UMass Boston, Fall 2009
Math 140: Calculus I
Notes by: Catalin Zara

Thursday, September 17, 2009
Lecture \# 6
Topic: More about limits

Contents

1. More About Limits 1
1.1. Infinite Limits 1
1.2. Limits at infinity 2
1.3. General definition. 2
1.4. Side limits 3
1.5. Limits and side limits 3
1.6. Examples. 4

1. More About Limits

Recall: f, function defined around a, but no necessarily at a.

$$
\lim _{x \rightarrow a} f(x)=L
$$

if we can keep the values of $f(x)$ as close to L as we want by keeping the values of x close enough to a, but not equal to a.

1.1. Infinite Limits.

$$
h(x)=\frac{1}{(x-1)^{2}}
$$

What is

$$
\lim _{x \rightarrow 1} h(x) ?
$$

(if it even exists).
Note: h is NOT DEFINED at $x=1$. NO PROBLEM!
The question is: What happens to $h(x)$ as $x \simeq 1$ but $x \neq 1$?
Numerical approach:

$$
\begin{aligned}
x=1.1 & \longrightarrow h(1.1)=100 \\
x=1.01 & \longrightarrow h(1.01)=10000 \\
x=0.999 & \longrightarrow h(0.999)=1000000
\end{aligned}
$$

It appears that the closer to 1 we get, the larger the output is.
Graphical approach: We can keep the values of $h(x)$ as large as we want by keeping the values of x close enough to 1 but not equal to 1 .

There is no finite number L that satisfies the condition of the limit, so one may say that the limit doesn't exist.

Enters ∞. Main ideea:
as large as we want $=$ as close to ∞ as we want
Consequently:

$$
\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}=\infty
$$

Similar definition for $-\infty$:
as close to $-\infty$ as we want $=$ as small (negative) as we want
1.2. Limits at infinity. Behavior of $h(x)$ as x gets larger/smaller Numerically:
Large $x \rightarrow$ large $(x-1)^{2} \rightarrow$ close to 0 values for $h(x)=\frac{1}{(x-1)^{2}}$
Graphically: We can keep $h(x)$ within 0.01 from 0 if we keep x large enough. Works for arbitrary thin horizontal bands around 0 .

Analytically:

$$
\left|\frac{1}{(x-1)^{2}}\right|<10^{-2} \Longleftrightarrow|x-1|>10 \Longleftarrow x>11
$$

If we keep x above 11 , then $h(x)$ is within 0.01 from 0 .
Definition:

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if we can keep the values of $f(x)$ as close to L as we want by keeping the values of x large enough.

- L can be finite or infinite.
- Similar definition for limits at $-\infty$.
1.3. General definition. The definition of

$$
\lim _{x \rightarrow a} f(x)=L
$$

is the same for:

- finite a, L;
- finite a, infinite L;
- infinite a.

Conventions:

$$
\begin{aligned}
& \text { close to } \infty \longleftrightarrow \\
& \text { large } \\
& \text { close to }-\infty \text { small (negative) }
\end{aligned}
$$

1.4. Side limits. How about

$$
\lim _{x \rightarrow 1} \frac{1}{x-1} ?
$$

To the right of 1 : values stay large if x stays close to 1 and $x>1$. To the left of 1 : values stay small if x stays close to 1 and $x<1$.

Conclusion: expected outcome depends on how we approach 1 , hence

$$
\lim _{x \rightarrow 1} \frac{1}{x-1} \quad \text { DOES NOT EXIST. }
$$

But: things are consistent to the right of 1 , and to the left of 1 .
Definition (Side limit). If f is a function defined to the right of a :
A value L is the limit of $f(x)$ as x approaches a from the right if we can keep the values of $f(x)$ as close to L as we want by keeping the values of x close enough to a and strictly greater than a.

Notation:

$$
L=\lim _{x \rightarrow a^{+}} f(x)
$$

Similar definition for

$$
L=\lim _{x \rightarrow a^{-}} f(x)
$$

Replace greater than a by smaller than a.
Remark: L can be finite or infinite.

$$
\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=\infty \quad \lim _{x \rightarrow 1^{-}} \frac{1}{x-1}=-\infty
$$

Side limits at infinity:

- Same definition for

$$
\lim _{x \rightarrow \infty^{-}} f(x)=\lim _{x \rightarrow \infty} f(x) \quad, \quad \lim _{x \rightarrow-\infty^{+}} f(x)=\lim _{x \rightarrow-\infty} f(x)
$$

- The other side limits at infinity don't make sense.
1.5. Limits and side limits. If a is finite and

$$
\lim _{x \rightarrow a} f(x)=L,
$$

then

$$
\lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)
$$

Consequence: If

$$
\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)
$$

(either because their values are different or because one or both don't exist), then

$$
\lim _{x \rightarrow a} f(x) \quad \text { DOESN'T EXIST! }
$$

But: If

$$
\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L
$$

(both exist and their values are equal, finite or infinite), then

$$
\lim _{x \rightarrow a} f(x)=L
$$

Summary. Possible scenarios for

$$
\lim _{x \rightarrow a} f(x):
$$

- Exists and is finite.
- Exists, but is infinite
- Does not exist, because either:
- The side limits are not equal, OR
- One of the side limits doesn't even exist.
1.6. Examples. Consider

$$
f(x)=\left\{\begin{array}{cc}
2 x-1, & \text { if } x<1 \\
2, & \text { if } x=1 \\
x^{2}+2, & \text { if } x>1
\end{array}\right.
$$

Question: What is

$$
\lim _{x \rightarrow 1} f(x) ?
$$

Graphically: The limit does not exist. Argumentation:

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(2 x-1)=1 \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(x^{2}+1\right)=3
\end{aligned}
$$

Since the side limits are not equal, the limit doesn't exist.
How about

$$
g(x)=\left\{\begin{array}{cl}
2 x+1, & \text { if } x<1 \\
2, & \text { if } x=1 \\
x^{2}+2, & \text { if } x>1
\end{array} ?\right.
$$

Then

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}}(2 x+1)=3 \\
& \lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}}\left(x^{2}+1\right)=3
\end{aligned}
$$

and therefore

$$
\lim _{x \rightarrow 1} g(x)=3
$$

The value of g at $x=1$ is $g(1)=2$. That value is IRRELEVANT to the computation of

$$
\lim _{x \rightarrow 1} g(x) .
$$

