UMass Boston, Fall 2009
Math 140: Calculus I
Notes by: Catalin Zara

Thursday, September 24, 2009
Lecture \# 9
Topic: Derivative at a Point

Contents

1. Derivative at a Point 1
1.1. Motivation 1
1.2. Definition 1
1.3. Example 2
1.4. Equation of tangent line 2
1.5. Points of non-differentiability 3

1. Derivative at a Point

1.1. Motivation. Recall what motivated us to study limits:

- Instantaneous velocity at time $t_{0}=a$:

$$
\lim _{T \rightarrow 0} \frac{f(a+T)-f(a)}{T}
$$

- Slope of tangent line at the point $(a, f(a))$:

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

In both cases, same ingredients:

- Point a,
- Function f defined at and around a.
1.2. Definition. If

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

exists and is finite, then:

- We say that the function f is differentiable at the point a;
- We denote the value of the limit by $f^{\prime}(a)$.
- We call the number $f^{\prime}(a)$ the derivative of f at a.

Alternative definition: Since

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\underset{\substack{x=a+h}}{ } \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

we also have

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Alternative notation:

$$
f^{\prime}(a)=\left.\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}\right|_{x=a}=\left.\frac{d f}{d x}\right|_{x=a}
$$

- Advantage: clearly identifies the independent variable
- Disadvantage: more cumbersome notation.

Interpretation:

$$
\begin{aligned}
& f^{\prime}(a)=\text { Instantaneous rate of change of } f(x) \\
& \text { with respect to changes in } x \text { when } x=a \text {. }
\end{aligned}
$$

Applications:

- If $f(t)$ is the position at time t, then the instantaneous velocity at time $t=a$ is $f^{\prime}(a)$.
- The slope of the tangent line to the graph of f at the point $(a, f(a))$ is $f^{\prime}(a)$.
1.3. Example. For $f(x)=x^{2}$ and $a=3$, compute $f^{\prime}(a)$.

Solution: We need to determine whether the limit

$$
\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}
$$

exists and is finite. Obviously we can't use the quotient rule for limits, because $\lim _{x \rightarrow 3}(x-3)=0$. But for $x \neq 3$ we have:

$$
\frac{f(x)-f(3)}{x-3}=\frac{x^{2}-9}{x-3}=\frac{(x-3)(x+3)}{x-3}=x+3
$$

hence

$$
\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}=\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3}(x+3)=6 .
$$

Since the limit exists and is finite, the function f is differentiable at $a=3$ and $f^{\prime}(3)=6$.
1.4. Equation of tangent line. Equation of line with slope m passing through the point $P\left(x_{0}, y_{0}\right)$:

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

For the tangent line to the graph of $y=f(x)$ at the point $(a, f(a))$, the slope is $m=f^{\prime}(a)$. Equation:

$$
y-f(a)=f^{\prime}(a)(x-a) \Longrightarrow y=f(a)+f^{\prime}(a)(x-a)
$$

Example: Equation of line tangent to the graph of $y=\sqrt{x}$ at the point corresponding to $x=16$.

Point: $(16,4)$.

Slope:

$$
m=y^{\prime}(16)=\lim _{x \rightarrow 16} \frac{y(x)-y(16)}{x-16}=\lim _{x \rightarrow 16} \frac{\sqrt{x}-4}{x-16} .
$$

Again, we can't apply the ratio law (bottom goes to zero). But we can use the conjugate:

$$
\begin{aligned}
\lim _{x \rightarrow 16} \frac{\sqrt{x}-4}{x-16} & =\lim _{x \rightarrow 16} \frac{\sqrt{x}-4}{x-16} \cdot \frac{\sqrt{x}+4}{\sqrt{x}+4}=\lim _{x \rightarrow 16} \frac{x-16}{(x-16)(\sqrt{x}+4)}= \\
& =\lim _{x \rightarrow 16} \frac{1}{\sqrt{x}+4}=\frac{1}{8}
\end{aligned}
$$

The slope is $m=y^{\prime}(16)=\frac{1}{8}$ and the equation of the tangent line is

$$
y-4=\frac{1}{8}(x-16) \Longleftrightarrow y=\frac{1}{8} x+2 .
$$

1.5. Points of non-differentiability. What can go wrong?

- If f is differentiable at a then

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

must be finite. Since $\lim _{x \rightarrow a}(x-a)=0$, this can possibly happen only if $\lim _{x \rightarrow a}(f(x)-f(a))=0$. Therefore:
f differentiable at $a \Longrightarrow f$ continuous at a.
Equivalent statement:
f not continuous at $a \Longrightarrow f$ not differentiable at a.

- What if f is continuous at a point? Is it necessarily differentiable at that point?

Answer: No! It might be, but there is no guarantee..
Example: $f(x)=|x|$ is continuous at 0 , but:

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=-1
$$

and

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{x}{x}=1
$$

Hence the side-limits exist, are finite, but not equal. Therefore f is not differentiable at 0 . Such a point is called a corner point.

- It may also be possible that the limit in the definition of differentiability exists, but is infinite. Example: $f(x)=\sqrt[3]{x}$ at $x=0$. Then we say that we have a vertical tangent.
- Another alternative is that one side limit in the definition of differentiability is finite and the other is infinite. Then we still have a corner point.
- If one of the side limits is $-\infty$ and the other one is ∞, then we have a cusp point.
Remark: Counter-intuitive as it may be, the tangent line at a point may actually cut the graph! Think $f(x)=x^{3}$ and $x=0$. The slope of the tangent line turns out to be 0 , and the tangent line is the horizontal line $y=0$. It crosses the graph at the point of tangency!

