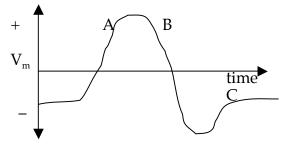
Bio 112 Handout for Physiology 3

This handout contains:

- Today's iClicker Questions
- Handouts for today's lecture


iClicker Question #23A - <u>before</u> lecture

Which of the following are true?

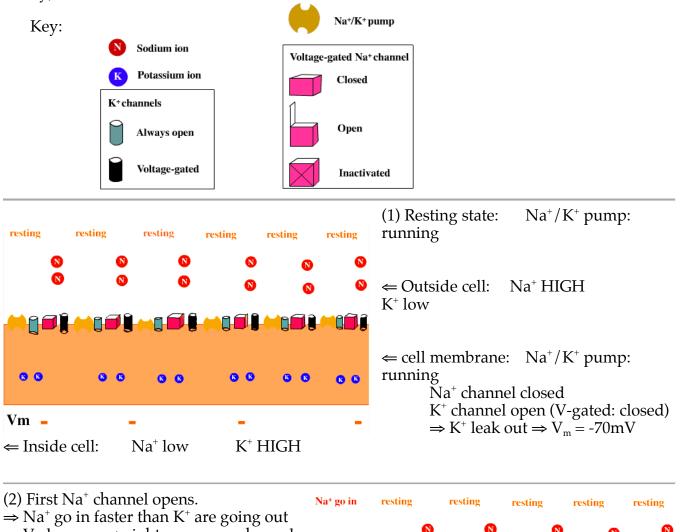
- A. In an action potential, the Na⁺ ions move **<u>along</u>** the axon.
- B. In an action potential, Na⁺ channels remain closed.
- C. An action potential is when V_M becomes negative for a short time.
- D. All of the above.
- E. None of the above.

iClicker Question #23B - after lecture

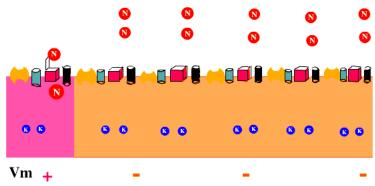
Consider an action potential:

At which point(s) are the voltage-gated Na⁺ channels open?

- (A) A, B, and C.
- (B) A and B only.
- (C) B only.
- (D) A only.
- (E) none of the above.


Beaming in your answers

- 1. Figure out your answer and select the appropriate letter (A-E).
- 2. Turn on your iCliker by pressing the "ON/OFF" button; the blue "POWER" light should come on. If the red "LOW BATTERY" light comes on, you should replace your batteries soon.
- 3. Transmit your answer as follows:
 - a. Press the button corresponding to the answer you've selected (A thru E).
 - b. The "STATUS" light will flash green to indicate that your answer has been received. If the "STATUS" light flashed red, your answer was not received; you should resend it until you get a green "STATUS" light.

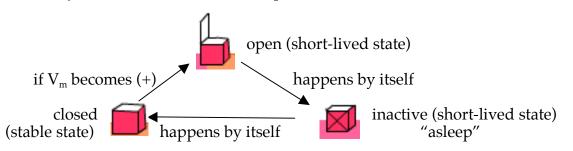


Bio 112 Action Potentials


Shown below is a very short axon (the dendrites, cell body, and terminus are omitted for clarity).

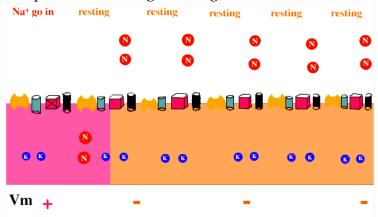
 \Rightarrow V_m becomes + right near open channel

4) Wave of depolarization (V_m +) spreads along axon \Rightarrow . This wave of depolarization = <u>an action potential</u>

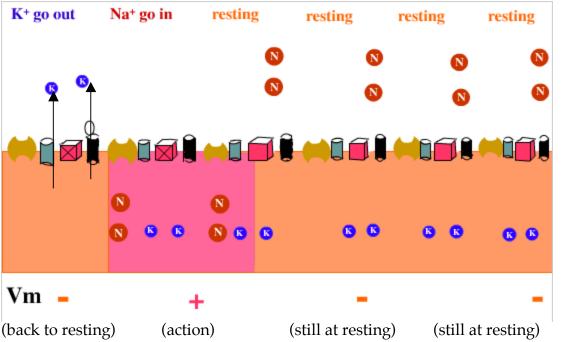

5) Problem: if Na⁺ channels stay open when V_m is (+), then how do you send the next pulse?

Answer: the Na⁺ channel has an **<u>inactive</u>** state.

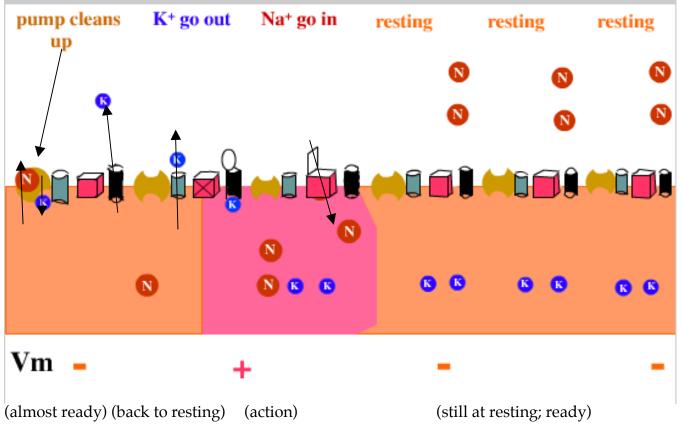
• After it has been open for about 0.001 seconds, it automatically closes & becomes inactive


(closed no matter what V_m is)

• about 0.001 seconds after that, it becomes closed & ready to be opened again (by then, the membrane has re-polarized)


(6) How does this work? Here is an action potential moving \Rightarrow along the axon

The first Na⁺ channel to open is the first to inactivate.



Brian White Ph.D. © 2011

(7) How is the resting potential restored? Lots of K^+ rush out through K^+ channels (repelled by + charge inside) and neutralize the + charge inside. Also, voltage-gated K^+ channels open to allow faster K^+ out-flow.

(8) Finally, the Na^+/K^+ pump "cleans up the mess" by pumping the Na^+ back out and the K^+ back in.

Physiology 3 - 4

Brian White Ph.D. © 2011

AFTER -DURING BEFORE 4

What is an action potential? A wave of depolarization going along an axon:

1						
State	ready	recharging	inactive	action	ready	ready
V _m	1	1	changing	+	-	1
Na ⁺ /K ⁺ pump	running	running a lot	running	running	running	running
K⁺ channel	open	open	open	open	open	open
Na⁺ channel	closed	closed	inactive	open	closed	closed
K ⁺ flow	small in	large in	small in	small in	small in	small in
through pump		C .				
K ⁺ flow	small	small out	large out	small	small	small
through	out			out	out	out
channel						
Na ⁺ flow	small	large out	small out	small	small	small
through pump	out)		out	out	out
Na ⁺ flow	none	none	none	large in	none	none
through				_		
channel						

