UMass Boston, Fall 2009 Math 140: Calculus I Notes by: Catalin Zara

CONTENTS

1.]	Limits	1
1.1.	Instantaneous velocity	1
1.2.	Definition of Limit	2
1.3.	Slope of tangent line	2
1.4.	Second example	3
1.5.	Determining limits	4

1. LIMITS

1.1. Instantaneous velocity. Object thrown vertically from height $h_0 = 1 m$ and with initial velocity $v_0 = 10 m/s$. Height (in m) at time t (in s):

$$h(t) = h_0 + v_0 t - \frac{1}{2}gt^2 = 1 + 10t - 5t^2$$

with the approximation $g \simeq 10 m/s^2$ for the gravitational acceleration.

Question: What is the velocity at time t = 0.5 s? Average velocity over time interval $\left[\frac{1}{2}, \frac{1}{2} + T\right]$:

change in position $h(\frac{1}{2} + T) - h(\frac{1}{2}) = h(\frac{1}{2} + T) - h(\frac{1}{2})$

$$\frac{\text{change in position}}{\text{change in time}} = \frac{n(2+1) - n(2)}{\frac{1}{2} + T - \frac{1}{2}} = \frac{n(2+1) - n(2)}{T}$$

Velocity at $t = \frac{1}{2}$ = Instantaneous velocity at time moment $t = \frac{1}{2}$ Estimated by average velocity over $[\frac{1}{2}, \frac{1}{2} + T]$ for T close to 0. Problem: Can't plug in T = 0 (division by 0). Solution: Look what happens around T = 0 but not at T = 0.

Algebraic computation: I = 0 but not at I

$$h\left(\frac{1}{2}+T\right) - h\left(\frac{1}{2}\right) = \left(1 + 10(\frac{1}{2}+T) - 5(\frac{1}{2}+T)^2\right) - \left(1 + 10\frac{1}{2} - 5(\frac{1}{2})^2\right) = 5T - 5T^2.$$

Then: Average velocity on $\left[\frac{1}{2}, \frac{1}{2} + T\right]$:

$$\frac{h(\frac{1}{2}+T) - h(\frac{1}{2})}{T} = \frac{5T - 5T^2}{T} = 5 - 5T$$

Question: What value do we *expect* for 5 - 5T as T is close to 0? Graphically: 5 - 5T is close to 5 as T is close to 0.

Question: Can we keep the average velocity within 0.01 from 5?

$$\begin{array}{l} 5 - 0.01 < 5 - 5T < 5 + 0.01 \Longleftrightarrow \\ -0.01 < -5T < 0.01 \Longleftrightarrow \\ -0.002 < T < 0.002 \end{array}$$

Hence if we keep T within 0.002 from 0, the average velocity on $\left[\frac{1}{2}, \frac{1}{2} + T\right]$ stays within 0.01 of 5. Can we do better that 0.01? Yes, if we keep T even closer to 0.

1.2. **Definition of Limit.** Mathematical Concept:

Limit of a function at a point.

Ingredients:

• point a;

• Function f, defined around a but not necessarily at a.

Definition: A value L is the limit of the function f at the point a(limit of f(x) as x approaches a) if

we can keep the values of f(x) as close to L as we want

by keeping the values of x close enough to a, but not equal to a.

Notation:

$$L = \lim_{x \to a} f(x)$$

Remarks:

- The value f(a), if the function is defined at a, is irrelevant.
- If such a value L exists, it is unique (justifying the limit and not a limit.)

With the new terminology and notation:

$$\lim_{T \to 0} (5 - 5T) = 5$$

1.3. Slope of tangent line. Another interpretation:

Plot the graph of $h(t) = 1 + 10t - 5t^2$. Average velocity over $\left[\frac{1}{2}, \frac{1}{2} + T\right]$:

$$\frac{h(\frac{1}{2}+T) - h(\frac{1}{2})}{\frac{1}{2} + T - \frac{1}{2}}$$

and that is the slope of the line through the points $P = (\frac{1}{2}, h(\frac{1}{2}))$ and $Q = (\frac{1}{2} + T, h(\frac{1}{2} + T))$, which is secant to the graph.

