Modern View of Atomic Structure

- Since 1963, following the work of Murray Gell-Mann, physicists have described the structure of the atom in terms of quarks and electrons.
 - T Up quarks have a charge of +2/3 unit charge.
 - T Down quarks have a charge of -1/3 unit charge.
 - T Electrons have a charge of –1 unit charge.
 - T Protons and neutrons are made up of three quarks.
- proton = 2 up + 1 down= (2)(+2/3) + (-1/3) = +1
- neutron = 1 up + 2 down = (+2/3) + (2)(-1/3) = 0
- L Quarks are not essential to understand general chemistry.

Subatomic Particles for Chemistry

Particle	Unit Charge	Mass
Proton (p)	1+	1.6726 x 10 ⁻²⁴ g
Neutron (n)	0	1.6749 x 10 ⁻²⁴ g
Electron (e)	1–	9.1095 x 10 ⁻²⁸ g

Nuclear Parameters

- 1. All atoms of a given element have the same number of protons, which defines the element's **atomic number**, given the symbol *Z*.
- Together, protons and neutrons are known as nucleons.
- 3. Any atom with a certain number of nucleons is called a **nuclide**.
- 4. The number of nucleons defines the nuclide's **mass number**, *A*:
- A = number of protons + number of neutrons
- K Note that A is an integer count of the number of nucleons, and *not* a statement of an atom's mass.

Isotopes and Isobars

Isotopes of an element have the same atomic number (*Z*) but have different numbers of neutrons and therefore different mass numbers (*A*).

Isobars are nuclides of different elements (different Z values) with the same mass number (A).

Nuclide Notation

$$\frac{A}{Z}X$$

X = element's symbol

Z = atomic number = number of protons

A =mass number = number of nucleons

Symbol	p	n	е
¹⁶ ₈ 0	8	8	8
16 8 17 8 0 15 8 15 8 7 N	8	9	8
¹⁵ 0	8	7	8
15 7N	7	8	7

Monatomic Ions

Ion = electrically charged atom or molecule Cation (kat! 23cn) = positively charged ion

Anion (an!23cn) = negatively charged ion

Symbol	р	n	е
16 ₈ 0 ²⁻	8	8	10
64 30 ² n ^{2%}	30	34	28
35 17 ^{CI-}	17	18	18
39 19 [%]	19	20	18

Isoelectronic = same number of electrons

Atomic Mass Units (amu or u)

One atomic mass unit is defined as 1/12 of the mass of a ${}^{12}_{6}$ C atom.

$$1 u = 1.66054 \times 10^{-24} g$$

Particle	Mass (u)
proton	1.007277 u
neutron	1.008665 u
electron	0.0005486 u

Binding Energy

The mass of a nuclide is not simply the sum of the masses of its fundamental particles.

Nuclide	Measured Mass	Calc'd Mass	Difference
12 6 16 0 8 15 N	12 u (exactly)	12.098944 u	0.098944 u
¹⁶ 0	15.99491 u	16.13192 ₅ u	0.13702 u
15 7N	15.00011 u	15.12409 ₉ u	0.12399 u

- K When atoms are formed from protons, neutrons, and electrons, some mass is converted into energy, called the **binding energy**.
- K The mass equivalent of this energy can be calculated from the difference between the measured mass of the nuclide and the sum of the masses of its subatomic particles, using $E = mc^2$.

Atomic Weights

- L Tabulated values of atomic weights of elements represent the average atomic mass of all isotopes comprising a naturally occurring sample.
 - The average atomic mass is a weighted average, according to abundance of each isotope in a typical sample.
 - Unless the element naturally occurs as only one isotope (e.g., F), atomic weights generally do not represent the masses of any individual atoms.