UMass Boston, Fall 2009 Thursday, September 17, 2009
Math 140: Calculus I Lecture # 7
Notes by: Catalin Zara Topic: Limit Laws
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1. LimiT LAwWS

Question: If a function h is obtained from functions f and g through
algebraic operations and we know

lim f(z) and limg(zx),

r—a
can we determine

lim h(z) ?

Tr—a

Good news: Yes, if the operations on limits make sense.

1.1. Limits and algebraic operations. If the operations on limits
make sense, then:

lim(f(z) £ g(a)) —(lim (z) & (lm g(x)
lim (f(2) - g()) =(lim f(z)) - (lim g(z))
lim f(x) _lim,q f(zx)
e—a g(z) lim,_, g(2)

Bad news: operations don’t always make sense! Working with 0 and

400 can be tricky.
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1.2. Exception examples.

z—00 322 —1
(4) lim (Va2 + 2 —x) =
: iy an () -
sin (2z
6 1 =
(6) limg —-—

1.3. Limits of rational functions at finite values. For
S
lim ——
=2  x2—4

we can’t apply the quotient rule because
lir%(xz —3r+4+2)=0= hn%(x? —4)

«0»

o) is unde-

and limit of the ratio of two quantities that go to zero (
fined.
Solution: Factor the polynomials.

Good to know: If P(a) = 0 then z — a is a factor of P.
2 —3rx+2=(z—1)(z—2) 2 —4=(z—2)(xv+2)
hence
?=3c+2 (z—-1)(x—2) x-1
2 —4  (r+2)(x—2) x+2
for all z # 2 and therefore
x2—3x+2_1_ r—1 1

lim —— = lim —
—2 g2 —4 z—2 L + 2 4

1.4. Limits of rational functions at infinity.
. 2?44
lim
z—o0 203 — 5
Can’t apply the limit law for quotients, because

lim (v +4) =00 and  lim (22° — 5) =

r—00 T—00

and limit of the ratio of two quantities that go to infinity (“%27) is
undefined. Factoring won’t help, either.



Solution: ORDER OF MAGNITUDE

5
223 — 5 =23 (2 — —3)
T
Then
o244 (14 E) L 1144
lim 3 = lim == lim — =
x—00 205 — x—>oox3( _:1:3) x—>oog;2_m_3
Since
4 5
Jim 5 = 0= Jim o3
we get
244 1 1+ 3% 1 14+ 4
lim = = lim — 2 — Jim - lim 2 =
General Rule: If
P(2) =ama™ + @p12™ -+ a1w + ag
Q(z) =bpz”™ 4 by1z™ 4 -+ bz + by
then
P(z)  a™ Qp+ "+ 2
Q(z) 2" p,+tg o
am + 22+ + T
lim v "”il bxo = C;)— finite
R
L 1, if m=n
lim — =4 0, ifm<n
et oo, if m>n
Conclusion:
gm if degP =deg@ =m
P b
im 28 _ )67 i deg P < deg 0
v=oe Q(2) +00, if degP > degQ

4
2 44 =2 (1—1——2>
x
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1.5. More about order of magnitude. Note that for z > 0 we have

1 1 1
T4+vV222+1=a+ xQCHHG)zmﬁww2+—§:x<1+\m+~3>
xr xr X

and
1
3:132—1:m/3——2
T
Therefore
r+ V222 41 fE<1+ 2+%2) 1+4/24 %
3% — 1 ryf3- % 3- %
Then

Where did we use x > 07 What happens for x — —o0?

1.6. Difference Exception. We can’t apply the difference rule for
lim (Va2 4+ 2 — x)

because

lim V22 +2 =00 = lim z

Tr—00 Tr— 00
and the limit of the difference of two quantities that go to infinity
(“oo — 00”) is undefined.
Solution: Conjugate!

\/m_m:(\/x2+x—x)(\/a:2+m+x)_x2+az—x2 T

Vit 4+ Vil tz+z o+ ta

Now use the order of magnitude:

1
x+\/x2+x:x<1+ 1+—>
V x

1

T
:B+\/x2+:c_1+ /141

and therefore

Vil+x—x =

hence
lim (Va2 4+ 2 —x) = lim

1 1



1.7. Squeeze Theorem. We can’t use the product limit law for
. o . T
lim x“ sin —
x—0 €x

because lim, .o sin 7 does not exist!

15

|

-15

Graphically: Tamed oscillations!
Mathematically: 2 — sin % is bounded and

. T . T
—1<sin-< 1= —2?2 < 2%sin— < 2?2
T T

Since both —z* and z” go to 0 as  — 0 and z°sin T is squeezed
between them, it can’t escape and will also have 0 as the limit.

. . T
lim z2sin — =0 .
x—0 x

General principle: SQUEEZE THEOREM.
If f(z) < h(z) < g(x) for all x around a and

lim f(z) = limg(z) =L,

then
limh(z) =L ;.

r—a

Consequences:
o If lim, ., |f(z)| =0, then lim,_,, f(z) = 0.

—[f(0)] < fz) < |f(2)]



Doesn’t work for non-zero limit!
e If lim, ., f(z) = 0 and ¢ is bounded around a (|g(z)| < M for
all z around a), then lim,_,, f(z)g(x) = 0.

—M|f(2)| <[f(x)g(z)] < M|f(z)]

Example:
. sinz .1
lim = lim — -sinz=0.
r—o0 U T—00 U

1.8. Change of variable. How about

sinx
?

lin[l)
r— €x
It's a “8” exception, and we can’t apply any of the methods studied so

far. Important to know:

sin x sin OJ
lim =1 as in lim =1
z—0 I O—o0 [
We'll use this to compute
. sin2x
lim
z—0 Ox

Must have 2z in the box. Fortunately x — 0 is equivalent to 22 — 0

and therefore

. sin2z . sin2x . sin2x 1 .. sin2x 1
lim = lim = lim = 1 —.
z—0 Ox 2z—0 6O 22—0 3 - 22 3 22—0 2 3