As $T \to 0$, the secant line appears to become tangent to the graph at the point *P*. Hence:

Average velocity
$$\iff$$
 Slope of secant line $\iff \frac{h(\frac{1}{2}+T)-h(\frac{1}{2})}{\frac{1}{2}+T-\frac{1}{2}}$
Instantaneous velocity \iff Slope of tangent line $\iff \lim_{T \to 0} \frac{h(\frac{1}{2}+T)-h(\frac{1}{2})}{\frac{1}{2}+T-\frac{1}{2}}$

1.4. Second example. Heavy object attached to horizontal spring. At natural length, give an impulse. Object starts moving with initial velocity v_0 .

Motion: oscillation about the initial position.

x(t) = position (in cm) at time t (in s).

Measured from initial position (x(0) = 0) in the direction of v_0 . Possible rule for x: (from laws of physics and higher math):

$$x(t) = 2\sin\left(3\pi t\right)$$

Question: What was the initial velocity v_0 ? $v_0 =$ Instantaneous velocity at time t = 0

$$v_0 = \lim_{T \to 0} \frac{x(T) - x(0)}{T - 0} = \lim_{T \to 0} \frac{2\sin(3\pi T)}{T}$$

Problems:

- Can't plug in T = 0;
- Can't use algebra to simplify.

Solution: Try to estimate the limit through numerical approximations.

$$T = 0.01 \Longrightarrow \frac{2\sin(3\pi T)}{T} \simeq 18.8217...$$
$$T = 0.001 \Longrightarrow \frac{2\sin(3\pi T)}{T} \simeq 18.8493...$$
$$T = 0.0001 \Longrightarrow \frac{2\sin(3\pi T)}{T} \simeq 18.8496...$$

It appears that as T is close to 0, the average velocity on [0, T] is clusters around some value L and $L \simeq 18.849...$ It is reasonable to assume that

$$v_0 = \lim_{T \to 0} \frac{2\sin(3\pi T)}{T} \simeq 18.849...\,cm/s \;.$$

1.5. Determining limits.

- Graphically
- Analytically
- Numerically

Major Warning: If we know that

$$\lim_{x \to a} f(x)$$

exists, we can estimate it numerically by using values of x close to a. Otherwise, the numerical approach can produce false readings:

Example: Determine

$$\lim_{x \to 0} \sin\left(\frac{\pi}{x}\right) \,.$$

Use the numerical approach:

$$x = 0.01 \Longrightarrow \sin\left(\frac{\pi}{x}\right) = \sin 100\pi = 0$$
$$x = 0.001 \Longrightarrow \sin\left(\frac{\pi}{x}\right) = \sin 1000\pi = 0$$
$$x = 0.0001 \Longrightarrow \sin\left(\frac{\pi}{x}\right) = \sin 10000\pi = 0$$

It **appears** that

$$\lim_{x \to 0} \sin\left(\frac{\pi}{x}\right)$$

is likely to be 0. However, for

$$x = \frac{2}{5} \Longrightarrow \sin\left(\frac{\pi}{x}\right) = \sin\frac{5\pi}{2} = \sin\frac{\pi}{2} = 1$$
$$x = \frac{2}{2009} \Longrightarrow \sin\left(\frac{\pi}{x}\right) = \sin\frac{2009\pi}{2} = \sin\frac{\pi}{2} = 1$$
$$x = \frac{2}{200009} \Longrightarrow \sin\left(\frac{\pi}{x}\right) = \sin\frac{200009\pi}{2} = \sin\frac{\pi}{2} = 1$$

so now it **appears** that

$$\lim_{x \to 0} \sin\left(\frac{\pi}{x}\right)$$

is likely to be 1.

Conclusion: if by considering different sets of choices (different ways of approaching a) you get conflicting information about the clustering value, then the limit does not exist. Hence:

$$\lim_{x \to 0} \sin\left(\frac{\pi}{x}\right) \,.$$

does not exist.

Potential solution: if unsure about the existence of the limit, check using random values approaching a.

4