g Range of f is included in domain of g

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

Write as a composition of simpler rules

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

Write as a composition of simpler rules Strategy: What operations are performed?

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

$$h(x) = \cos^3 (2x) = (\cos (2x))^3$$

•
$$x = \pi/4 \Longrightarrow 2x = 2 \cdot \pi/4 = \pi/2$$

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

•
$$x = \pi/4 \Longrightarrow 2x = 2 \cdot \pi/4 = \pi/2 \Longrightarrow$$
 Double the input:

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

•
$$x = \pi/4 \Longrightarrow 2x = 2 \cdot \pi/4 = \pi/2 \Longrightarrow$$
 Double the input: $f(\Box) = 2\Box$

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

•
$$x = \pi/4 \Longrightarrow 2x = 2 \cdot \pi/4 = \pi/2 \Longrightarrow$$
 Double the input: $f(\Box) = 2\Box$

•
$$2x = \pi/2 \Longrightarrow \cos(2x) = \cos(\pi/2) = 0$$

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

•
$$x = \pi/4 \Longrightarrow 2x = 2 \cdot \pi/4 = \pi/2 \Longrightarrow$$
 Double the input: $f(\Box) = 2\Box$

•
$$2x = \pi/2 \Longrightarrow \cos(2x) = \cos(\pi/2) = 0 \Longrightarrow g(\Box) = \cos(\Box)$$

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

•
$$x = \pi/4 \Longrightarrow 2x = 2 \cdot \pi/4 = \pi/2 \Longrightarrow$$
 Double the input: $f(\Box) = 2\Box$
• $2x = \pi/2 \Longrightarrow \cos(2x) = \cos(\pi/2) = 0 \Longrightarrow g(\Box) = \cos(\Box)$
• $\cos(2x) = 0 \Longrightarrow (\cos(2x))^3 = 0^3 = 0$

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

•
$$x = \pi/4 \Longrightarrow 2x = 2 \cdot \pi/4 = \pi/2 \Longrightarrow$$
 Double the input: $f(\Box) = 2\Box$
• $2x = \pi/2 \Longrightarrow \cos(2x) = \cos(\pi/2) = 0 \Longrightarrow g(\Box) = \cos(\Box)$
• $\cos(2x) = 0 \Longrightarrow (\cos(2x))^3 = 0^3 = 0 \Longrightarrow$ Cube:

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

•
$$x = \pi/4 \Longrightarrow 2x = 2 \cdot \pi/4 = \pi/2 \Longrightarrow$$
 Double the input: $f(\Box) = 2\Box$
• $2x = \pi/2 \Longrightarrow \cos(2x) = \cos(\pi/2) = 0 \Longrightarrow g(\Box) = \cos(\Box)$
• $\cos(2x) = 0 \Longrightarrow (\cos(2x))^3 = 0^3 = 0 \Longrightarrow$ Cube: $p(\Box) = \Box^3$

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

•
$$x = \pi/4 \Longrightarrow 2x = 2 \cdot \pi/4 = \pi/2 \Longrightarrow$$
 Double the input: $f(\Box) = 2\Box$
• $2x = \pi/2 \Longrightarrow \cos(2x) = \cos(\pi/2) = 0 \Longrightarrow g(\Box) = \cos(\Box)$
• $\cos(2x) = 0 \Longrightarrow (\cos(2x))^3 = 0^3 = 0 \Longrightarrow$ Cube: $p(\Box) = \Box^3$
wast operation performed: p

$$h(x) = \Box^3 = p(\Box)$$

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

Write as a composition of simpler rules Strategy: What operations are performed? Example: To compute $h(\pi/4)$:

$$h(x) = \Box^3 = p(\Box)$$

Prior to that: $g \Longrightarrow \Box = \cos(\triangle)$

L

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

Write as a composition of simpler rules Strategy: What operations are performed? Example: To compute $h(\pi/4)$:

$$h(x) = \Box^3 = p(\Box)$$

Prior to that: $g \Longrightarrow \Box = \cos(\triangle)$

$$h(x)=p(\Box)=p(g(\bigtriangleup))$$

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

Write as a composition of simpler rules Strategy: What operations are performed? Example: To compute $h(\pi/4)$:

$$h(x) = \Box^3 = p(\Box)$$

Prior to that: $g \Longrightarrow \Box = \cos(\triangle)$

$$h(x) = p(\Box) = p(g(\bigtriangleup))$$

First operation performed: $f \Longrightarrow \triangle = f(x) = 2x$

$$h(x) = \cos^3(2x) = (\cos(2x))^3$$

Write as a composition of simpler rules Strategy: What operations are performed? Example: To compute $h(\pi/4)$:

•
$$x = \pi/4 \Longrightarrow 2x = 2 \cdot \pi/4 = \pi/2 \Longrightarrow$$
 Double the input: $f(\Box) = 2\Box$
• $2x = \pi/2 \Longrightarrow \cos(2x) = \cos(\pi/2) = 0 \Longrightarrow g(\Box) = \cos(\Box)$
• $\cos(2x) = 0 \Longrightarrow (\cos(2x))^3 = 0^3 = 0 \Longrightarrow$ Cube: $p(\Box) = \Box^3$
ast operation performed: n

Last operation performed: p

$$h(x) = \Box^3 = p(\Box)$$

Prior to that: $g \Longrightarrow \Box = \cos(\triangle)$

$$h(x)=p(\Box)=p(g(\bigtriangleup))$$

First operation performed: $f \Longrightarrow \triangle = f(x) = 2x$

$$h(x) = p(\Box) = p(g(\triangle)) = p(g(f(x)) \Longleftrightarrow h = p \circ g \circ f$$