Contents

1. Differentiation Formulas 1
1.1. General approach 1
1.2. Power functions 1
1.3. Sum, difference, constant multiple rules 2
1.4. Product Rule 3
1.5. Quotient rule 4

1. Differentiation Formulas

1.1. General approach. Recall definition of derivative at a point:

$$
f^{\prime}(a)=\left.\frac{d f}{d x}\right|_{x=a}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

A: Use the limit definition to compute derivatives of simple functions;
B: Develop rules that show how derivatives interact with operations on functions.
General approach for computing derivatives:

- Given a function, decompose it as a
- sum,
- difference,
- product,
- quotient,
- composition
of simple functions.
- Use the rules from B to get the derivative of the original function from the derivatives of the blocks.
- Use results of A to find the derivatives of the simple blocks.

1.2. Power functions.

1.2.1. Constant functions. If $f(x)=c$ for all x, then $f^{\prime}(x)=0$.

$$
(c)^{\prime}=\frac{d c}{d x}=0
$$

1.2.2. Powers. We have already computed derivatives of some power functions:

$$
\begin{gathered}
\left(x^{2}\right)^{\prime}=2 x \\
\left(x^{3}\right)^{\prime}=3 x^{2} \\
\left(\frac{1}{x}\right)^{\prime}=\left(x^{-1}\right)^{\prime}=-x^{-2}=-\frac{1}{x^{2}} \\
\left(x^{-2}\right)^{\prime}=-2 x^{-3} \\
(\sqrt{x})^{\prime}=\left(x^{1 / 2}\right)^{\prime}=\frac{1}{2 \sqrt{x}}=\frac{1}{2} x^{-1 / 2}
\end{gathered}
$$

The Power Rule:

$$
\left(x^{a}\right)^{\prime}=\frac{d x^{a}}{d x}=a x^{a-1}
$$

Works for a natural, integer, rational, real!
Warning: Do not apply the Power Rule for EXPONENTIAL functions!

$$
\frac{d x^{\pi}}{d x}=\pi x^{\pi-1} \quad \text { BUT } \quad \frac{d \pi^{x}}{d x} \text { can't be computed using this rule! }
$$

More examples:

$$
\begin{aligned}
f(x)=\sqrt[3]{x}=x^{1 / 3} & \Longrightarrow \frac{d f}{d x}=\frac{1}{3} x^{-2 / 3} \\
g(x)=\frac{1}{\sqrt{x}}=x^{-1 / 2} & \Longrightarrow \frac{d g}{d x}=-\frac{1}{2} x^{-3 / 2} \\
h(x)=t^{2} & \Longrightarrow \frac{d h}{d x}=0 \quad \text { (constant function, not power!) }
\end{aligned}
$$

1.3. Sum, difference, constant multiple rules. f and g are functions and c is a constant.

Sum/Difference rule:

$$
(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}
$$

The derivative of the sum is the sum of the derivatives.
The derivative of the difference is the difference of the derivatives.
Constant multiple rule:

$$
(c f)^{\prime}=c f^{\prime} \text { if } c \text { is a constant. }
$$

Example: $P(x)=2 x^{3}-7 x+2$, polynomial function.

$$
\begin{aligned}
P^{\prime}(x) & =\left(2 x^{3}-7 x+2\right)^{\prime}=\left(2 x^{3}\right)^{\prime}-(7 x)^{\prime}+\left(2^{\prime}\right)= \\
& =2\left(x^{3}\right)^{\prime}-7(x)^{\prime}+(2)^{\prime}= \\
& =2 \cdot 3 x^{2}-7 \cdot 1+0= \\
& =6 x^{2}-7
\end{aligned}
$$

Another example: $f(x)=3 x^{4}-2 \sqrt[3]{x^{2}}=3 x^{4}-2 x^{2 / 3}$. Then

$$
f^{\prime}(x)=3 \cdot 4 x^{3}-2 \cdot \frac{2}{3} x^{-1 / 3}=12 x^{3}-\frac{4}{3} x^{-1 / 3}
$$

How about $g(x)=x^{2} \sqrt{x}$? Looks like a product, but $g(x)=x^{5 / 2}$, so

$$
g^{\prime}(x)=\frac{5}{2} x^{3 / 2}
$$

1.4. Product Rule. Example: The length of a rectangle starts at 5 cm and grows at a rate of $2 \mathrm{~cm} / \mathrm{s}$. The width starts at 12 cm and grows at a rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the area growing?

