UMass Boston, Fall 2009
Math 140: Calculus I
Notes by: Catalin Zara

Tuesday, September 15, 2009
Lecture \# 5
Topic: Limits

Contents

1. Limits 1
1.1. Instantaneous velocity 1
1.2. Definition of Limit 2
1.3. Slope of tangent line 2
1.4. Second example 3
1.5. Determining limits 4

1. Limits

1.1. Instantaneous velocity. Object thrown vertically from height $h_{0}=1 \mathrm{~m}$ and with initial velocity $v_{0}=10 \mathrm{~m} / \mathrm{s}$. Height (in m) at time t (in s):

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g t^{2}=1+10 t-5 t^{2}
$$

with the approximation $g \simeq 10 \mathrm{~m} / \mathrm{s}^{2}$ for the gravitational acceleration.
Question: What is the velocity at time $t=0.5 s$?
Average velocity over time interval $\left[\frac{1}{2}, \frac{1}{2}+T\right]$:

$$
\frac{\text { change in position }}{\text { change in time }}=\frac{h\left(\frac{1}{2}+T\right)-h\left(\frac{1}{2}\right)}{\frac{1}{2}+T-\frac{1}{2}}=\frac{h\left(\frac{1}{2}+T\right)-h\left(\frac{1}{2}\right)}{T}
$$

Velocity at $t=\frac{1}{2}=$ Instantaneous velocity at time moment $t=\frac{1}{2}$
Estimated by average velocity over $\left[\frac{1}{2}, \frac{1}{2}+T\right]$ for T close to 0 .
Problem: Can't plug in $T=0$ (division by 0).
Solution: Look what happens around $T=0$ but not at $T=0$.
Algebraic computation:

$$
\begin{aligned}
h\left(\frac{1}{2}+T\right)-h\left(\frac{1}{2}\right)= & \left(1+10\left(\frac{1}{2}+T\right)-5\left(\frac{1}{2}+T\right)^{2}\right) \\
& -\left(1+10 \frac{1}{2}-5\left(\frac{1}{2}\right)^{2}\right)=5 T-5 T^{2} .
\end{aligned}
$$

Then: Average velocity on $\left[\frac{1}{2}, \frac{1}{2}+T\right]$:

$$
\frac{h\left(\frac{1}{2}+T\right)-h\left(\frac{1}{2}\right)}{T}=\frac{5 T-5 T^{2}}{1}=5-5 T .
$$

Question: What value do we expect for $5-5 T$ as T is close to 0 ?
Graphically: $5-5 T$ is close to 5 as T is close to 0 .
Question: Can we keep the average velocity within 0.01 from 5 ?

$$
\begin{aligned}
5-0.01 & <5-5 T<5+0.01 \Longleftrightarrow \\
-0.01 & <-5 T<0.01 \Longleftrightarrow \\
-0.002 & <T<0.002
\end{aligned}
$$

Hence if we keep T within 0.002 from 0 , the average velocity on $\left[\frac{1}{2}, \frac{1}{2}+T\right]$ stays within 0.01 of 5 .

Can we do better that 0.01 ? Yes, if we keep T even closer to 0 .
1.2. Definition of Limit. Mathematical Concept:

Limit of a function at a point.
Ingredients:

- point a;
- Function f, defined around a but not necessarily at a.

Definition: A value L is the limit of the function f at the point a (limit of $f(x)$ as x approaches a) if
we can keep the values of $f(x)$ as close to L as we want by keeping the values of x close enough to a, but not equal to a.

Notation:

$$
L=\lim _{x \rightarrow a} f(x)
$$

Remarks:

- The value $f(a)$, if the function is defined at a, is irrelevant.
- If such a value L exists, it is unique (justifying the limit and not a limit.)
With the new terminology and notation:

$$
\lim _{T \rightarrow 0}(5-5 T)=5
$$

1.3. Slope of tangent line. Another interpretation:

Plot the graph of $h(t)=1+10 t-5 t^{2}$.
Average velocity over $\left[\frac{1}{2}, \frac{1}{2}+T\right]$:

$$
\frac{h\left(\frac{1}{2}+T\right)-h\left(\frac{1}{2}\right)}{\frac{1}{2}+T-\frac{1}{2}}
$$

and that is the slope of the line through the points $P=\left(\frac{1}{2}, h\left(\frac{1}{2}\right)\right)$ and $Q=\left(\frac{1}{2}+T, h\left(\frac{1}{2}+T\right)\right)$, which is secant to the graph.

