Arrhenius Acid-Base Concept Svante Arrhenius, 1884

Strong and Weak Acids and Bases

- 1. The following common acids are strong: HCl, HBr, HI, HNO₃, HClO₄, H₂SO₄
 - The following are some less common acids that are also strong: HClO₃, HBrO₃, HlO₃, H₂SeO₄
- K Assume all other acids are weak unless told otherwise.

Some weak acids: HF, HNO_2 , $HCIO_2$, $[H_2SO_3] = SO_2 + H_2O$, HC_2H_3

Metal Oxides as Bases

Neutralization

O Neutralization is the fundamental reaction

Three Ways of Writing a Neutralization

Molecular equation:

$$HCI(aq) + NaOH($$

Strong, Weak, or Non-Electrolyte?

2. Molecular compounds may be non-electrolytes, weak electrolytes, or strong electrolytes, depending on whether they dissolve without ion formation, a little ion formation, or mostly ion formation, respectively.

Examples:

Compound	Туре	Soln Species
sucrose	nonelectrolyte	molecules
CH ₃ COOH	weak electrolyte	molecules + ions
HCI	strong electrolyte	ions

Strong, Weak, or Non-Electrolyte?

3. Strong acids and strong bases are strong