Contents

1. Derivative as a Function 1
1.1. Example 1
1.2. Definition 1
1.3. Higher derivatives 2
1.4. Graph of derivative function 3
1.5. Piecewise functions 3

1. Derivative as a Function

1.1. Example. Consider the function $g(x)=x^{3}$. To determine the equation of the tangent line at a point:

- Compute $g^{\prime}(a)$ for every particular point a where we want the tangent line, OR
- Compute $g^{\prime}(a)$ for a generic a and than plug-in the value of a for every particular point we are interested in.
Using the second approach:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{x^{3}-a^{3}}{x-a}=\lim _{x \rightarrow a} \frac{(x-a)\left(x^{2}+a x+a^{2}\right)}{x-a}= \\
& =\lim _{x \rightarrow a}\left(x^{2}+a x+a^{2}\right)=3 a^{2}
\end{aligned}
$$

Conclusion: the limit exists and is finite for all a.
We produced a rule for computing $f^{\prime}(a)$ for generic a : $f^{\prime}(a)=3 a^{2}$.

1.2. Definition. Derivative function:

Given a function f, the function g that assigns to every point x where f is differentiable the value $g(a)=f^{\prime}(a)$.

- g is customarily denoted by f^{\prime} or $f^{(1)}$.
- The domain of the derivative function f^{\prime} is the set of points where f is differentiable.
- The domain of the derivative function f^{\prime} is included in the domain of the original function;
- The domain of the derivative function may be different than the domain of the function. Example: $f(x)=|x|$. Then

$$
f^{\prime}(x)= \begin{cases}-1 & \text { if } x<0 \\ 1 & \text { if } x>0\end{cases}
$$

The domain of f is \mathbb{R}, and the domain of f^{\prime} is $\mathbb{R} \backslash\{0\}$.
Notation:

$$
f^{\prime}=\frac{d f}{d x} \quad \text { Also: } \quad\left(x^{3}\right)^{\prime}=3 x^{2} \quad \text { and } \quad \frac{d\left(x^{3}\right)}{d x}=3 x^{2}
$$

Remark:

- $f^{\prime}(a)$: derivative of f at a : NUMBER
- f^{\prime} : derivative of f : FUNCTION
1.3. Higher derivatives. Consider $f(x)=\frac{1}{x}$, defined on $(0, \infty)$. To compute the derivative $f^{\prime}(x)$ we have two options:
- Compute $f^{\prime}(a)$ and then replace a with x, or
- Compute $f^{\prime}(x)$ directly as

$$
\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}
$$

Using the second method:
$\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}=\lim _{y \rightarrow x} \frac{\frac{1}{y}-\frac{1}{x}}{y-x}=\lim _{y \rightarrow x} \frac{\frac{x-y}{x y}}{y-x}=\lim _{y \rightarrow x} \frac{x-y}{x y(y-x)}=\lim _{y \rightarrow x} \frac{-1}{x y}=-\frac{1}{x^{2}}$
Hence

$$
\left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^{2}}
$$

How about the derivative of the derivative:

$$
\left(-\frac{1}{x^{2}}\right)^{\prime}=\lim _{y \rightarrow x} \frac{\left(-\frac{1}{y^{2}}\right)-\left(-\frac{1}{x^{2}}\right)}{y-x}=\lim _{y \rightarrow x} \frac{y^{2}-x^{2}}{x^{2} y^{2}(y-x)}=\lim _{y \rightarrow x} \frac{y+x}{x^{2} y^{2}}=\frac{2 x}{x^{4}}=\frac{2}{x^{3}}
$$

So:
Function $f \quad \stackrel{D}{\Longrightarrow} \quad$ Derivative function $f^{\prime} \xrightarrow{D} \quad$ Derivative of $f^{\prime}=\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}$

- $f^{\prime \prime}$: second order derivative of f. Also denoted by $f^{(2)}$
- $f^{\prime \prime \prime}=\left(f^{\prime \prime}\right)^{\prime}$: third order derivative of f. Also denoted by $f^{(3)}$.
- In general: $n^{\text {th }}$-order derivative

$$
f^{(n)}=\left(f^{(n-1)}\right)^{\prime}
$$

Example:

$$
\left(\frac{1}{x}\right)^{\prime \prime}=\frac{2}{x^{3}}
$$

1.4. Graph of derivative function. How to get the graph of f^{\prime} from the graph of f.

Examples:

- $f(x)=\frac{1}{x}$;
- $f(x)$ general cubic.
1.5. Piecewise functions. Going back to piecewise functions.

For what values of a and b if the function

$$
f(x)= \begin{cases}x^{2}+a, & \text { if } x<1 \\ b, & \text { if } x=1 \\ 3 x-a, & \text { if } x>1\end{cases}
$$

differentiable at $x=1$?
Solution: To be differentiable, the function must be continuous at $x=1$. From a previous class meeting, that happens only if $a=1$ and $b=2$. So the question really is: Is the function

$$
f(x)= \begin{cases}x^{2}+1, & \text { if } x<1 \\ 2, & \text { if } x=1 \\ 3 x-1, & \text { if } x>1\end{cases}
$$

differentiable at $x=1$?
We need to determine whether

$$
\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}
$$

exists and is finite. For that we compute the side limits:

$$
\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{x^{2}+1-2}{x-1}=\lim _{x \rightarrow 1^{-}}(x+1)=2
$$

and

$$
\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{3 x-1-2}{x-1}=\lim _{x \rightarrow 1^{+}} 3=3
$$

The side limits are not equal, therefore the limit does not exist, which means that there for $a=1$ and $b=2$, the function is not differentiable at $x=1$. As those are the only values of a and b for which the function is continuous, it follows that there are no values of a and b for which the function is differentiable at $x=1$.