As $T \rightarrow 0$, the secant line appears to become tangent to the graph at the point P. Hence:

$$
\begin{aligned}
& \text { Average velocity } u m \text { Slope of secant line } u \rightsquigarrow \frac{h\left(\frac{1}{2}+T\right)-h\left(\frac{1}{2}\right)}{\frac{1}{2}+T-\frac{1}{2}} \\
& \text { Instantaneous velocity } \leadsto<\text { Slope of tangent line } \rightsquigarrow \lim _{T \rightarrow 0} \frac{h\left(\frac{1}{2}+T\right)-h\left(\frac{1}{2}\right)}{\frac{1}{2}+T-\frac{1}{2}}
\end{aligned}
$$

1.4. Second example. Heavy object attached to horizontal spring. At natural length, give an impulse. Object starts moving with initial velocity v_{0}.

Motion: oscillation about the initial position.
$x(t)=$ position (in cm) at time $t($ in $s)$.
Measured from initial position $(x(0)=0)$ in the direction of v_{0}.
Possible rule for x : (from laws of physics and higher math):

$$
x(t)=2 \sin (3 \pi t)
$$

Question: What was the initial velocity v_{0} ?
$v_{0}=$ Instantaneous velocity at time $t=0$

$$
v_{0}=\lim _{T \rightarrow 0} \frac{x(T)-x(0)}{T-0}=\lim _{T \rightarrow 0} \frac{2 \sin (3 \pi T)}{T}
$$

Problems:

- Can't plug in $T=0$;
- Can't use algebra to simplify.

Solution: Try to estimate the limit through numerical approximations.

$$
\begin{gathered}
T=0.01 \Longrightarrow \frac{2 \sin (3 \pi T)}{T} \simeq 18.8217 \ldots \\
T=0.001 \Longrightarrow \frac{2 \sin (3 \pi T)}{T} \simeq 18.8493 \ldots \\
T=0.0001 \Longrightarrow \frac{2 \sin (3 \pi T)}{T} \simeq 18.8496 \ldots
\end{gathered}
$$

It appears that as T is close to 0 , the average velocity on $[0, T]$ is clusters around some value L and $L \simeq 18.849 \ldots$. It is reasonable to assume that

$$
v_{0}=\lim _{T \rightarrow 0} \frac{2 \sin (3 \pi T)}{T} \simeq 18.849 \ldots \mathrm{~cm} / \mathrm{s} .
$$

1.5. Determining limits.

- Graphically
- Analytically
- Numerically

Major Warning: If we know that

$$
\lim _{x \rightarrow a} f(x)
$$

exists, we can estimate it numerically by using values of x close to a. Otherwise, the numerical approach can produce false readings:

Example: Determine

$$
\lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right)
$$

Use the numerical approach:

$$
\begin{gathered}
x=0.01 \Longrightarrow \sin \left(\frac{\pi}{x}\right)=\sin 100 \pi=0 \\
x=0.001 \Longrightarrow \sin \left(\frac{\pi}{x}\right)=\sin 1000 \pi=0 \\
x=0.0001 \Longrightarrow \sin \left(\frac{\pi}{x}\right)=\sin 10000 \pi=0
\end{gathered}
$$

It appears that

$$
\lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right)
$$

is likely to be 0 . However, for

$$
\begin{gathered}
x=\frac{2}{5} \Longrightarrow \sin \left(\frac{\pi}{x}\right)=\sin \frac{5 \pi}{2}=\sin \frac{\pi}{2}=1 \\
x=\frac{2}{2009} \Longrightarrow \sin \left(\frac{\pi}{x}\right)=\sin \frac{2009 \pi}{2}=\sin \frac{\pi}{2}=1 \\
x=\frac{2}{200009} \Longrightarrow \sin \left(\frac{\pi}{x}\right)=\sin \frac{200009 \pi}{2}=\sin \frac{\pi}{2}=1
\end{gathered}
$$

so now it appears that

$$
\lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right)
$$

is likely to be 1 .
Conclusion: if by considering different sets of choices (different ways of approaching a) you get conflicting information about the clustering value, then the limit does not exist. Hence:

$$
\lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right)
$$

does not exist.
Potential solution: if unsure about the existence of the limit, check using random values approaching a.

