Hybridization and Shape

- L The domain geometry and shape about central atoms in a complex molecule can be rationalized in terms of hybridization.
- L In the VB model, a sigma bond is always assumed to exist between bonded atoms.
- L The directional nature of sigma bonds, often using hybrid orbitals, makes the geometry about a central atom.

VB Model of Ethane, C₂H₆

Lewis model:

VB model:

Hindered Rotation in C₂H₆

- L Relatively free (slightly hindered) rotation can occur about a single bond axis.
- L Hindered rotation leads to stereochemical conformations in ethane.
 - The barrier to rotation is $\sim 12 \text{ kJ/mol}$ in C_2H_6 .
 - The various fluxional forms are called *conformers*.

Conformers of Ethane

"Sawhorse" Representations of ethane's conformers:

Newman Projections of ethane's conformers:

Orbital Overlap in Double and Triple Bonds Pi Bonding (π bonds)

L Pi bonding results from side-by-side overlap of two orbitals, such as two $2p_x$ or two $2p_y$ orbitals.

Rotated about bond axis to show nodal plane:

L In the VB approach, there is never a π bond without a σ bond, too.

Composition of Bonds by Overlap Type

Bond Type	Composition	Maximum Electron Density
single	σ	along z
double	$\sigma + \pi_x \text{ or } \sigma + \pi_y$	along z (σ) in xz or yz plane (π_x or π_y)
triple	$\sigma + \pi_x + \pi_y$	along z (σ) in xz plane (π_x) and yz plane (π_y)

Sigma and Pi Bonding in C₂H₄

$$H$$
 $C=C$ H

C sp^2 hybridized $\frac{1/4}{sp^2}$ $\frac{1/4}{4}$ $\frac{1/4}{2}$ $\frac{1/4}{2}$

Sigma

Bonding:

Pi Bonding:

Stereochemical Rigidity and Isomers

L Rotation is severely restricted about a double bond, creating *stereochemical rigidity* and the possibility of *isomers*.

Isomers – different compounds with the same molecular formula

Stereoisomers – isomers that differ only in how their atoms are oriented in space.

- *Cis-trans* isomers are also called **geometrical isomers**, because they differ in the geometry of the atoms or groups of atoms about the double bond.
- L Structural isomers (or constitutional isomers) have the same formulas but different atoms bonded together.

$$CI$$
 $C=C$

Triple Bond in C₂H₂

$$H-C\equiv C-H$$

C
$$sp$$
 hybridized y_4 y_4 y_4 y_5 y_7 y_7 y_7 y_7 y_8 y_9 y_9 y_9

Sigma Bonding:

Pi Bonding:

Boundary Surface Models of the Sigma and Two Pi Bonds in C_2H_2

