UMass Boston, Fall 2009
Math 140: Calculus I
Notes by: Catalin Zara

Lecture \# 7
Topic: Limit Laws

Contents

1. Limit Laws 1
1.1. Limits and algebraic operations 1
1.2. Exception examples 2
1.3. Limits of rational functions at finite values 2
1.4. Limits of rational functions at infinity 2
1.5. More about order of magnitude 4
1.6. Difference Exception 4
1.7. Squeeze Theorem 5
1.8. Change of variable 6

1. Limit Laws

Question: If a function h is obtained from functions f and g through algebraic operations and we know

$$
\lim _{x \rightarrow a} f(x) \quad \text { and } \quad \lim _{x \rightarrow a} g(x),
$$

can we determine

$$
\lim _{x \rightarrow a} h(x) ?
$$

Good news: Yes, if the operations on limits make sense.
1.1. Limits and algebraic operations. If the operations on limits make sense, then:

$$
\begin{aligned}
\lim _{x \rightarrow a}(f(x) \pm g(x)) & =\left(\lim _{x \rightarrow a} f(x)\right) \pm\left(\lim _{x \rightarrow a} g(x)\right) \\
\lim _{x \rightarrow a}(f(x) \cdot g(x)) & =\left(\lim _{x \rightarrow a} f(x)\right) \cdot\left(\lim _{x \rightarrow a} g(x)\right) \\
\lim _{x \rightarrow a} \frac{f(x)}{g(x)} & =\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \\
\lim _{x \rightarrow a} f(x)^{g(x)} & =\left(\lim _{x \rightarrow a} f(x)\right)^{\left(\lim _{x \rightarrow a} g(x)\right)}
\end{aligned}
$$

Bad news: operations don't always make sense! Working with 0 and $\pm \infty$ can be tricky.

1.2. Exception examples.

$$
\begin{align*}
\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x^{2}-4} & = \tag{1}\\
\lim _{x \rightarrow \infty} \frac{x^{2}+4}{2 x^{3}-5} & = \tag{2}\\
\lim _{x \rightarrow \infty} \frac{x+\sqrt{2 x^{2}+1}}{\sqrt{3 x^{2}-1}} & = \tag{3}\\
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right) & = \tag{4}\\
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{\pi}{x}\right) & = \tag{5}\\
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{6 x} & = \tag{6}
\end{align*}
$$

1.3. Limits of rational functions at finite values. For

$$
\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x^{2}-4}
$$

we can't apply the quotient rule because

$$
\lim _{x \rightarrow 2}\left(x^{2}-3 x+2\right)=0=\lim _{x \rightarrow 2}\left(x^{2}-4\right)
$$

and limit of the ratio of two quantities that go to zero (" $\frac{0}{0}$ ") is undefined.

Solution: Factor the polynomials.
Good to know: If $P(a)=0$ then $x-a$ is a factor of P.

$$
x^{2}-3 x+2=(x-1)(x-2) \quad x^{2}-4=(x-2)(x+2)
$$

hence

$$
\frac{x^{2}-3 x+2}{x^{2}-4}=\frac{(x-1)(x-2)}{(x+2)(x-2)}=\frac{x-1}{x+2}
$$

for all $x \neq 2$ and therefore

$$
\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{x-1}{x+2}=\frac{1}{4} .
$$

1.4. Limits of rational functions at infinity.

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+4}{2 x^{3}-5}
$$

Can't apply the limit law for quotients, because

$$
\lim _{x \rightarrow \infty}\left(x^{2}+4\right)=\infty \quad \text { and } \quad \lim _{x \rightarrow \infty}\left(2 x^{3}-5\right)=\infty
$$

and limit of the ratio of two quantities that go to infinity ($" \frac{\infty}{\infty}$ ") is undefined. Factoring won't help, either.