$$
L(t)=5+2 t \quad \text { and } \quad W(t)=12+3 t
$$

Then

$$
A(t)=L(t) \cdot W(t)=(5+2 t)(12+3 t)=5 \cdot 12+5 \cdot 3 t+2 t \cdot 12+2 t \cdot 3 t
$$

hence

$$
A(t)=5 \cdot 12+5 \cdot 3 t+2 t \cdot 12+2 \cdot 3 t^{2}
$$

Therefore

$$
A^{\prime}(t)=\left(5 \cdot 12+5 \cdot 3 t+2 t \cdot 12+2 \cdot 3 t^{2}\right)^{\prime}=5 \cdot 3+2 \cdot 12+2 \cdot 3 \cdot 2 t
$$

and when $t=0$ we get:

$$
A^{\prime}(0)=5 \cdot 3+2 \cdot 12 .
$$

What do these numbers represent?

$$
5=L(0) \quad 3=W^{\prime}(0) \quad 2=L^{\prime}(0) \quad 12=W(0)
$$

Conclusion:

$$
(L \cdot W)^{\prime}(0)=L(0) \cdot W^{\prime}(0)+L^{\prime}(0) \cdot W(0) .
$$

Product rule:

$$
(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Derivative of product $=$ derivative of first factor times the second factor plus first factor times derivative of the second factor.

Example:

$$
\left(x^{2} \sqrt{x}\right)^{\prime}=\left(x^{2}\right)^{\prime} \sqrt{x}+x^{2}(\sqrt{x})^{\prime}=2 x \sqrt{x}+x^{2} \cdot \frac{1}{2} x^{-1 / 2}=\frac{5}{2} x^{3 / 2}
$$

1.5. Quotient rule. We know how to differentiate polynomials and product, but how about rational functions, which are quotients of polynomials?

Let $f(x)=\frac{P(x)}{Q(x)}$. Then $P(x)=f(x) Q(x)$, hence

$$
P^{\prime}(x)=(f Q)^{\prime}(x)=f^{\prime}(x) Q(x)+f(x) Q^{\prime}(x)
$$

Solving for $f^{\prime}(x)$ we get

$$
f^{\prime}(x)=\frac{P^{\prime}(x)-f(x) Q(x)}{Q(x)}=\frac{P^{\prime}(x)-\frac{P(x)}{Q(x)} Q^{\prime}(x)}{Q(x)}=\frac{P^{\prime}(x) Q(x)-P(x) Q^{\prime}(x)}{Q^{2}(x)}
$$

We never used that P and Q are polynomials. Works in general:

Quotient Rule:

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x)}
$$

Example:

$$
\begin{gathered}
g(x)=\frac{1}{x^{2}-1} \\
g^{\prime}(x)=\frac{1^{\prime} \cdot\left(x^{2}-1\right)-1 \cdot\left(x^{2}-1\right)^{\prime}}{\left.x^{2}-1\right)^{2}}=\frac{-2 x}{\left(x^{2}-1\right)^{2}}
\end{gathered}
$$

Second derivative:

$$
g^{\prime \prime}(x)=\left(g^{\prime}\right)^{\prime}(x)=\left(\frac{-2 x}{\left(x^{2}-1\right)^{2}}\right)^{\prime}=\frac{(-2 x)^{\prime}\left(x^{2}-1\right)^{2}-(-2 x)\left[\left(x^{2}-1\right)^{2}\right]^{\prime}}{\left[\left(x^{2}-1\right)^{2}\right]^{2}}
$$

How do we compute the derivative $\left[\left(x^{2}-1\right)^{2}\right]^{\prime}$? By expanding the power:

$$
\left[\left(x^{2}-1\right)^{2}\right]^{\prime}=\left(x^{4}-2 x^{2}+1\right)^{\prime}=4 x^{3}-4 x=4 x\left(x^{2}-1\right) .
$$

Therefore:

$$
\begin{aligned}
g^{\prime \prime}(x) & =\frac{-2\left(x^{2}-1\right)^{2}+2 x \cdot 4 x\left(x^{2}-1\right)}{\left(x^{2}-1\right)^{4}}= \\
& =\frac{\left(x^{2}-1\right)\left(-2\left(x^{2}-1\right)+8 x^{2}\right)}{\left(x^{2}-1\right)^{4}}=\frac{6 x^{2}+2}{\left(x^{2}-1\right)^{3}}
\end{aligned}
$$

If we want to compute higher order derivatives, we will have to differentiate $\left(x^{2}-1\right)^{n}$ for bigger values of n, and expanding the polynomial will very soon become quite laborious. We will learn another method for computing such derivatives.