Solution: ORDER OF MAGNITUDE

$$
\begin{aligned}
x^{2}+4 & =x^{2}\left(1+\frac{4}{x^{2}}\right) \\
2 x^{3}-5 & =x^{3}\left(2-\frac{5}{x^{3}}\right)
\end{aligned}
$$

Then

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+4}{2 x^{3}-5}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(1+\frac{4}{x^{2}}\right)}{x^{3}\left(2-\frac{5}{x^{3}}\right)}=\lim _{x \rightarrow \infty} \frac{1}{x} \frac{1+\frac{4}{x^{2}}}{2-\frac{5}{x^{3}}}
$$

Since

$$
\lim _{x \rightarrow \infty} \frac{4}{x^{2}}=0=\lim _{x \rightarrow \infty} \frac{5}{x^{3}}
$$

we get

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+4}{2 x^{3}-5}=\lim _{x \rightarrow \infty} \frac{1}{x} \cdot \frac{1+\frac{4}{x^{2}}}{2-\frac{5}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{1}{x} \cdot \lim _{x \rightarrow \infty} \frac{1+\frac{4}{x^{2}}}{2-\frac{5}{x^{3}}}=0 \cdot \frac{1}{2}=0 .
$$

General Rule: If

$$
\begin{aligned}
& P(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0} \\
& Q(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}
\end{aligned}
$$

then

$$
\begin{gathered}
\frac{P(x)}{Q(x)}=\frac{x^{m}}{x^{n}} \cdot \frac{a_{m}+\frac{a_{m-1}}{x}+\cdots+\frac{a_{0}}{x^{m}}}{b_{n}+\frac{b_{n-1}}{x}+\cdots+\frac{b_{0}}{x^{n}}} \\
\lim _{x \rightarrow \infty} \frac{a_{m}+\frac{a_{m-1}}{x}+\cdots+\frac{a_{0}}{x^{m}}}{b_{n}+\frac{b_{n-1}}{x}+\cdots+\frac{a_{m}}{x_{n}}} \text { finite } \\
\lim _{x \rightarrow \infty} \frac{x^{m}}{x^{n}}=\left\{\begin{array}{l}
1, \text { if } m=n \\
0, \text { if } m<n \\
\infty, \text { if } m>n
\end{array}\right.
\end{gathered}
$$

Conclusion:

$$
\lim _{x \rightarrow \infty} \frac{P(x)}{Q(x)}= \begin{cases}\frac{a_{m}}{b_{m}}, & \text { if } \operatorname{deg} P=\operatorname{deg} Q=m \\ 0, & \text { if } \operatorname{deg} P<\operatorname{deg} Q \\ \pm \infty, & \text { if } \operatorname{deg} P>\operatorname{deg} Q\end{cases}
$$

1.5. More about order of magnitude. Note that for $x>0$ we have
$x+\sqrt{2 x^{2}+1}=x+\sqrt{x^{2}\left(2+\frac{1}{x^{2}}\right)}=x+x \sqrt{2+\frac{1}{x^{2}}}=x\left(1+\sqrt{2+\frac{1}{x^{2}}}\right)$
and

$$
\sqrt{3 x^{2}-1}=x \sqrt{3-\frac{1}{x^{2}}}
$$

Therefore

$$
\frac{x+\sqrt{2 x^{2}+1}}{\sqrt{3 x^{2}-1}}=\frac{x\left(1+\sqrt{2+\frac{1}{x^{2}}}\right)}{x \sqrt{3-\frac{1}{x^{2}}}}=\frac{1+\sqrt{2+\frac{1}{x^{2}}}}{\sqrt{3-\frac{1}{x^{2}}}}
$$

Then

$$
\lim _{x \rightarrow \infty} \frac{x+\sqrt{2 x^{2}+1}}{\sqrt{3 x^{2}-1}}=\lim _{x \rightarrow \infty} \frac{1+\sqrt{2+\frac{1}{x^{2}}}}{\sqrt{3-\frac{1}{x^{2}}}}=\frac{1+\sqrt{2}}{\sqrt{3}} .
$$

Where did we use $x>0$? What happens for $x \rightarrow-\infty$?
1.6. Difference Exception. We can't apply the difference rule for

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)
$$

because

$$
\lim _{x \rightarrow \infty} \sqrt{x^{2}+x}=\infty=\lim _{x \rightarrow \infty} x
$$

and the limit of the difference of two quantities that go to infinity (" $\infty-\infty$ ") is undefined.

Solution: Conjugate!
$\sqrt{x^{2}+x}-x=\frac{\left(\sqrt{x^{2}+x}-x\right)\left(\sqrt{x^{2}+x}+x\right)}{\sqrt{x^{2}+x}+x}=\frac{x^{2}+x-x^{2}}{\sqrt{x^{2}+x}+x}=\frac{x}{x+\sqrt{x^{2}+x}}$
Now use the order of magnitude:

$$
x+\sqrt{x^{2}+x}=x\left(1+\sqrt{1+\frac{1}{x}}\right)
$$

and therefore

$$
\sqrt{x^{2}+x}-x=\frac{x}{x+\sqrt{x^{2}+x}}=\frac{1}{1+\sqrt{1+\frac{1}{x}}}
$$

hence

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)=\lim _{x \rightarrow \infty} \frac{1}{1+\sqrt{1+\frac{1}{x}}}=\frac{1}{2} .
$$

1.7. Squeeze Theorem. We can't use the product limit law for

$$
\lim _{x \rightarrow 0} x^{2} \sin \frac{\pi}{x}
$$

because $\lim _{x \rightarrow 0} \sin \frac{\pi}{x}$ does not exist!

Graphically: Tamed oscillations!
Mathematically: $x \rightarrow \sin \frac{\pi}{x}$ is bounded and

$$
-1 \leqslant \sin \frac{\pi}{x} \leqslant 1 \Longrightarrow-x^{2} \leqslant x^{2} \sin \frac{\pi}{x} \leqslant x^{2}
$$

Since both $-x^{2}$ and x^{2} go to 0 as $x \rightarrow 0$ and $x^{2} \sin \frac{\pi}{x}$ is squeezed between them, it can't escape and will also have 0 as the limit.

$$
\lim _{x \rightarrow 0} x^{2} \sin \frac{\pi}{x}=0
$$

General principle: SQUEEZE THEOREM.
If $f(x) \leqslant h(x) \leqslant g(x)$ for all x around a and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=L,
$$

then

$$
\lim _{x \rightarrow a} h(x)=L ; .
$$

Consequences:

- If $\lim _{x \rightarrow a}|f(x)|=0$, then $\lim _{x \rightarrow a} f(x)=0$.

$$
-|f(x)| \leqslant f(x) \leqslant|f(x)|
$$

Doesn't work for non-zero limit!

- If $\lim _{x \rightarrow a} f(x)=0$ and g is bounded around $a(|g(x)| \leqslant M$ for all x around a), then $\lim _{x \rightarrow a} f(x) g(x)=0$.

$$
-M|f(x)| \leqslant|f(x) g(x)| \leqslant M|f(x)|
$$

Example:

$$
\lim _{x \rightarrow \infty} \frac{\sin x}{x}=\lim _{x \rightarrow \infty} \frac{1}{x} \cdot \sin x=0
$$

1.8. Change of variable. How about

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x} ?
$$

It's a " $\frac{0}{0}$ " exception, and we can't apply any of the methods studied so far. Important to know:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \text { as in } \quad \lim _{\square \rightarrow 0} \frac{\sin \square}{\square}=1
$$

We'll use this to compute

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{6 x}
$$

Must have $2 x$ in the box. Fortunately $x \rightarrow 0$ is equivalent to $2 x \rightarrow 0$ and therefore

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{6 x}=\lim _{2 x \rightarrow 0} \frac{\sin 2 x}{6 x}=\lim _{2 x \rightarrow 0} \frac{\sin 2 x}{3 \cdot 2 x}=\frac{1}{3} \cdot \lim _{2 x \rightarrow 0} \frac{\sin 2 x}{2 x}=\frac{1}{3} .
$$

